glam/f32/neon/
mat4.rs

1// Generated from mat.rs.tera template. Edit the template, not the generated file.
2
3use crate::{
4    euler::{FromEuler, ToEuler},
5    f32::math,
6    neon::*,
7    swizzles::*,
8    DMat4, EulerRot, Mat3, Mat3A, Quat, Vec3, Vec3A, Vec4,
9};
10use core::fmt;
11use core::iter::{Product, Sum};
12use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
13
14use core::arch::aarch64::*;
15
16/// Creates a 4x4 matrix from four column vectors.
17#[inline(always)]
18#[must_use]
19pub const fn mat4(x_axis: Vec4, y_axis: Vec4, z_axis: Vec4, w_axis: Vec4) -> Mat4 {
20    Mat4::from_cols(x_axis, y_axis, z_axis, w_axis)
21}
22
23/// A 4x4 column major matrix.
24///
25/// This 4x4 matrix type features convenience methods for creating and using affine transforms and
26/// perspective projections. If you are primarily dealing with 3D affine transformations
27/// considering using [`Affine3A`](crate::Affine3A) which is faster than a 4x4 matrix
28/// for some affine operations.
29///
30/// Affine transformations including 3D translation, rotation and scale can be created
31/// using methods such as [`Self::from_translation()`], [`Self::from_quat()`],
32/// [`Self::from_scale()`] and [`Self::from_scale_rotation_translation()`].
33///
34/// Orthographic projections can be created using the methods [`Self::orthographic_lh()`] for
35/// left-handed coordinate systems and [`Self::orthographic_rh()`] for right-handed
36/// systems. The resulting matrix is also an affine transformation.
37///
38/// The [`Self::transform_point3()`] and [`Self::transform_vector3()`] convenience methods
39/// are provided for performing affine transformations on 3D vectors and points. These
40/// multiply 3D inputs as 4D vectors with an implicit `w` value of `1` for points and `0`
41/// for vectors respectively. These methods assume that `Self` contains a valid affine
42/// transform.
43///
44/// Perspective projections can be created using methods such as
45/// [`Self::perspective_lh()`], [`Self::perspective_infinite_lh()`] and
46/// [`Self::perspective_infinite_reverse_lh()`] for left-handed co-ordinate systems and
47/// [`Self::perspective_rh()`], [`Self::perspective_infinite_rh()`] and
48/// [`Self::perspective_infinite_reverse_rh()`] for right-handed co-ordinate systems.
49///
50/// The resulting perspective project can be use to transform 3D vectors as points with
51/// perspective correction using the [`Self::project_point3()`] convenience method.
52#[derive(Clone, Copy)]
53#[cfg_attr(
54    all(feature = "bytemuck", not(target_arch = "spirv")),
55    derive(bytemuck::Pod, bytemuck::Zeroable)
56)]
57#[repr(C)]
58pub struct Mat4 {
59    pub x_axis: Vec4,
60    pub y_axis: Vec4,
61    pub z_axis: Vec4,
62    pub w_axis: Vec4,
63}
64
65impl Mat4 {
66    /// A 4x4 matrix with all elements set to `0.0`.
67    pub const ZERO: Self = Self::from_cols(Vec4::ZERO, Vec4::ZERO, Vec4::ZERO, Vec4::ZERO);
68
69    /// A 4x4 identity matrix, where all diagonal elements are `1`, and all off-diagonal elements are `0`.
70    pub const IDENTITY: Self = Self::from_cols(Vec4::X, Vec4::Y, Vec4::Z, Vec4::W);
71
72    /// All NAN:s.
73    pub const NAN: Self = Self::from_cols(Vec4::NAN, Vec4::NAN, Vec4::NAN, Vec4::NAN);
74
75    #[allow(clippy::too_many_arguments)]
76    #[inline(always)]
77    #[must_use]
78    const fn new(
79        m00: f32,
80        m01: f32,
81        m02: f32,
82        m03: f32,
83        m10: f32,
84        m11: f32,
85        m12: f32,
86        m13: f32,
87        m20: f32,
88        m21: f32,
89        m22: f32,
90        m23: f32,
91        m30: f32,
92        m31: f32,
93        m32: f32,
94        m33: f32,
95    ) -> Self {
96        Self {
97            x_axis: Vec4::new(m00, m01, m02, m03),
98            y_axis: Vec4::new(m10, m11, m12, m13),
99            z_axis: Vec4::new(m20, m21, m22, m23),
100            w_axis: Vec4::new(m30, m31, m32, m33),
101        }
102    }
103
104    /// Creates a 4x4 matrix from four column vectors.
105    #[inline(always)]
106    #[must_use]
107    pub const fn from_cols(x_axis: Vec4, y_axis: Vec4, z_axis: Vec4, w_axis: Vec4) -> Self {
108        Self {
109            x_axis,
110            y_axis,
111            z_axis,
112            w_axis,
113        }
114    }
115
116    /// Creates a 4x4 matrix from a `[f32; 16]` array stored in column major order.
117    /// If your data is stored in row major you will need to `transpose` the returned
118    /// matrix.
119    #[inline]
120    #[must_use]
121    pub const fn from_cols_array(m: &[f32; 16]) -> Self {
122        Self::new(
123            m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8], m[9], m[10], m[11], m[12], m[13],
124            m[14], m[15],
125        )
126    }
127
128    /// Creates a `[f32; 16]` array storing data in column major order.
129    /// If you require data in row major order `transpose` the matrix first.
130    #[inline]
131    #[must_use]
132    pub const fn to_cols_array(&self) -> [f32; 16] {
133        let [x_axis_x, x_axis_y, x_axis_z, x_axis_w] = self.x_axis.to_array();
134        let [y_axis_x, y_axis_y, y_axis_z, y_axis_w] = self.y_axis.to_array();
135        let [z_axis_x, z_axis_y, z_axis_z, z_axis_w] = self.z_axis.to_array();
136        let [w_axis_x, w_axis_y, w_axis_z, w_axis_w] = self.w_axis.to_array();
137
138        [
139            x_axis_x, x_axis_y, x_axis_z, x_axis_w, y_axis_x, y_axis_y, y_axis_z, y_axis_w,
140            z_axis_x, z_axis_y, z_axis_z, z_axis_w, w_axis_x, w_axis_y, w_axis_z, w_axis_w,
141        ]
142    }
143
144    /// Creates a 4x4 matrix from a `[[f32; 4]; 4]` 4D array stored in column major order.
145    /// If your data is in row major order you will need to `transpose` the returned
146    /// matrix.
147    #[inline]
148    #[must_use]
149    pub const fn from_cols_array_2d(m: &[[f32; 4]; 4]) -> Self {
150        Self::from_cols(
151            Vec4::from_array(m[0]),
152            Vec4::from_array(m[1]),
153            Vec4::from_array(m[2]),
154            Vec4::from_array(m[3]),
155        )
156    }
157
158    /// Creates a `[[f32; 4]; 4]` 4D array storing data in column major order.
159    /// If you require data in row major order `transpose` the matrix first.
160    #[inline]
161    #[must_use]
162    pub const fn to_cols_array_2d(&self) -> [[f32; 4]; 4] {
163        [
164            self.x_axis.to_array(),
165            self.y_axis.to_array(),
166            self.z_axis.to_array(),
167            self.w_axis.to_array(),
168        ]
169    }
170
171    /// Creates a 4x4 matrix with its diagonal set to `diagonal` and all other entries set to 0.
172    #[doc(alias = "scale")]
173    #[inline]
174    #[must_use]
175    pub const fn from_diagonal(diagonal: Vec4) -> Self {
176        // diagonal.x, diagonal.y etc can't be done in a const-context
177        let [x, y, z, w] = diagonal.to_array();
178        Self::new(
179            x, 0.0, 0.0, 0.0, 0.0, y, 0.0, 0.0, 0.0, 0.0, z, 0.0, 0.0, 0.0, 0.0, w,
180        )
181    }
182
183    #[inline]
184    #[must_use]
185    fn quat_to_axes(rotation: Quat) -> (Vec4, Vec4, Vec4) {
186        glam_assert!(rotation.is_normalized());
187
188        let (x, y, z, w) = rotation.into();
189        let x2 = x + x;
190        let y2 = y + y;
191        let z2 = z + z;
192        let xx = x * x2;
193        let xy = x * y2;
194        let xz = x * z2;
195        let yy = y * y2;
196        let yz = y * z2;
197        let zz = z * z2;
198        let wx = w * x2;
199        let wy = w * y2;
200        let wz = w * z2;
201
202        let x_axis = Vec4::new(1.0 - (yy + zz), xy + wz, xz - wy, 0.0);
203        let y_axis = Vec4::new(xy - wz, 1.0 - (xx + zz), yz + wx, 0.0);
204        let z_axis = Vec4::new(xz + wy, yz - wx, 1.0 - (xx + yy), 0.0);
205        (x_axis, y_axis, z_axis)
206    }
207
208    /// Creates an affine transformation matrix from the given 3D `scale`, `rotation` and
209    /// `translation`.
210    ///
211    /// The resulting matrix can be used to transform 3D points and vectors. See
212    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
213    ///
214    /// # Panics
215    ///
216    /// Will panic if `rotation` is not normalized when `glam_assert` is enabled.
217    #[inline]
218    #[must_use]
219    pub fn from_scale_rotation_translation(scale: Vec3, rotation: Quat, translation: Vec3) -> Self {
220        let (x_axis, y_axis, z_axis) = Self::quat_to_axes(rotation);
221        Self::from_cols(
222            x_axis.mul(scale.x),
223            y_axis.mul(scale.y),
224            z_axis.mul(scale.z),
225            Vec4::from((translation, 1.0)),
226        )
227    }
228
229    /// Creates an affine transformation matrix from the given 3D `translation`.
230    ///
231    /// The resulting matrix can be used to transform 3D points and vectors. See
232    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
233    ///
234    /// # Panics
235    ///
236    /// Will panic if `rotation` is not normalized when `glam_assert` is enabled.
237    #[inline]
238    #[must_use]
239    pub fn from_rotation_translation(rotation: Quat, translation: Vec3) -> Self {
240        let (x_axis, y_axis, z_axis) = Self::quat_to_axes(rotation);
241        Self::from_cols(x_axis, y_axis, z_axis, Vec4::from((translation, 1.0)))
242    }
243
244    /// Extracts `scale`, `rotation` and `translation` from `self`. The input matrix is
245    /// expected to be a 3D affine transformation matrix otherwise the output will be invalid.
246    ///
247    /// # Panics
248    ///
249    /// Will panic if the determinant of `self` is zero or if the resulting scale vector
250    /// contains any zero elements when `glam_assert` is enabled.
251    #[inline]
252    #[must_use]
253    pub fn to_scale_rotation_translation(&self) -> (Vec3, Quat, Vec3) {
254        let det = self.determinant();
255        glam_assert!(det != 0.0);
256
257        let scale = Vec3::new(
258            self.x_axis.length() * math::signum(det),
259            self.y_axis.length(),
260            self.z_axis.length(),
261        );
262
263        glam_assert!(scale.cmpne(Vec3::ZERO).all());
264
265        let inv_scale = scale.recip();
266
267        let rotation = Quat::from_rotation_axes(
268            self.x_axis.mul(inv_scale.x).xyz(),
269            self.y_axis.mul(inv_scale.y).xyz(),
270            self.z_axis.mul(inv_scale.z).xyz(),
271        );
272
273        let translation = self.w_axis.xyz();
274
275        (scale, rotation, translation)
276    }
277
278    /// Creates an affine transformation matrix from the given `rotation` quaternion.
279    ///
280    /// The resulting matrix can be used to transform 3D points and vectors. See
281    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
282    ///
283    /// # Panics
284    ///
285    /// Will panic if `rotation` is not normalized when `glam_assert` is enabled.
286    #[inline]
287    #[must_use]
288    pub fn from_quat(rotation: Quat) -> Self {
289        let (x_axis, y_axis, z_axis) = Self::quat_to_axes(rotation);
290        Self::from_cols(x_axis, y_axis, z_axis, Vec4::W)
291    }
292
293    /// Creates an affine transformation matrix from the given 3x3 linear transformation
294    /// matrix.
295    ///
296    /// The resulting matrix can be used to transform 3D points and vectors. See
297    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
298    #[inline]
299    #[must_use]
300    pub fn from_mat3(m: Mat3) -> Self {
301        Self::from_cols(
302            Vec4::from((m.x_axis, 0.0)),
303            Vec4::from((m.y_axis, 0.0)),
304            Vec4::from((m.z_axis, 0.0)),
305            Vec4::W,
306        )
307    }
308
309    /// Creates an affine transformation matrics from a 3x3 matrix (expressing scale, shear and
310    /// rotation) and a translation vector.
311    ///
312    /// Equivalent to `Mat4::from_translation(translation) * Mat4::from_mat3(mat3)`
313    #[inline]
314    #[must_use]
315    pub fn from_mat3_translation(mat3: Mat3, translation: Vec3) -> Self {
316        Self::from_cols(
317            Vec4::from((mat3.x_axis, 0.0)),
318            Vec4::from((mat3.y_axis, 0.0)),
319            Vec4::from((mat3.z_axis, 0.0)),
320            Vec4::from((translation, 1.0)),
321        )
322    }
323
324    /// Creates an affine transformation matrix from the given 3x3 linear transformation
325    /// matrix.
326    ///
327    /// The resulting matrix can be used to transform 3D points and vectors. See
328    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
329    #[inline]
330    #[must_use]
331    pub fn from_mat3a(m: Mat3A) -> Self {
332        Self::from_cols(
333            Vec4::from((m.x_axis, 0.0)),
334            Vec4::from((m.y_axis, 0.0)),
335            Vec4::from((m.z_axis, 0.0)),
336            Vec4::W,
337        )
338    }
339
340    /// Creates an affine transformation matrix from the given 3D `translation`.
341    ///
342    /// The resulting matrix can be used to transform 3D points and vectors. See
343    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
344    #[inline]
345    #[must_use]
346    pub fn from_translation(translation: Vec3) -> Self {
347        Self::from_cols(
348            Vec4::X,
349            Vec4::Y,
350            Vec4::Z,
351            Vec4::new(translation.x, translation.y, translation.z, 1.0),
352        )
353    }
354
355    /// Creates an affine transformation matrix containing a 3D rotation around a normalized
356    /// rotation `axis` of `angle` (in radians).
357    ///
358    /// The resulting matrix can be used to transform 3D points and vectors. See
359    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
360    ///
361    /// # Panics
362    ///
363    /// Will panic if `axis` is not normalized when `glam_assert` is enabled.
364    #[inline]
365    #[must_use]
366    pub fn from_axis_angle(axis: Vec3, angle: f32) -> Self {
367        glam_assert!(axis.is_normalized());
368
369        let (sin, cos) = math::sin_cos(angle);
370        let axis_sin = axis.mul(sin);
371        let axis_sq = axis.mul(axis);
372        let omc = 1.0 - cos;
373        let xyomc = axis.x * axis.y * omc;
374        let xzomc = axis.x * axis.z * omc;
375        let yzomc = axis.y * axis.z * omc;
376        Self::from_cols(
377            Vec4::new(
378                axis_sq.x * omc + cos,
379                xyomc + axis_sin.z,
380                xzomc - axis_sin.y,
381                0.0,
382            ),
383            Vec4::new(
384                xyomc - axis_sin.z,
385                axis_sq.y * omc + cos,
386                yzomc + axis_sin.x,
387                0.0,
388            ),
389            Vec4::new(
390                xzomc + axis_sin.y,
391                yzomc - axis_sin.x,
392                axis_sq.z * omc + cos,
393                0.0,
394            ),
395            Vec4::W,
396        )
397    }
398
399    /// Creates a affine transformation matrix containing a rotation from the given euler
400    /// rotation sequence and angles (in radians).
401    ///
402    /// The resulting matrix can be used to transform 3D points and vectors. See
403    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
404    #[inline]
405    #[must_use]
406    pub fn from_euler(order: EulerRot, a: f32, b: f32, c: f32) -> Self {
407        Self::from_euler_angles(order, a, b, c)
408    }
409
410    /// Extract Euler angles with the given Euler rotation order.
411    ///
412    /// Note if the upper 3x3 matrix contain scales, shears, or other non-rotation transformations
413    /// then the resulting Euler angles will be ill-defined.
414    ///
415    /// # Panics
416    ///
417    /// Will panic if any column of the upper 3x3 rotation matrix is not normalized when
418    /// `glam_assert` is enabled.
419    #[inline]
420    #[must_use]
421    pub fn to_euler(&self, order: EulerRot) -> (f32, f32, f32) {
422        glam_assert!(
423            self.x_axis.xyz().is_normalized()
424                && self.y_axis.xyz().is_normalized()
425                && self.z_axis.xyz().is_normalized()
426        );
427        self.to_euler_angles(order)
428    }
429
430    /// Creates an affine transformation matrix containing a 3D rotation around the x axis of
431    /// `angle` (in radians).
432    ///
433    /// The resulting matrix can be used to transform 3D points and vectors. See
434    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
435    #[inline]
436    #[must_use]
437    pub fn from_rotation_x(angle: f32) -> Self {
438        let (sina, cosa) = math::sin_cos(angle);
439        Self::from_cols(
440            Vec4::X,
441            Vec4::new(0.0, cosa, sina, 0.0),
442            Vec4::new(0.0, -sina, cosa, 0.0),
443            Vec4::W,
444        )
445    }
446
447    /// Creates an affine transformation matrix containing a 3D rotation around the y axis of
448    /// `angle` (in radians).
449    ///
450    /// The resulting matrix can be used to transform 3D points and vectors. See
451    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
452    #[inline]
453    #[must_use]
454    pub fn from_rotation_y(angle: f32) -> Self {
455        let (sina, cosa) = math::sin_cos(angle);
456        Self::from_cols(
457            Vec4::new(cosa, 0.0, -sina, 0.0),
458            Vec4::Y,
459            Vec4::new(sina, 0.0, cosa, 0.0),
460            Vec4::W,
461        )
462    }
463
464    /// Creates an affine transformation matrix containing a 3D rotation around the z axis of
465    /// `angle` (in radians).
466    ///
467    /// The resulting matrix can be used to transform 3D points and vectors. See
468    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
469    #[inline]
470    #[must_use]
471    pub fn from_rotation_z(angle: f32) -> Self {
472        let (sina, cosa) = math::sin_cos(angle);
473        Self::from_cols(
474            Vec4::new(cosa, sina, 0.0, 0.0),
475            Vec4::new(-sina, cosa, 0.0, 0.0),
476            Vec4::Z,
477            Vec4::W,
478        )
479    }
480
481    /// Creates an affine transformation matrix containing the given 3D non-uniform `scale`.
482    ///
483    /// The resulting matrix can be used to transform 3D points and vectors. See
484    /// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
485    ///
486    /// # Panics
487    ///
488    /// Will panic if all elements of `scale` are zero when `glam_assert` is enabled.
489    #[inline]
490    #[must_use]
491    pub fn from_scale(scale: Vec3) -> Self {
492        // Do not panic as long as any component is non-zero
493        glam_assert!(scale.cmpne(Vec3::ZERO).any());
494
495        Self::from_cols(
496            Vec4::new(scale.x, 0.0, 0.0, 0.0),
497            Vec4::new(0.0, scale.y, 0.0, 0.0),
498            Vec4::new(0.0, 0.0, scale.z, 0.0),
499            Vec4::W,
500        )
501    }
502
503    /// Creates a 4x4 matrix from the first 16 values in `slice`.
504    ///
505    /// # Panics
506    ///
507    /// Panics if `slice` is less than 16 elements long.
508    #[inline]
509    #[must_use]
510    pub const fn from_cols_slice(slice: &[f32]) -> Self {
511        Self::new(
512            slice[0], slice[1], slice[2], slice[3], slice[4], slice[5], slice[6], slice[7],
513            slice[8], slice[9], slice[10], slice[11], slice[12], slice[13], slice[14], slice[15],
514        )
515    }
516
517    /// Writes the columns of `self` to the first 16 elements in `slice`.
518    ///
519    /// # Panics
520    ///
521    /// Panics if `slice` is less than 16 elements long.
522    #[inline]
523    pub fn write_cols_to_slice(self, slice: &mut [f32]) {
524        slice[0] = self.x_axis.x;
525        slice[1] = self.x_axis.y;
526        slice[2] = self.x_axis.z;
527        slice[3] = self.x_axis.w;
528        slice[4] = self.y_axis.x;
529        slice[5] = self.y_axis.y;
530        slice[6] = self.y_axis.z;
531        slice[7] = self.y_axis.w;
532        slice[8] = self.z_axis.x;
533        slice[9] = self.z_axis.y;
534        slice[10] = self.z_axis.z;
535        slice[11] = self.z_axis.w;
536        slice[12] = self.w_axis.x;
537        slice[13] = self.w_axis.y;
538        slice[14] = self.w_axis.z;
539        slice[15] = self.w_axis.w;
540    }
541
542    /// Returns the matrix column for the given `index`.
543    ///
544    /// # Panics
545    ///
546    /// Panics if `index` is greater than 3.
547    #[inline]
548    #[must_use]
549    pub fn col(&self, index: usize) -> Vec4 {
550        match index {
551            0 => self.x_axis,
552            1 => self.y_axis,
553            2 => self.z_axis,
554            3 => self.w_axis,
555            _ => panic!("index out of bounds"),
556        }
557    }
558
559    /// Returns a mutable reference to the matrix column for the given `index`.
560    ///
561    /// # Panics
562    ///
563    /// Panics if `index` is greater than 3.
564    #[inline]
565    pub fn col_mut(&mut self, index: usize) -> &mut Vec4 {
566        match index {
567            0 => &mut self.x_axis,
568            1 => &mut self.y_axis,
569            2 => &mut self.z_axis,
570            3 => &mut self.w_axis,
571            _ => panic!("index out of bounds"),
572        }
573    }
574
575    /// Returns the matrix row for the given `index`.
576    ///
577    /// # Panics
578    ///
579    /// Panics if `index` is greater than 3.
580    #[inline]
581    #[must_use]
582    pub fn row(&self, index: usize) -> Vec4 {
583        match index {
584            0 => Vec4::new(self.x_axis.x, self.y_axis.x, self.z_axis.x, self.w_axis.x),
585            1 => Vec4::new(self.x_axis.y, self.y_axis.y, self.z_axis.y, self.w_axis.y),
586            2 => Vec4::new(self.x_axis.z, self.y_axis.z, self.z_axis.z, self.w_axis.z),
587            3 => Vec4::new(self.x_axis.w, self.y_axis.w, self.z_axis.w, self.w_axis.w),
588            _ => panic!("index out of bounds"),
589        }
590    }
591
592    /// Returns `true` if, and only if, all elements are finite.
593    /// If any element is either `NaN`, positive or negative infinity, this will return `false`.
594    #[inline]
595    #[must_use]
596    pub fn is_finite(&self) -> bool {
597        self.x_axis.is_finite()
598            && self.y_axis.is_finite()
599            && self.z_axis.is_finite()
600            && self.w_axis.is_finite()
601    }
602
603    /// Returns `true` if any elements are `NaN`.
604    #[inline]
605    #[must_use]
606    pub fn is_nan(&self) -> bool {
607        self.x_axis.is_nan() || self.y_axis.is_nan() || self.z_axis.is_nan() || self.w_axis.is_nan()
608    }
609
610    /// Returns the transpose of `self`.
611    #[inline]
612    #[must_use]
613    pub fn transpose(&self) -> Self {
614        Self {
615            x_axis: Vec4::new(self.x_axis.x, self.y_axis.x, self.z_axis.x, self.w_axis.x),
616            y_axis: Vec4::new(self.x_axis.y, self.y_axis.y, self.z_axis.y, self.w_axis.y),
617            z_axis: Vec4::new(self.x_axis.z, self.y_axis.z, self.z_axis.z, self.w_axis.z),
618            w_axis: Vec4::new(self.x_axis.w, self.y_axis.w, self.z_axis.w, self.w_axis.w),
619        }
620    }
621
622    /// Returns the determinant of `self`.
623    #[must_use]
624    pub fn determinant(&self) -> f32 {
625        let (m00, m01, m02, m03) = self.x_axis.into();
626        let (m10, m11, m12, m13) = self.y_axis.into();
627        let (m20, m21, m22, m23) = self.z_axis.into();
628        let (m30, m31, m32, m33) = self.w_axis.into();
629
630        let a2323 = m22 * m33 - m23 * m32;
631        let a1323 = m21 * m33 - m23 * m31;
632        let a1223 = m21 * m32 - m22 * m31;
633        let a0323 = m20 * m33 - m23 * m30;
634        let a0223 = m20 * m32 - m22 * m30;
635        let a0123 = m20 * m31 - m21 * m30;
636
637        m00 * (m11 * a2323 - m12 * a1323 + m13 * a1223)
638            - m01 * (m10 * a2323 - m12 * a0323 + m13 * a0223)
639            + m02 * (m10 * a1323 - m11 * a0323 + m13 * a0123)
640            - m03 * (m10 * a1223 - m11 * a0223 + m12 * a0123)
641    }
642
643    /// Returns the inverse of `self`.
644    ///
645    /// If the matrix is not invertible the returned matrix will be invalid.
646    ///
647    /// # Panics
648    ///
649    /// Will panic if the determinant of `self` is zero when `glam_assert` is enabled.
650    #[must_use]
651    pub fn inverse(&self) -> Self {
652        unsafe {
653            // Based on https://github.com/g-truc/glm `glm_mat4_inverse`
654            let swizzle3377 = |a: float32x4_t, b: float32x4_t| -> float32x4_t {
655                let r = vuzp2q_f32(a, b);
656                vtrn2q_f32(r, r)
657            };
658            let swizzle2266 = |a: float32x4_t, b: float32x4_t| -> float32x4_t {
659                let r = vuzp1q_f32(a, b);
660                vtrn2q_f32(r, r)
661            };
662            let swizzle0046 = |a: float32x4_t, b: float32x4_t| -> float32x4_t {
663                let r = vuzp1q_f32(a, a);
664                vuzp1q_f32(r, b)
665            };
666            let swizzle1155 = |a: float32x4_t, b: float32x4_t| -> float32x4_t {
667                let r = vzip1q_f32(a, b);
668                vzip2q_f32(r, r)
669            };
670            let swizzle0044 = |a: float32x4_t, b: float32x4_t| -> float32x4_t {
671                let r = vuzp1q_f32(a, b);
672                vtrn1q_f32(r, r)
673            };
674            let swizzle0266 = |a: float32x4_t, b: float32x4_t| -> float32x4_t {
675                let r = vuzp1q_f32(a, b);
676                vsetq_lane_f32(vgetq_lane_f32(b, 2), r, 2)
677            };
678            let swizzle0246 = |a: float32x4_t, b: float32x4_t| -> float32x4_t { vuzp1q_f32(a, b) };
679            let fac0 = {
680                let swp0a = swizzle3377(self.w_axis.0, self.z_axis.0);
681                let swp0b = swizzle2266(self.w_axis.0, self.z_axis.0);
682
683                let swp00 = swizzle2266(self.z_axis.0, self.y_axis.0);
684                let swp01 = swizzle0046(swp0a, swp0a);
685                let swp02 = swizzle0046(swp0b, swp0b);
686                let swp03 = swizzle3377(self.z_axis.0, self.y_axis.0);
687
688                let mul00 = vmulq_f32(swp00, swp01);
689                let mul01 = vmulq_f32(swp02, swp03);
690                vsubq_f32(mul00, mul01)
691            };
692            let fac1 = {
693                let swp0a = swizzle3377(self.w_axis.0, self.z_axis.0);
694                let swp0b = swizzle1155(self.w_axis.0, self.z_axis.0);
695
696                let swp00 = swizzle1155(self.z_axis.0, self.y_axis.0);
697                let swp01 = swizzle0046(swp0a, swp0a);
698                let swp02 = swizzle0046(swp0b, swp0b);
699                let swp03 = swizzle3377(self.z_axis.0, self.y_axis.0);
700
701                let mul00 = vmulq_f32(swp00, swp01);
702                let mul01 = vmulq_f32(swp02, swp03);
703                vsubq_f32(mul00, mul01)
704            };
705            let fac2 = {
706                let swp0a = swizzle2266(self.w_axis.0, self.z_axis.0);
707                let swp0b = swizzle1155(self.w_axis.0, self.z_axis.0);
708
709                let swp00 = swizzle1155(self.z_axis.0, self.y_axis.0);
710                let swp01 = swizzle0046(swp0a, swp0a);
711                let swp02 = swizzle0046(swp0b, swp0b);
712                let swp03 = swizzle2266(self.z_axis.0, self.y_axis.0);
713
714                let mul00 = vmulq_f32(swp00, swp01);
715                let mul01 = vmulq_f32(swp02, swp03);
716                vsubq_f32(mul00, mul01)
717            };
718            let fac3 = {
719                let swp0a = swizzle3377(self.w_axis.0, self.z_axis.0);
720                let swp0b = swizzle0044(self.w_axis.0, self.z_axis.0);
721
722                let swp00 = swizzle0044(self.z_axis.0, self.y_axis.0);
723                let swp01 = swizzle0046(swp0a, swp0a);
724                let swp02 = swizzle0046(swp0b, swp0b);
725                let swp03 = swizzle3377(self.z_axis.0, self.y_axis.0);
726
727                let mul00 = vmulq_f32(swp00, swp01);
728                let mul01 = vmulq_f32(swp02, swp03);
729                vsubq_f32(mul00, mul01)
730            };
731            let fac4 = {
732                let swp0a = swizzle2266(self.w_axis.0, self.z_axis.0);
733                let swp0b = swizzle0044(self.w_axis.0, self.z_axis.0);
734
735                let swp00 = swizzle0044(self.z_axis.0, self.y_axis.0);
736                let swp01 = swizzle0046(swp0a, swp0a);
737                let swp02 = swizzle0046(swp0b, swp0b);
738                let swp03 = swizzle2266(self.z_axis.0, self.y_axis.0);
739
740                let mul00 = vmulq_f32(swp00, swp01);
741                let mul01 = vmulq_f32(swp02, swp03);
742                vsubq_f32(mul00, mul01)
743            };
744            let fac5 = {
745                let swp0a = swizzle1155(self.w_axis.0, self.z_axis.0);
746                let swp0b = swizzle0044(self.w_axis.0, self.z_axis.0);
747
748                let swp00 = swizzle0044(self.z_axis.0, self.y_axis.0);
749                let swp01 = swizzle0046(swp0a, swp0a);
750                let swp02 = swizzle0046(swp0b, swp0b);
751                let swp03 = swizzle1155(self.z_axis.0, self.y_axis.0);
752
753                let mul00 = vmulq_f32(swp00, swp01);
754                let mul01 = vmulq_f32(swp02, swp03);
755                vsubq_f32(mul00, mul01)
756            };
757
758            const SIGN_A: float32x4_t = Vec4::new(-1.0, 1.0, -1.0, 1.0).0;
759            const SIGN_B: float32x4_t = Vec4::new(1.0, -1.0, 1.0, -1.0).0;
760
761            let temp0 = swizzle0044(self.y_axis.0, self.x_axis.0);
762            let vec0 = swizzle0266(temp0, temp0);
763
764            let temp1 = swizzle1155(self.y_axis.0, self.x_axis.0);
765            let vec1 = swizzle0266(temp1, temp1);
766
767            let temp2 = swizzle2266(self.y_axis.0, self.x_axis.0);
768            let vec2 = swizzle0266(temp2, temp2);
769
770            let temp3 = swizzle3377(self.y_axis.0, self.x_axis.0);
771            let vec3 = swizzle0266(temp3, temp3);
772
773            let mul00 = vmulq_f32(vec1, fac0);
774            let mul01 = vmulq_f32(vec2, fac1);
775            let mul02 = vmulq_f32(vec3, fac2);
776            let sub00 = vsubq_f32(mul00, mul01);
777            let add00 = vaddq_f32(sub00, mul02);
778            let inv0 = vmulq_f32(SIGN_B, add00);
779
780            let mul03 = vmulq_f32(vec0, fac0);
781            let mul04 = vmulq_f32(vec2, fac3);
782            let mul05 = vmulq_f32(vec3, fac4);
783            let sub01 = vsubq_f32(mul03, mul04);
784            let add01 = vaddq_f32(sub01, mul05);
785            let inv1 = vmulq_f32(SIGN_A, add01);
786
787            let mul06 = vmulq_f32(vec0, fac1);
788            let mul07 = vmulq_f32(vec1, fac3);
789            let mul08 = vmulq_f32(vec3, fac5);
790            let sub02 = vsubq_f32(mul06, mul07);
791            let add02 = vaddq_f32(sub02, mul08);
792            let inv2 = vmulq_f32(SIGN_B, add02);
793
794            let mul09 = vmulq_f32(vec0, fac2);
795            let mul10 = vmulq_f32(vec1, fac4);
796            let mul11 = vmulq_f32(vec2, fac5);
797            let sub03 = vsubq_f32(mul09, mul10);
798            let add03 = vaddq_f32(sub03, mul11);
799            let inv3 = vmulq_f32(SIGN_A, add03);
800
801            let row0 = swizzle0044(inv0, inv1);
802            let row1 = swizzle0044(inv2, inv3);
803            let row2 = swizzle0246(row0, row1);
804
805            let dot0 = dot4(self.x_axis.0, row2);
806            glam_assert!(dot0 != 0.0);
807
808            let rcp0 = dot0.recip();
809
810            Self {
811                x_axis: Vec4(vmulq_n_f32(inv0, rcp0)),
812                y_axis: Vec4(vmulq_n_f32(inv1, rcp0)),
813                z_axis: Vec4(vmulq_n_f32(inv2, rcp0)),
814                w_axis: Vec4(vmulq_n_f32(inv3, rcp0)),
815            }
816        }
817    }
818
819    /// Creates a left-handed view matrix using a camera position, a facing direction and an up
820    /// direction
821    ///
822    /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=forward`.
823    ///
824    /// # Panics
825    ///
826    /// Will panic if `dir` or `up` are not normalized when `glam_assert` is enabled.
827    #[inline]
828    #[must_use]
829    pub fn look_to_lh(eye: Vec3, dir: Vec3, up: Vec3) -> Self {
830        Self::look_to_rh(eye, -dir, up)
831    }
832
833    /// Creates a right-handed view matrix using a camera position, a facing direction, and an up
834    /// direction.
835    ///
836    /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=back`.
837    ///
838    /// # Panics
839    ///
840    /// Will panic if `dir` or `up` are not normalized when `glam_assert` is enabled.
841    #[inline]
842    #[must_use]
843    pub fn look_to_rh(eye: Vec3, dir: Vec3, up: Vec3) -> Self {
844        glam_assert!(dir.is_normalized());
845        glam_assert!(up.is_normalized());
846        let f = dir;
847        let s = f.cross(up).normalize();
848        let u = s.cross(f);
849
850        Self::from_cols(
851            Vec4::new(s.x, u.x, -f.x, 0.0),
852            Vec4::new(s.y, u.y, -f.y, 0.0),
853            Vec4::new(s.z, u.z, -f.z, 0.0),
854            Vec4::new(-eye.dot(s), -eye.dot(u), eye.dot(f), 1.0),
855        )
856    }
857
858    /// Creates a left-handed view matrix using a camera position, a focal points and an up
859    /// direction.
860    ///
861    /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=forward`.
862    ///
863    /// # Panics
864    ///
865    /// Will panic if `up` is not normalized when `glam_assert` is enabled.
866    #[inline]
867    #[must_use]
868    pub fn look_at_lh(eye: Vec3, center: Vec3, up: Vec3) -> Self {
869        Self::look_to_lh(eye, center.sub(eye).normalize(), up)
870    }
871
872    /// Creates a right-handed view matrix using a camera position, a focal point, and an up
873    /// direction.
874    ///
875    /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=back`.
876    ///
877    /// # Panics
878    ///
879    /// Will panic if `up` is not normalized when `glam_assert` is enabled.
880    #[inline]
881    pub fn look_at_rh(eye: Vec3, center: Vec3, up: Vec3) -> Self {
882        Self::look_to_rh(eye, center.sub(eye).normalize(), up)
883    }
884
885    /// Creates a right-handed perspective projection matrix with [-1,1] depth range.
886    ///
887    /// This is the same as the OpenGL `glFurstum` function.
888    ///
889    /// See <https://registry.khronos.org/OpenGL-Refpages/gl2.1/xhtml/glFrustum.xml>
890    #[inline]
891    #[must_use]
892    pub fn frustum_rh_gl(
893        left: f32,
894        right: f32,
895        bottom: f32,
896        top: f32,
897        z_near: f32,
898        z_far: f32,
899    ) -> Self {
900        let inv_width = 1.0 / (right - left);
901        let inv_height = 1.0 / (top - bottom);
902        let inv_depth = 1.0 / (z_far - z_near);
903        let a = (right + left) * inv_width;
904        let b = (top + bottom) * inv_height;
905        let c = -(z_far + z_near) * inv_depth;
906        let d = -(2.0 * z_far * z_near) * inv_depth;
907        let two_z_near = 2.0 * z_near;
908        Self::from_cols(
909            Vec4::new(two_z_near * inv_width, 0.0, 0.0, 0.0),
910            Vec4::new(0.0, two_z_near * inv_height, 0.0, 0.0),
911            Vec4::new(a, b, c, -1.0),
912            Vec4::new(0.0, 0.0, d, 0.0),
913        )
914    }
915
916    /// Creates a left-handed perspective projection matrix with `[0,1]` depth range.
917    ///
918    /// # Panics
919    ///
920    /// Will panic if `z_near` or `z_far` are less than or equal to zero when `glam_assert` is
921    /// enabled.
922    #[inline]
923    #[must_use]
924    pub fn frustum_lh(
925        left: f32,
926        right: f32,
927        bottom: f32,
928        top: f32,
929        z_near: f32,
930        z_far: f32,
931    ) -> Self {
932        glam_assert!(z_near > 0.0 && z_far > 0.0);
933        let inv_width = 1.0 / (right - left);
934        let inv_height = 1.0 / (top - bottom);
935        let inv_depth = 1.0 / (z_far - z_near);
936        let a = (right + left) * inv_width;
937        let b = (top + bottom) * inv_height;
938        let c = z_far * inv_depth;
939        let d = -(z_far * z_near) * inv_depth;
940        let two_z_near = 2.0 * z_near;
941        Self::from_cols(
942            Vec4::new(two_z_near * inv_width, 0.0, 0.0, 0.0),
943            Vec4::new(0.0, two_z_near * inv_height, 0.0, 0.0),
944            Vec4::new(a, b, c, 1.0),
945            Vec4::new(0.0, 0.0, d, 0.0),
946        )
947    }
948
949    /// Creates a right-handed perspective projection matrix with `[0,1]` depth range.
950    ///
951    /// # Panics
952    ///
953    /// Will panic if `z_near` or `z_far` are less than or equal to zero when `glam_assert` is
954    /// enabled.
955    #[inline]
956    #[must_use]
957    pub fn frustum_rh(
958        left: f32,
959        right: f32,
960        bottom: f32,
961        top: f32,
962        z_near: f32,
963        z_far: f32,
964    ) -> Self {
965        glam_assert!(z_near > 0.0 && z_far > 0.0);
966        let inv_width = 1.0 / (right - left);
967        let inv_height = 1.0 / (top - bottom);
968        let inv_depth = 1.0 / (z_far - z_near);
969        let a = (right + left) * inv_width;
970        let b = (top + bottom) * inv_height;
971        let c = -z_far * inv_depth;
972        let d = -(z_far * z_near) * inv_depth;
973        let two_z_near = 2.0 * z_near;
974        Self::from_cols(
975            Vec4::new(two_z_near * inv_width, 0.0, 0.0, 0.0),
976            Vec4::new(0.0, two_z_near * inv_height, 0.0, 0.0),
977            Vec4::new(a, b, c, -1.0),
978            Vec4::new(0.0, 0.0, d, 0.0),
979        )
980    }
981
982    /// Creates a right-handed perspective projection matrix with `[-1,1]` depth range.
983    ///
984    /// Useful to map the standard right-handed coordinate system into what OpenGL expects.
985    ///
986    /// This is the same as the OpenGL `gluPerspective` function.
987    /// See <https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml>
988    #[inline]
989    #[must_use]
990    pub fn perspective_rh_gl(
991        fov_y_radians: f32,
992        aspect_ratio: f32,
993        z_near: f32,
994        z_far: f32,
995    ) -> Self {
996        let inv_length = 1.0 / (z_near - z_far);
997        let f = 1.0 / math::tan(0.5 * fov_y_radians);
998        let a = f / aspect_ratio;
999        let b = (z_near + z_far) * inv_length;
1000        let c = (2.0 * z_near * z_far) * inv_length;
1001        Self::from_cols(
1002            Vec4::new(a, 0.0, 0.0, 0.0),
1003            Vec4::new(0.0, f, 0.0, 0.0),
1004            Vec4::new(0.0, 0.0, b, -1.0),
1005            Vec4::new(0.0, 0.0, c, 0.0),
1006        )
1007    }
1008
1009    /// Creates a left-handed perspective projection matrix with `[0,1]` depth range.
1010    ///
1011    /// Useful to map the standard left-handed coordinate system into what WebGPU/Metal/Direct3D expect.
1012    ///
1013    /// # Panics
1014    ///
1015    /// Will panic if `z_near` or `z_far` are less than or equal to zero when `glam_assert` is
1016    /// enabled.
1017    #[inline]
1018    #[must_use]
1019    pub fn perspective_lh(fov_y_radians: f32, aspect_ratio: f32, z_near: f32, z_far: f32) -> Self {
1020        glam_assert!(z_near > 0.0 && z_far > 0.0);
1021        let (sin_fov, cos_fov) = math::sin_cos(0.5 * fov_y_radians);
1022        let h = cos_fov / sin_fov;
1023        let w = h / aspect_ratio;
1024        let r = z_far / (z_far - z_near);
1025        Self::from_cols(
1026            Vec4::new(w, 0.0, 0.0, 0.0),
1027            Vec4::new(0.0, h, 0.0, 0.0),
1028            Vec4::new(0.0, 0.0, r, 1.0),
1029            Vec4::new(0.0, 0.0, -r * z_near, 0.0),
1030        )
1031    }
1032
1033    /// Creates a right-handed perspective projection matrix with `[0,1]` depth range.
1034    ///
1035    /// Useful to map the standard right-handed coordinate system into what WebGPU/Metal/Direct3D expect.
1036    ///
1037    /// # Panics
1038    ///
1039    /// Will panic if `z_near` or `z_far` are less than or equal to zero when `glam_assert` is
1040    /// enabled.
1041    #[inline]
1042    #[must_use]
1043    pub fn perspective_rh(fov_y_radians: f32, aspect_ratio: f32, z_near: f32, z_far: f32) -> Self {
1044        glam_assert!(z_near > 0.0 && z_far > 0.0);
1045        let (sin_fov, cos_fov) = math::sin_cos(0.5 * fov_y_radians);
1046        let h = cos_fov / sin_fov;
1047        let w = h / aspect_ratio;
1048        let r = z_far / (z_near - z_far);
1049        Self::from_cols(
1050            Vec4::new(w, 0.0, 0.0, 0.0),
1051            Vec4::new(0.0, h, 0.0, 0.0),
1052            Vec4::new(0.0, 0.0, r, -1.0),
1053            Vec4::new(0.0, 0.0, r * z_near, 0.0),
1054        )
1055    }
1056
1057    /// Creates an infinite left-handed perspective projection matrix with `[0,1]` depth range.
1058    ///
1059    /// Like `perspective_lh`, but with an infinite value for `z_far`.
1060    /// The result is that points near `z_near` are mapped to depth `0`, and as they move towards infinity the depth approaches `1`.
1061    ///
1062    /// # Panics
1063    ///
1064    /// Will panic if `z_near` or `z_far` are less than or equal to zero when `glam_assert` is
1065    /// enabled.
1066    #[inline]
1067    #[must_use]
1068    pub fn perspective_infinite_lh(fov_y_radians: f32, aspect_ratio: f32, z_near: f32) -> Self {
1069        glam_assert!(z_near > 0.0);
1070        let (sin_fov, cos_fov) = math::sin_cos(0.5 * fov_y_radians);
1071        let h = cos_fov / sin_fov;
1072        let w = h / aspect_ratio;
1073        Self::from_cols(
1074            Vec4::new(w, 0.0, 0.0, 0.0),
1075            Vec4::new(0.0, h, 0.0, 0.0),
1076            Vec4::new(0.0, 0.0, 1.0, 1.0),
1077            Vec4::new(0.0, 0.0, -z_near, 0.0),
1078        )
1079    }
1080
1081    /// Creates an infinite reverse left-handed perspective projection matrix with `[0,1]` depth range.
1082    ///
1083    /// Similar to `perspective_infinite_lh`, but maps `Z = z_near` to a depth of `1` and `Z = infinity` to a depth of `0`.
1084    ///
1085    /// # Panics
1086    ///
1087    /// Will panic if `z_near` is less than or equal to zero when `glam_assert` is enabled.
1088    #[inline]
1089    #[must_use]
1090    pub fn perspective_infinite_reverse_lh(
1091        fov_y_radians: f32,
1092        aspect_ratio: f32,
1093        z_near: f32,
1094    ) -> Self {
1095        glam_assert!(z_near > 0.0);
1096        let (sin_fov, cos_fov) = math::sin_cos(0.5 * fov_y_radians);
1097        let h = cos_fov / sin_fov;
1098        let w = h / aspect_ratio;
1099        Self::from_cols(
1100            Vec4::new(w, 0.0, 0.0, 0.0),
1101            Vec4::new(0.0, h, 0.0, 0.0),
1102            Vec4::new(0.0, 0.0, 0.0, 1.0),
1103            Vec4::new(0.0, 0.0, z_near, 0.0),
1104        )
1105    }
1106
1107    /// Creates an infinite right-handed perspective projection matrix with `[0,1]` depth range.
1108    ///
1109    /// Like `perspective_rh`, but with an infinite value for `z_far`.
1110    /// The result is that points near `z_near` are mapped to depth `0`, and as they move towards infinity the depth approaches `1`.
1111    ///
1112    /// # Panics
1113    ///
1114    /// Will panic if `z_near` or `z_far` are less than or equal to zero when `glam_assert` is
1115    /// enabled.
1116    #[inline]
1117    #[must_use]
1118    pub fn perspective_infinite_rh(fov_y_radians: f32, aspect_ratio: f32, z_near: f32) -> Self {
1119        glam_assert!(z_near > 0.0);
1120        let f = 1.0 / math::tan(0.5 * fov_y_radians);
1121        Self::from_cols(
1122            Vec4::new(f / aspect_ratio, 0.0, 0.0, 0.0),
1123            Vec4::new(0.0, f, 0.0, 0.0),
1124            Vec4::new(0.0, 0.0, -1.0, -1.0),
1125            Vec4::new(0.0, 0.0, -z_near, 0.0),
1126        )
1127    }
1128
1129    /// Creates an infinite reverse right-handed perspective projection matrix with `[0,1]` depth range.
1130    ///
1131    /// Similar to `perspective_infinite_rh`, but maps `Z = z_near` to a depth of `1` and `Z = infinity` to a depth of `0`.
1132    ///
1133    /// # Panics
1134    ///
1135    /// Will panic if `z_near` is less than or equal to zero when `glam_assert` is enabled.
1136    #[inline]
1137    #[must_use]
1138    pub fn perspective_infinite_reverse_rh(
1139        fov_y_radians: f32,
1140        aspect_ratio: f32,
1141        z_near: f32,
1142    ) -> Self {
1143        glam_assert!(z_near > 0.0);
1144        let f = 1.0 / math::tan(0.5 * fov_y_radians);
1145        Self::from_cols(
1146            Vec4::new(f / aspect_ratio, 0.0, 0.0, 0.0),
1147            Vec4::new(0.0, f, 0.0, 0.0),
1148            Vec4::new(0.0, 0.0, 0.0, -1.0),
1149            Vec4::new(0.0, 0.0, z_near, 0.0),
1150        )
1151    }
1152
1153    /// Creates a right-handed orthographic projection matrix with `[-1,1]` depth
1154    /// range.  This is the same as the OpenGL `glOrtho` function in OpenGL.
1155    /// See
1156    /// <https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glOrtho.xml>
1157    ///
1158    /// Useful to map a right-handed coordinate system to the normalized device coordinates that OpenGL expects.
1159    #[inline]
1160    #[must_use]
1161    pub fn orthographic_rh_gl(
1162        left: f32,
1163        right: f32,
1164        bottom: f32,
1165        top: f32,
1166        near: f32,
1167        far: f32,
1168    ) -> Self {
1169        let a = 2.0 / (right - left);
1170        let b = 2.0 / (top - bottom);
1171        let c = -2.0 / (far - near);
1172        let tx = -(right + left) / (right - left);
1173        let ty = -(top + bottom) / (top - bottom);
1174        let tz = -(far + near) / (far - near);
1175
1176        Self::from_cols(
1177            Vec4::new(a, 0.0, 0.0, 0.0),
1178            Vec4::new(0.0, b, 0.0, 0.0),
1179            Vec4::new(0.0, 0.0, c, 0.0),
1180            Vec4::new(tx, ty, tz, 1.0),
1181        )
1182    }
1183
1184    /// Creates a left-handed orthographic projection matrix with `[0,1]` depth range.
1185    ///
1186    /// Useful to map a left-handed coordinate system to the normalized device coordinates that WebGPU/Direct3D/Metal expect.
1187    #[inline]
1188    #[must_use]
1189    pub fn orthographic_lh(
1190        left: f32,
1191        right: f32,
1192        bottom: f32,
1193        top: f32,
1194        near: f32,
1195        far: f32,
1196    ) -> Self {
1197        let rcp_width = 1.0 / (right - left);
1198        let rcp_height = 1.0 / (top - bottom);
1199        let r = 1.0 / (far - near);
1200        Self::from_cols(
1201            Vec4::new(rcp_width + rcp_width, 0.0, 0.0, 0.0),
1202            Vec4::new(0.0, rcp_height + rcp_height, 0.0, 0.0),
1203            Vec4::new(0.0, 0.0, r, 0.0),
1204            Vec4::new(
1205                -(left + right) * rcp_width,
1206                -(top + bottom) * rcp_height,
1207                -r * near,
1208                1.0,
1209            ),
1210        )
1211    }
1212
1213    /// Creates a right-handed orthographic projection matrix with `[0,1]` depth range.
1214    ///
1215    /// Useful to map a right-handed coordinate system to the normalized device coordinates that WebGPU/Direct3D/Metal expect.
1216    #[inline]
1217    #[must_use]
1218    pub fn orthographic_rh(
1219        left: f32,
1220        right: f32,
1221        bottom: f32,
1222        top: f32,
1223        near: f32,
1224        far: f32,
1225    ) -> Self {
1226        let rcp_width = 1.0 / (right - left);
1227        let rcp_height = 1.0 / (top - bottom);
1228        let r = 1.0 / (near - far);
1229        Self::from_cols(
1230            Vec4::new(rcp_width + rcp_width, 0.0, 0.0, 0.0),
1231            Vec4::new(0.0, rcp_height + rcp_height, 0.0, 0.0),
1232            Vec4::new(0.0, 0.0, r, 0.0),
1233            Vec4::new(
1234                -(left + right) * rcp_width,
1235                -(top + bottom) * rcp_height,
1236                r * near,
1237                1.0,
1238            ),
1239        )
1240    }
1241
1242    /// Transforms the given 3D vector as a point, applying perspective correction.
1243    ///
1244    /// This is the equivalent of multiplying the 3D vector as a 4D vector where `w` is `1.0`.
1245    /// The perspective divide is performed meaning the resulting 3D vector is divided by `w`.
1246    ///
1247    /// This method assumes that `self` contains a projective transform.
1248    #[inline]
1249    #[must_use]
1250    pub fn project_point3(&self, rhs: Vec3) -> Vec3 {
1251        let mut res = self.x_axis.mul(rhs.x);
1252        res = self.y_axis.mul(rhs.y).add(res);
1253        res = self.z_axis.mul(rhs.z).add(res);
1254        res = self.w_axis.add(res);
1255        res = res.div(res.w);
1256        res.xyz()
1257    }
1258
1259    /// Transforms the given 3D vector as a point.
1260    ///
1261    /// This is the equivalent of multiplying the 3D vector as a 4D vector where `w` is
1262    /// `1.0`.
1263    ///
1264    /// This method assumes that `self` contains a valid affine transform. It does not perform
1265    /// a perspective divide, if `self` contains a perspective transform, or if you are unsure,
1266    /// the [`Self::project_point3()`] method should be used instead.
1267    ///
1268    /// # Panics
1269    ///
1270    /// Will panic if the 3rd row of `self` is not `(0, 0, 0, 1)` when `glam_assert` is enabled.
1271    #[inline]
1272    #[must_use]
1273    pub fn transform_point3(&self, rhs: Vec3) -> Vec3 {
1274        glam_assert!(self.row(3).abs_diff_eq(Vec4::W, 1e-6));
1275        let mut res = self.x_axis.mul(rhs.x);
1276        res = self.y_axis.mul(rhs.y).add(res);
1277        res = self.z_axis.mul(rhs.z).add(res);
1278        res = self.w_axis.add(res);
1279        res.xyz()
1280    }
1281
1282    /// Transforms the give 3D vector as a direction.
1283    ///
1284    /// This is the equivalent of multiplying the 3D vector as a 4D vector where `w` is
1285    /// `0.0`.
1286    ///
1287    /// This method assumes that `self` contains a valid affine transform.
1288    ///
1289    /// # Panics
1290    ///
1291    /// Will panic if the 3rd row of `self` is not `(0, 0, 0, 1)` when `glam_assert` is enabled.
1292    #[inline]
1293    #[must_use]
1294    pub fn transform_vector3(&self, rhs: Vec3) -> Vec3 {
1295        glam_assert!(self.row(3).abs_diff_eq(Vec4::W, 1e-6));
1296        let mut res = self.x_axis.mul(rhs.x);
1297        res = self.y_axis.mul(rhs.y).add(res);
1298        res = self.z_axis.mul(rhs.z).add(res);
1299        res.xyz()
1300    }
1301
1302    /// Transforms the given [`Vec3A`] as a 3D point, applying perspective correction.
1303    ///
1304    /// This is the equivalent of multiplying the [`Vec3A`] as a 4D vector where `w` is `1.0`.
1305    /// The perspective divide is performed meaning the resulting 3D vector is divided by `w`.
1306    ///
1307    /// This method assumes that `self` contains a projective transform.
1308    #[inline]
1309    #[must_use]
1310    pub fn project_point3a(&self, rhs: Vec3A) -> Vec3A {
1311        let mut res = self.x_axis.mul(rhs.xxxx());
1312        res = self.y_axis.mul(rhs.yyyy()).add(res);
1313        res = self.z_axis.mul(rhs.zzzz()).add(res);
1314        res = self.w_axis.add(res);
1315        res = res.div(res.wwww());
1316        Vec3A::from_vec4(res)
1317    }
1318
1319    /// Transforms the given [`Vec3A`] as 3D point.
1320    ///
1321    /// This is the equivalent of multiplying the [`Vec3A`] as a 4D vector where `w` is `1.0`.
1322    #[inline]
1323    #[must_use]
1324    pub fn transform_point3a(&self, rhs: Vec3A) -> Vec3A {
1325        glam_assert!(self.row(3).abs_diff_eq(Vec4::W, 1e-6));
1326        let mut res = self.x_axis.mul(rhs.xxxx());
1327        res = self.y_axis.mul(rhs.yyyy()).add(res);
1328        res = self.z_axis.mul(rhs.zzzz()).add(res);
1329        res = self.w_axis.add(res);
1330        Vec3A::from_vec4(res)
1331    }
1332
1333    /// Transforms the give [`Vec3A`] as 3D vector.
1334    ///
1335    /// This is the equivalent of multiplying the [`Vec3A`] as a 4D vector where `w` is `0.0`.
1336    #[inline]
1337    #[must_use]
1338    pub fn transform_vector3a(&self, rhs: Vec3A) -> Vec3A {
1339        glam_assert!(self.row(3).abs_diff_eq(Vec4::W, 1e-6));
1340        let mut res = self.x_axis.mul(rhs.xxxx());
1341        res = self.y_axis.mul(rhs.yyyy()).add(res);
1342        res = self.z_axis.mul(rhs.zzzz()).add(res);
1343        Vec3A::from_vec4(res)
1344    }
1345
1346    /// Transforms a 4D vector.
1347    #[inline]
1348    #[must_use]
1349    pub fn mul_vec4(&self, rhs: Vec4) -> Vec4 {
1350        let mut res = self.x_axis.mul(rhs.xxxx());
1351        res = res.add(self.y_axis.mul(rhs.yyyy()));
1352        res = res.add(self.z_axis.mul(rhs.zzzz()));
1353        res = res.add(self.w_axis.mul(rhs.wwww()));
1354        res
1355    }
1356
1357    /// Multiplies two 4x4 matrices.
1358    #[inline]
1359    #[must_use]
1360    pub fn mul_mat4(&self, rhs: &Self) -> Self {
1361        self.mul(rhs)
1362    }
1363
1364    /// Adds two 4x4 matrices.
1365    #[inline]
1366    #[must_use]
1367    pub fn add_mat4(&self, rhs: &Self) -> Self {
1368        self.add(rhs)
1369    }
1370
1371    /// Subtracts two 4x4 matrices.
1372    #[inline]
1373    #[must_use]
1374    pub fn sub_mat4(&self, rhs: &Self) -> Self {
1375        self.sub(rhs)
1376    }
1377
1378    /// Multiplies a 4x4 matrix by a scalar.
1379    #[inline]
1380    #[must_use]
1381    pub fn mul_scalar(&self, rhs: f32) -> Self {
1382        Self::from_cols(
1383            self.x_axis.mul(rhs),
1384            self.y_axis.mul(rhs),
1385            self.z_axis.mul(rhs),
1386            self.w_axis.mul(rhs),
1387        )
1388    }
1389
1390    /// Divides a 4x4 matrix by a scalar.
1391    #[inline]
1392    #[must_use]
1393    pub fn div_scalar(&self, rhs: f32) -> Self {
1394        let rhs = Vec4::splat(rhs);
1395        Self::from_cols(
1396            self.x_axis.div(rhs),
1397            self.y_axis.div(rhs),
1398            self.z_axis.div(rhs),
1399            self.w_axis.div(rhs),
1400        )
1401    }
1402
1403    /// Returns true if the absolute difference of all elements between `self` and `rhs`
1404    /// is less than or equal to `max_abs_diff`.
1405    ///
1406    /// This can be used to compare if two matrices contain similar elements. It works best
1407    /// when comparing with a known value. The `max_abs_diff` that should be used used
1408    /// depends on the values being compared against.
1409    ///
1410    /// For more see
1411    /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
1412    #[inline]
1413    #[must_use]
1414    pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f32) -> bool {
1415        self.x_axis.abs_diff_eq(rhs.x_axis, max_abs_diff)
1416            && self.y_axis.abs_diff_eq(rhs.y_axis, max_abs_diff)
1417            && self.z_axis.abs_diff_eq(rhs.z_axis, max_abs_diff)
1418            && self.w_axis.abs_diff_eq(rhs.w_axis, max_abs_diff)
1419    }
1420
1421    /// Takes the absolute value of each element in `self`
1422    #[inline]
1423    #[must_use]
1424    pub fn abs(&self) -> Self {
1425        Self::from_cols(
1426            self.x_axis.abs(),
1427            self.y_axis.abs(),
1428            self.z_axis.abs(),
1429            self.w_axis.abs(),
1430        )
1431    }
1432
1433    #[inline]
1434    pub fn as_dmat4(&self) -> DMat4 {
1435        DMat4::from_cols(
1436            self.x_axis.as_dvec4(),
1437            self.y_axis.as_dvec4(),
1438            self.z_axis.as_dvec4(),
1439            self.w_axis.as_dvec4(),
1440        )
1441    }
1442}
1443
1444impl Default for Mat4 {
1445    #[inline]
1446    fn default() -> Self {
1447        Self::IDENTITY
1448    }
1449}
1450
1451impl Add for Mat4 {
1452    type Output = Self;
1453    #[inline]
1454    fn add(self, rhs: Self) -> Self {
1455        Self::from_cols(
1456            self.x_axis.add(rhs.x_axis),
1457            self.y_axis.add(rhs.y_axis),
1458            self.z_axis.add(rhs.z_axis),
1459            self.w_axis.add(rhs.w_axis),
1460        )
1461    }
1462}
1463
1464impl Add<&Self> for Mat4 {
1465    type Output = Self;
1466    #[inline]
1467    fn add(self, rhs: &Self) -> Self {
1468        self.add(*rhs)
1469    }
1470}
1471
1472impl Add<&Mat4> for &Mat4 {
1473    type Output = Mat4;
1474    #[inline]
1475    fn add(self, rhs: &Mat4) -> Mat4 {
1476        (*self).add(*rhs)
1477    }
1478}
1479
1480impl Add<Mat4> for &Mat4 {
1481    type Output = Mat4;
1482    #[inline]
1483    fn add(self, rhs: Mat4) -> Mat4 {
1484        (*self).add(rhs)
1485    }
1486}
1487
1488impl AddAssign for Mat4 {
1489    #[inline]
1490    fn add_assign(&mut self, rhs: Self) {
1491        *self = self.add(rhs);
1492    }
1493}
1494
1495impl AddAssign<&Self> for Mat4 {
1496    #[inline]
1497    fn add_assign(&mut self, rhs: &Self) {
1498        self.add_assign(*rhs);
1499    }
1500}
1501
1502impl Sub for Mat4 {
1503    type Output = Self;
1504    #[inline]
1505    fn sub(self, rhs: Self) -> Self {
1506        Self::from_cols(
1507            self.x_axis.sub(rhs.x_axis),
1508            self.y_axis.sub(rhs.y_axis),
1509            self.z_axis.sub(rhs.z_axis),
1510            self.w_axis.sub(rhs.w_axis),
1511        )
1512    }
1513}
1514
1515impl Sub<&Self> for Mat4 {
1516    type Output = Self;
1517    #[inline]
1518    fn sub(self, rhs: &Self) -> Self {
1519        self.sub(*rhs)
1520    }
1521}
1522
1523impl Sub<&Mat4> for &Mat4 {
1524    type Output = Mat4;
1525    #[inline]
1526    fn sub(self, rhs: &Mat4) -> Mat4 {
1527        (*self).sub(*rhs)
1528    }
1529}
1530
1531impl Sub<Mat4> for &Mat4 {
1532    type Output = Mat4;
1533    #[inline]
1534    fn sub(self, rhs: Mat4) -> Mat4 {
1535        (*self).sub(rhs)
1536    }
1537}
1538
1539impl SubAssign for Mat4 {
1540    #[inline]
1541    fn sub_assign(&mut self, rhs: Self) {
1542        *self = self.sub(rhs);
1543    }
1544}
1545
1546impl SubAssign<&Self> for Mat4 {
1547    #[inline]
1548    fn sub_assign(&mut self, rhs: &Self) {
1549        self.sub_assign(*rhs);
1550    }
1551}
1552
1553impl Neg for Mat4 {
1554    type Output = Self;
1555    #[inline]
1556    fn neg(self) -> Self::Output {
1557        Self::from_cols(
1558            self.x_axis.neg(),
1559            self.y_axis.neg(),
1560            self.z_axis.neg(),
1561            self.w_axis.neg(),
1562        )
1563    }
1564}
1565
1566impl Neg for &Mat4 {
1567    type Output = Mat4;
1568    #[inline]
1569    fn neg(self) -> Mat4 {
1570        (*self).neg()
1571    }
1572}
1573
1574impl Mul for Mat4 {
1575    type Output = Self;
1576    #[inline]
1577    fn mul(self, rhs: Self) -> Self {
1578        Self::from_cols(
1579            self.mul(rhs.x_axis),
1580            self.mul(rhs.y_axis),
1581            self.mul(rhs.z_axis),
1582            self.mul(rhs.w_axis),
1583        )
1584    }
1585}
1586
1587impl Mul<&Self> for Mat4 {
1588    type Output = Self;
1589    #[inline]
1590    fn mul(self, rhs: &Self) -> Self {
1591        self.mul(*rhs)
1592    }
1593}
1594
1595impl Mul<&Mat4> for &Mat4 {
1596    type Output = Mat4;
1597    #[inline]
1598    fn mul(self, rhs: &Mat4) -> Mat4 {
1599        (*self).mul(*rhs)
1600    }
1601}
1602
1603impl Mul<Mat4> for &Mat4 {
1604    type Output = Mat4;
1605    #[inline]
1606    fn mul(self, rhs: Mat4) -> Mat4 {
1607        (*self).mul(rhs)
1608    }
1609}
1610
1611impl MulAssign for Mat4 {
1612    #[inline]
1613    fn mul_assign(&mut self, rhs: Self) {
1614        *self = self.mul(rhs);
1615    }
1616}
1617
1618impl MulAssign<&Self> for Mat4 {
1619    #[inline]
1620    fn mul_assign(&mut self, rhs: &Self) {
1621        self.mul_assign(*rhs);
1622    }
1623}
1624
1625impl Mul<Vec4> for Mat4 {
1626    type Output = Vec4;
1627    #[inline]
1628    fn mul(self, rhs: Vec4) -> Self::Output {
1629        self.mul_vec4(rhs)
1630    }
1631}
1632
1633impl Mul<&Vec4> for Mat4 {
1634    type Output = Vec4;
1635    #[inline]
1636    fn mul(self, rhs: &Vec4) -> Vec4 {
1637        self.mul(*rhs)
1638    }
1639}
1640
1641impl Mul<&Vec4> for &Mat4 {
1642    type Output = Vec4;
1643    #[inline]
1644    fn mul(self, rhs: &Vec4) -> Vec4 {
1645        (*self).mul(*rhs)
1646    }
1647}
1648
1649impl Mul<Vec4> for &Mat4 {
1650    type Output = Vec4;
1651    #[inline]
1652    fn mul(self, rhs: Vec4) -> Vec4 {
1653        (*self).mul(rhs)
1654    }
1655}
1656
1657impl Mul<Mat4> for f32 {
1658    type Output = Mat4;
1659    #[inline]
1660    fn mul(self, rhs: Mat4) -> Self::Output {
1661        rhs.mul_scalar(self)
1662    }
1663}
1664
1665impl Mul<&Mat4> for f32 {
1666    type Output = Mat4;
1667    #[inline]
1668    fn mul(self, rhs: &Mat4) -> Mat4 {
1669        self.mul(*rhs)
1670    }
1671}
1672
1673impl Mul<&Mat4> for &f32 {
1674    type Output = Mat4;
1675    #[inline]
1676    fn mul(self, rhs: &Mat4) -> Mat4 {
1677        (*self).mul(*rhs)
1678    }
1679}
1680
1681impl Mul<Mat4> for &f32 {
1682    type Output = Mat4;
1683    #[inline]
1684    fn mul(self, rhs: Mat4) -> Mat4 {
1685        (*self).mul(rhs)
1686    }
1687}
1688
1689impl Mul<f32> for Mat4 {
1690    type Output = Self;
1691    #[inline]
1692    fn mul(self, rhs: f32) -> Self {
1693        self.mul_scalar(rhs)
1694    }
1695}
1696
1697impl Mul<&f32> for Mat4 {
1698    type Output = Self;
1699    #[inline]
1700    fn mul(self, rhs: &f32) -> Self {
1701        self.mul(*rhs)
1702    }
1703}
1704
1705impl Mul<&f32> for &Mat4 {
1706    type Output = Mat4;
1707    #[inline]
1708    fn mul(self, rhs: &f32) -> Mat4 {
1709        (*self).mul(*rhs)
1710    }
1711}
1712
1713impl Mul<f32> for &Mat4 {
1714    type Output = Mat4;
1715    #[inline]
1716    fn mul(self, rhs: f32) -> Mat4 {
1717        (*self).mul(rhs)
1718    }
1719}
1720
1721impl MulAssign<f32> for Mat4 {
1722    #[inline]
1723    fn mul_assign(&mut self, rhs: f32) {
1724        *self = self.mul(rhs);
1725    }
1726}
1727
1728impl MulAssign<&f32> for Mat4 {
1729    #[inline]
1730    fn mul_assign(&mut self, rhs: &f32) {
1731        self.mul_assign(*rhs);
1732    }
1733}
1734
1735impl Div<Mat4> for f32 {
1736    type Output = Mat4;
1737    #[inline]
1738    fn div(self, rhs: Mat4) -> Self::Output {
1739        rhs.div_scalar(self)
1740    }
1741}
1742
1743impl Div<&Mat4> for f32 {
1744    type Output = Mat4;
1745    #[inline]
1746    fn div(self, rhs: &Mat4) -> Mat4 {
1747        self.div(*rhs)
1748    }
1749}
1750
1751impl Div<&Mat4> for &f32 {
1752    type Output = Mat4;
1753    #[inline]
1754    fn div(self, rhs: &Mat4) -> Mat4 {
1755        (*self).div(*rhs)
1756    }
1757}
1758
1759impl Div<Mat4> for &f32 {
1760    type Output = Mat4;
1761    #[inline]
1762    fn div(self, rhs: Mat4) -> Mat4 {
1763        (*self).div(rhs)
1764    }
1765}
1766
1767impl Div<f32> for Mat4 {
1768    type Output = Self;
1769    #[inline]
1770    fn div(self, rhs: f32) -> Self {
1771        self.div_scalar(rhs)
1772    }
1773}
1774
1775impl Div<&f32> for Mat4 {
1776    type Output = Self;
1777    #[inline]
1778    fn div(self, rhs: &f32) -> Self {
1779        self.div(*rhs)
1780    }
1781}
1782
1783impl Div<&f32> for &Mat4 {
1784    type Output = Mat4;
1785    #[inline]
1786    fn div(self, rhs: &f32) -> Mat4 {
1787        (*self).div(*rhs)
1788    }
1789}
1790
1791impl Div<f32> for &Mat4 {
1792    type Output = Mat4;
1793    #[inline]
1794    fn div(self, rhs: f32) -> Mat4 {
1795        (*self).div(rhs)
1796    }
1797}
1798
1799impl DivAssign<f32> for Mat4 {
1800    #[inline]
1801    fn div_assign(&mut self, rhs: f32) {
1802        *self = self.div(rhs);
1803    }
1804}
1805
1806impl DivAssign<&f32> for Mat4 {
1807    #[inline]
1808    fn div_assign(&mut self, rhs: &f32) {
1809        self.div_assign(*rhs);
1810    }
1811}
1812
1813impl Sum<Self> for Mat4 {
1814    fn sum<I>(iter: I) -> Self
1815    where
1816        I: Iterator<Item = Self>,
1817    {
1818        iter.fold(Self::ZERO, Self::add)
1819    }
1820}
1821
1822impl<'a> Sum<&'a Self> for Mat4 {
1823    fn sum<I>(iter: I) -> Self
1824    where
1825        I: Iterator<Item = &'a Self>,
1826    {
1827        iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
1828    }
1829}
1830
1831impl Product for Mat4 {
1832    fn product<I>(iter: I) -> Self
1833    where
1834        I: Iterator<Item = Self>,
1835    {
1836        iter.fold(Self::IDENTITY, Self::mul)
1837    }
1838}
1839
1840impl<'a> Product<&'a Self> for Mat4 {
1841    fn product<I>(iter: I) -> Self
1842    where
1843        I: Iterator<Item = &'a Self>,
1844    {
1845        iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b))
1846    }
1847}
1848
1849impl PartialEq for Mat4 {
1850    #[inline]
1851    fn eq(&self, rhs: &Self) -> bool {
1852        self.x_axis.eq(&rhs.x_axis)
1853            && self.y_axis.eq(&rhs.y_axis)
1854            && self.z_axis.eq(&rhs.z_axis)
1855            && self.w_axis.eq(&rhs.w_axis)
1856    }
1857}
1858
1859#[cfg(not(target_arch = "spirv"))]
1860impl AsRef<[f32; 16]> for Mat4 {
1861    #[inline]
1862    fn as_ref(&self) -> &[f32; 16] {
1863        unsafe { &*(self as *const Self as *const [f32; 16]) }
1864    }
1865}
1866
1867#[cfg(not(target_arch = "spirv"))]
1868impl AsMut<[f32; 16]> for Mat4 {
1869    #[inline]
1870    fn as_mut(&mut self) -> &mut [f32; 16] {
1871        unsafe { &mut *(self as *mut Self as *mut [f32; 16]) }
1872    }
1873}
1874
1875impl fmt::Debug for Mat4 {
1876    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1877        fmt.debug_struct(stringify!(Mat4))
1878            .field("x_axis", &self.x_axis)
1879            .field("y_axis", &self.y_axis)
1880            .field("z_axis", &self.z_axis)
1881            .field("w_axis", &self.w_axis)
1882            .finish()
1883    }
1884}
1885
1886impl fmt::Display for Mat4 {
1887    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1888        if let Some(p) = f.precision() {
1889            write!(
1890                f,
1891                "[{:.*}, {:.*}, {:.*}, {:.*}]",
1892                p, self.x_axis, p, self.y_axis, p, self.z_axis, p, self.w_axis
1893            )
1894        } else {
1895            write!(
1896                f,
1897                "[{}, {}, {}, {}]",
1898                self.x_axis, self.y_axis, self.z_axis, self.w_axis
1899            )
1900        }
1901    }
1902}