1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
// Generated from mat.rs.tera template. Edit the template, not the generated file.
use crate::{
euler::{FromEuler, ToEuler},
f32::math,
neon::*,
swizzles::*,
DMat4, EulerRot, Mat3, Mat3A, Quat, Vec3, Vec3A, Vec4,
};
#[cfg(not(target_arch = "spirv"))]
use core::fmt;
use core::iter::{Product, Sum};
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use core::arch::aarch64::*;
/// Creates a 4x4 matrix from four column vectors.
#[inline(always)]
#[must_use]
pub const fn mat4(x_axis: Vec4, y_axis: Vec4, z_axis: Vec4, w_axis: Vec4) -> Mat4 {
Mat4::from_cols(x_axis, y_axis, z_axis, w_axis)
}
/// A 4x4 column major matrix.
///
/// This 4x4 matrix type features convenience methods for creating and using affine transforms and
/// perspective projections. If you are primarily dealing with 3D affine transformations
/// considering using [`Affine3A`](crate::Affine3A) which is faster than a 4x4 matrix
/// for some affine operations.
///
/// Affine transformations including 3D translation, rotation and scale can be created
/// using methods such as [`Self::from_translation()`], [`Self::from_quat()`],
/// [`Self::from_scale()`] and [`Self::from_scale_rotation_translation()`].
///
/// Orthographic projections can be created using the methods [`Self::orthographic_lh()`] for
/// left-handed coordinate systems and [`Self::orthographic_rh()`] for right-handed
/// systems. The resulting matrix is also an affine transformation.
///
/// The [`Self::transform_point3()`] and [`Self::transform_vector3()`] convenience methods
/// are provided for performing affine transformations on 3D vectors and points. These
/// multiply 3D inputs as 4D vectors with an implicit `w` value of `1` for points and `0`
/// for vectors respectively. These methods assume that `Self` contains a valid affine
/// transform.
///
/// Perspective projections can be created using methods such as
/// [`Self::perspective_lh()`], [`Self::perspective_infinite_lh()`] and
/// [`Self::perspective_infinite_reverse_lh()`] for left-handed co-ordinate systems and
/// [`Self::perspective_rh()`], [`Self::perspective_infinite_rh()`] and
/// [`Self::perspective_infinite_reverse_rh()`] for right-handed co-ordinate systems.
///
/// The resulting perspective project can be use to transform 3D vectors as points with
/// perspective correction using the [`Self::project_point3()`] convenience method.
#[derive(Clone, Copy)]
#[repr(C)]
pub struct Mat4 {
pub x_axis: Vec4,
pub y_axis: Vec4,
pub z_axis: Vec4,
pub w_axis: Vec4,
}
impl Mat4 {
/// A 4x4 matrix with all elements set to `0.0`.
pub const ZERO: Self = Self::from_cols(Vec4::ZERO, Vec4::ZERO, Vec4::ZERO, Vec4::ZERO);
/// A 4x4 identity matrix, where all diagonal elements are `1`, and all off-diagonal elements are `0`.
pub const IDENTITY: Self = Self::from_cols(Vec4::X, Vec4::Y, Vec4::Z, Vec4::W);
/// All NAN:s.
pub const NAN: Self = Self::from_cols(Vec4::NAN, Vec4::NAN, Vec4::NAN, Vec4::NAN);
#[allow(clippy::too_many_arguments)]
#[inline(always)]
#[must_use]
const fn new(
m00: f32,
m01: f32,
m02: f32,
m03: f32,
m10: f32,
m11: f32,
m12: f32,
m13: f32,
m20: f32,
m21: f32,
m22: f32,
m23: f32,
m30: f32,
m31: f32,
m32: f32,
m33: f32,
) -> Self {
Self {
x_axis: Vec4::new(m00, m01, m02, m03),
y_axis: Vec4::new(m10, m11, m12, m13),
z_axis: Vec4::new(m20, m21, m22, m23),
w_axis: Vec4::new(m30, m31, m32, m33),
}
}
/// Creates a 4x4 matrix from four column vectors.
#[inline(always)]
#[must_use]
pub const fn from_cols(x_axis: Vec4, y_axis: Vec4, z_axis: Vec4, w_axis: Vec4) -> Self {
Self {
x_axis,
y_axis,
z_axis,
w_axis,
}
}
/// Creates a 4x4 matrix from a `[f32; 16]` array stored in column major order.
/// If your data is stored in row major you will need to `transpose` the returned
/// matrix.
#[inline]
#[must_use]
pub const fn from_cols_array(m: &[f32; 16]) -> Self {
Self::new(
m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8], m[9], m[10], m[11], m[12], m[13],
m[14], m[15],
)
}
/// Creates a `[f32; 16]` array storing data in column major order.
/// If you require data in row major order `transpose` the matrix first.
#[inline]
#[must_use]
pub const fn to_cols_array(&self) -> [f32; 16] {
let [x_axis_x, x_axis_y, x_axis_z, x_axis_w] = self.x_axis.to_array();
let [y_axis_x, y_axis_y, y_axis_z, y_axis_w] = self.y_axis.to_array();
let [z_axis_x, z_axis_y, z_axis_z, z_axis_w] = self.z_axis.to_array();
let [w_axis_x, w_axis_y, w_axis_z, w_axis_w] = self.w_axis.to_array();
[
x_axis_x, x_axis_y, x_axis_z, x_axis_w, y_axis_x, y_axis_y, y_axis_z, y_axis_w,
z_axis_x, z_axis_y, z_axis_z, z_axis_w, w_axis_x, w_axis_y, w_axis_z, w_axis_w,
]
}
/// Creates a 4x4 matrix from a `[[f32; 4]; 4]` 4D array stored in column major order.
/// If your data is in row major order you will need to `transpose` the returned
/// matrix.
#[inline]
#[must_use]
pub const fn from_cols_array_2d(m: &[[f32; 4]; 4]) -> Self {
Self::from_cols(
Vec4::from_array(m[0]),
Vec4::from_array(m[1]),
Vec4::from_array(m[2]),
Vec4::from_array(m[3]),
)
}
/// Creates a `[[f32; 4]; 4]` 4D array storing data in column major order.
/// If you require data in row major order `transpose` the matrix first.
#[inline]
#[must_use]
pub const fn to_cols_array_2d(&self) -> [[f32; 4]; 4] {
[
self.x_axis.to_array(),
self.y_axis.to_array(),
self.z_axis.to_array(),
self.w_axis.to_array(),
]
}
/// Creates a 4x4 matrix with its diagonal set to `diagonal` and all other entries set to 0.
#[doc(alias = "scale")]
#[inline]
#[must_use]
pub const fn from_diagonal(diagonal: Vec4) -> Self {
// diagonal.x, diagonal.y etc can't be done in a const-context
let [x, y, z, w] = diagonal.to_array();
Self::new(
x, 0.0, 0.0, 0.0, 0.0, y, 0.0, 0.0, 0.0, 0.0, z, 0.0, 0.0, 0.0, 0.0, w,
)
}
#[inline]
#[must_use]
fn quat_to_axes(rotation: Quat) -> (Vec4, Vec4, Vec4) {
glam_assert!(rotation.is_normalized());
let (x, y, z, w) = rotation.into();
let x2 = x + x;
let y2 = y + y;
let z2 = z + z;
let xx = x * x2;
let xy = x * y2;
let xz = x * z2;
let yy = y * y2;
let yz = y * z2;
let zz = z * z2;
let wx = w * x2;
let wy = w * y2;
let wz = w * z2;
let x_axis = Vec4::new(1.0 - (yy + zz), xy + wz, xz - wy, 0.0);
let y_axis = Vec4::new(xy - wz, 1.0 - (xx + zz), yz + wx, 0.0);
let z_axis = Vec4::new(xz + wy, yz - wx, 1.0 - (xx + yy), 0.0);
(x_axis, y_axis, z_axis)
}
/// Creates an affine transformation matrix from the given 3D `scale`, `rotation` and
/// `translation`.
///
/// The resulting matrix can be used to transform 3D points and vectors. See
/// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
///
/// # Panics
///
/// Will panic if `rotation` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn from_scale_rotation_translation(scale: Vec3, rotation: Quat, translation: Vec3) -> Self {
let (x_axis, y_axis, z_axis) = Self::quat_to_axes(rotation);
Self::from_cols(
x_axis.mul(scale.x),
y_axis.mul(scale.y),
z_axis.mul(scale.z),
Vec4::from((translation, 1.0)),
)
}
/// Creates an affine transformation matrix from the given 3D `translation`.
///
/// The resulting matrix can be used to transform 3D points and vectors. See
/// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
///
/// # Panics
///
/// Will panic if `rotation` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn from_rotation_translation(rotation: Quat, translation: Vec3) -> Self {
let (x_axis, y_axis, z_axis) = Self::quat_to_axes(rotation);
Self::from_cols(x_axis, y_axis, z_axis, Vec4::from((translation, 1.0)))
}
/// Extracts `scale`, `rotation` and `translation` from `self`. The input matrix is
/// expected to be a 3D affine transformation matrix otherwise the output will be invalid.
///
/// # Panics
///
/// Will panic if the determinant of `self` is zero or if the resulting scale vector
/// contains any zero elements when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn to_scale_rotation_translation(&self) -> (Vec3, Quat, Vec3) {
let det = self.determinant();
glam_assert!(det != 0.0);
let scale = Vec3::new(
self.x_axis.length() * math::signum(det),
self.y_axis.length(),
self.z_axis.length(),
);
glam_assert!(scale.cmpne(Vec3::ZERO).all());
let inv_scale = scale.recip();
let rotation = Quat::from_rotation_axes(
self.x_axis.mul(inv_scale.x).xyz(),
self.y_axis.mul(inv_scale.y).xyz(),
self.z_axis.mul(inv_scale.z).xyz(),
);
let translation = self.w_axis.xyz();
(scale, rotation, translation)
}
/// Creates an affine transformation matrix from the given `rotation` quaternion.
///
/// The resulting matrix can be used to transform 3D points and vectors. See
/// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
///
/// # Panics
///
/// Will panic if `rotation` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn from_quat(rotation: Quat) -> Self {
let (x_axis, y_axis, z_axis) = Self::quat_to_axes(rotation);
Self::from_cols(x_axis, y_axis, z_axis, Vec4::W)
}
/// Creates an affine transformation matrix from the given 3x3 linear transformation
/// matrix.
///
/// The resulting matrix can be used to transform 3D points and vectors. See
/// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
#[inline]
#[must_use]
pub fn from_mat3(m: Mat3) -> Self {
Self::from_cols(
Vec4::from((m.x_axis, 0.0)),
Vec4::from((m.y_axis, 0.0)),
Vec4::from((m.z_axis, 0.0)),
Vec4::W,
)
}
/// Creates an affine transformation matrix from the given 3x3 linear transformation
/// matrix.
///
/// The resulting matrix can be used to transform 3D points and vectors. See
/// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
#[inline]
#[must_use]
pub fn from_mat3a(m: Mat3A) -> Self {
Self::from_cols(
Vec4::from((m.x_axis, 0.0)),
Vec4::from((m.y_axis, 0.0)),
Vec4::from((m.z_axis, 0.0)),
Vec4::W,
)
}
/// Creates an affine transformation matrix from the given 3D `translation`.
///
/// The resulting matrix can be used to transform 3D points and vectors. See
/// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
#[inline]
#[must_use]
pub fn from_translation(translation: Vec3) -> Self {
Self::from_cols(
Vec4::X,
Vec4::Y,
Vec4::Z,
Vec4::new(translation.x, translation.y, translation.z, 1.0),
)
}
/// Creates an affine transformation matrix containing a 3D rotation around a normalized
/// rotation `axis` of `angle` (in radians).
///
/// The resulting matrix can be used to transform 3D points and vectors. See
/// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
///
/// # Panics
///
/// Will panic if `axis` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn from_axis_angle(axis: Vec3, angle: f32) -> Self {
glam_assert!(axis.is_normalized());
let (sin, cos) = math::sin_cos(angle);
let axis_sin = axis.mul(sin);
let axis_sq = axis.mul(axis);
let omc = 1.0 - cos;
let xyomc = axis.x * axis.y * omc;
let xzomc = axis.x * axis.z * omc;
let yzomc = axis.y * axis.z * omc;
Self::from_cols(
Vec4::new(
axis_sq.x * omc + cos,
xyomc + axis_sin.z,
xzomc - axis_sin.y,
0.0,
),
Vec4::new(
xyomc - axis_sin.z,
axis_sq.y * omc + cos,
yzomc + axis_sin.x,
0.0,
),
Vec4::new(
xzomc + axis_sin.y,
yzomc - axis_sin.x,
axis_sq.z * omc + cos,
0.0,
),
Vec4::W,
)
}
/// Creates a affine transformation matrix containing a rotation from the given euler
/// rotation sequence and angles (in radians).
///
/// The resulting matrix can be used to transform 3D points and vectors. See
/// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
#[inline]
#[must_use]
pub fn from_euler(order: EulerRot, a: f32, b: f32, c: f32) -> Self {
Self::from_euler_angles(order, a, b, c)
}
/// Extract Euler angles with the given Euler rotation order.
///
/// Note if the upper 3x3 matrix contain scales, shears, or other non-rotation transformations
/// then the resulting Euler angles will be ill-defined.
///
/// # Panics
///
/// Will panic if any column of the upper 3x3 rotation matrix is not normalized when
/// `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn to_euler(&self, order: EulerRot) -> (f32, f32, f32) {
glam_assert!(
self.x_axis.xyz().is_normalized()
&& self.y_axis.xyz().is_normalized()
&& self.z_axis.xyz().is_normalized()
);
self.to_euler_angles(order)
}
/// Creates an affine transformation matrix containing a 3D rotation around the x axis of
/// `angle` (in radians).
///
/// The resulting matrix can be used to transform 3D points and vectors. See
/// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
#[inline]
#[must_use]
pub fn from_rotation_x(angle: f32) -> Self {
let (sina, cosa) = math::sin_cos(angle);
Self::from_cols(
Vec4::X,
Vec4::new(0.0, cosa, sina, 0.0),
Vec4::new(0.0, -sina, cosa, 0.0),
Vec4::W,
)
}
/// Creates an affine transformation matrix containing a 3D rotation around the y axis of
/// `angle` (in radians).
///
/// The resulting matrix can be used to transform 3D points and vectors. See
/// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
#[inline]
#[must_use]
pub fn from_rotation_y(angle: f32) -> Self {
let (sina, cosa) = math::sin_cos(angle);
Self::from_cols(
Vec4::new(cosa, 0.0, -sina, 0.0),
Vec4::Y,
Vec4::new(sina, 0.0, cosa, 0.0),
Vec4::W,
)
}
/// Creates an affine transformation matrix containing a 3D rotation around the z axis of
/// `angle` (in radians).
///
/// The resulting matrix can be used to transform 3D points and vectors. See
/// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
#[inline]
#[must_use]
pub fn from_rotation_z(angle: f32) -> Self {
let (sina, cosa) = math::sin_cos(angle);
Self::from_cols(
Vec4::new(cosa, sina, 0.0, 0.0),
Vec4::new(-sina, cosa, 0.0, 0.0),
Vec4::Z,
Vec4::W,
)
}
/// Creates an affine transformation matrix containing the given 3D non-uniform `scale`.
///
/// The resulting matrix can be used to transform 3D points and vectors. See
/// [`Self::transform_point3()`] and [`Self::transform_vector3()`].
///
/// # Panics
///
/// Will panic if all elements of `scale` are zero when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn from_scale(scale: Vec3) -> Self {
// Do not panic as long as any component is non-zero
glam_assert!(scale.cmpne(Vec3::ZERO).any());
Self::from_cols(
Vec4::new(scale.x, 0.0, 0.0, 0.0),
Vec4::new(0.0, scale.y, 0.0, 0.0),
Vec4::new(0.0, 0.0, scale.z, 0.0),
Vec4::W,
)
}
/// Creates a 4x4 matrix from the first 16 values in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 16 elements long.
#[inline]
#[must_use]
pub const fn from_cols_slice(slice: &[f32]) -> Self {
Self::new(
slice[0], slice[1], slice[2], slice[3], slice[4], slice[5], slice[6], slice[7],
slice[8], slice[9], slice[10], slice[11], slice[12], slice[13], slice[14], slice[15],
)
}
/// Writes the columns of `self` to the first 16 elements in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 16 elements long.
#[inline]
pub fn write_cols_to_slice(self, slice: &mut [f32]) {
slice[0] = self.x_axis.x;
slice[1] = self.x_axis.y;
slice[2] = self.x_axis.z;
slice[3] = self.x_axis.w;
slice[4] = self.y_axis.x;
slice[5] = self.y_axis.y;
slice[6] = self.y_axis.z;
slice[7] = self.y_axis.w;
slice[8] = self.z_axis.x;
slice[9] = self.z_axis.y;
slice[10] = self.z_axis.z;
slice[11] = self.z_axis.w;
slice[12] = self.w_axis.x;
slice[13] = self.w_axis.y;
slice[14] = self.w_axis.z;
slice[15] = self.w_axis.w;
}
/// Returns the matrix column for the given `index`.
///
/// # Panics
///
/// Panics if `index` is greater than 3.
#[inline]
#[must_use]
pub fn col(&self, index: usize) -> Vec4 {
match index {
0 => self.x_axis,
1 => self.y_axis,
2 => self.z_axis,
3 => self.w_axis,
_ => panic!("index out of bounds"),
}
}
/// Returns a mutable reference to the matrix column for the given `index`.
///
/// # Panics
///
/// Panics if `index` is greater than 3.
#[inline]
pub fn col_mut(&mut self, index: usize) -> &mut Vec4 {
match index {
0 => &mut self.x_axis,
1 => &mut self.y_axis,
2 => &mut self.z_axis,
3 => &mut self.w_axis,
_ => panic!("index out of bounds"),
}
}
/// Returns the matrix row for the given `index`.
///
/// # Panics
///
/// Panics if `index` is greater than 3.
#[inline]
#[must_use]
pub fn row(&self, index: usize) -> Vec4 {
match index {
0 => Vec4::new(self.x_axis.x, self.y_axis.x, self.z_axis.x, self.w_axis.x),
1 => Vec4::new(self.x_axis.y, self.y_axis.y, self.z_axis.y, self.w_axis.y),
2 => Vec4::new(self.x_axis.z, self.y_axis.z, self.z_axis.z, self.w_axis.z),
3 => Vec4::new(self.x_axis.w, self.y_axis.w, self.z_axis.w, self.w_axis.w),
_ => panic!("index out of bounds"),
}
}
/// Returns `true` if, and only if, all elements are finite.
/// If any element is either `NaN`, positive or negative infinity, this will return `false`.
#[inline]
#[must_use]
pub fn is_finite(&self) -> bool {
self.x_axis.is_finite()
&& self.y_axis.is_finite()
&& self.z_axis.is_finite()
&& self.w_axis.is_finite()
}
/// Returns `true` if any elements are `NaN`.
#[inline]
#[must_use]
pub fn is_nan(&self) -> bool {
self.x_axis.is_nan() || self.y_axis.is_nan() || self.z_axis.is_nan() || self.w_axis.is_nan()
}
/// Returns the transpose of `self`.
#[inline]
#[must_use]
pub fn transpose(&self) -> Self {
Self {
x_axis: Vec4::new(self.x_axis.x, self.y_axis.x, self.z_axis.x, self.w_axis.x),
y_axis: Vec4::new(self.x_axis.y, self.y_axis.y, self.z_axis.y, self.w_axis.y),
z_axis: Vec4::new(self.x_axis.z, self.y_axis.z, self.z_axis.z, self.w_axis.z),
w_axis: Vec4::new(self.x_axis.w, self.y_axis.w, self.z_axis.w, self.w_axis.w),
}
}
/// Returns the determinant of `self`.
#[must_use]
pub fn determinant(&self) -> f32 {
let (m00, m01, m02, m03) = self.x_axis.into();
let (m10, m11, m12, m13) = self.y_axis.into();
let (m20, m21, m22, m23) = self.z_axis.into();
let (m30, m31, m32, m33) = self.w_axis.into();
let a2323 = m22 * m33 - m23 * m32;
let a1323 = m21 * m33 - m23 * m31;
let a1223 = m21 * m32 - m22 * m31;
let a0323 = m20 * m33 - m23 * m30;
let a0223 = m20 * m32 - m22 * m30;
let a0123 = m20 * m31 - m21 * m30;
m00 * (m11 * a2323 - m12 * a1323 + m13 * a1223)
- m01 * (m10 * a2323 - m12 * a0323 + m13 * a0223)
+ m02 * (m10 * a1323 - m11 * a0323 + m13 * a0123)
- m03 * (m10 * a1223 - m11 * a0223 + m12 * a0123)
}
/// Returns the inverse of `self`.
///
/// If the matrix is not invertible the returned matrix will be invalid.
///
/// # Panics
///
/// Will panic if the determinant of `self` is zero when `glam_assert` is enabled.
#[must_use]
pub fn inverse(&self) -> Self {
unsafe {
// Based on https://github.com/g-truc/glm `glm_mat4_inverse`
let swizzle3377 = |a: float32x4_t, b: float32x4_t| -> float32x4_t {
let r = vuzp2q_f32(a, b);
vtrn2q_f32(r, r)
};
let swizzle2266 = |a: float32x4_t, b: float32x4_t| -> float32x4_t {
let r = vuzp1q_f32(a, b);
vtrn2q_f32(r, r)
};
let swizzle0046 = |a: float32x4_t, b: float32x4_t| -> float32x4_t {
let r = vuzp1q_f32(a, a);
vuzp1q_f32(r, b)
};
let swizzle1155 = |a: float32x4_t, b: float32x4_t| -> float32x4_t {
let r = vzip1q_f32(a, b);
vzip2q_f32(r, r)
};
let swizzle0044 = |a: float32x4_t, b: float32x4_t| -> float32x4_t {
let r = vuzp1q_f32(a, b);
vtrn1q_f32(r, r)
};
let swizzle0266 = |a: float32x4_t, b: float32x4_t| -> float32x4_t {
let r = vuzp1q_f32(a, b);
vsetq_lane_f32(vgetq_lane_f32(b, 2), r, 2)
};
let swizzle0246 = |a: float32x4_t, b: float32x4_t| -> float32x4_t { vuzp1q_f32(a, b) };
let fac0 = {
let swp0a = swizzle3377(self.w_axis.0, self.z_axis.0);
let swp0b = swizzle2266(self.w_axis.0, self.z_axis.0);
let swp00 = swizzle2266(self.z_axis.0, self.y_axis.0);
let swp01 = swizzle0046(swp0a, swp0a);
let swp02 = swizzle0046(swp0b, swp0b);
let swp03 = swizzle3377(self.z_axis.0, self.y_axis.0);
let mul00 = vmulq_f32(swp00, swp01);
let mul01 = vmulq_f32(swp02, swp03);
vsubq_f32(mul00, mul01)
};
let fac1 = {
let swp0a = swizzle3377(self.w_axis.0, self.z_axis.0);
let swp0b = swizzle1155(self.w_axis.0, self.z_axis.0);
let swp00 = swizzle1155(self.z_axis.0, self.y_axis.0);
let swp01 = swizzle0046(swp0a, swp0a);
let swp02 = swizzle0046(swp0b, swp0b);
let swp03 = swizzle3377(self.z_axis.0, self.y_axis.0);
let mul00 = vmulq_f32(swp00, swp01);
let mul01 = vmulq_f32(swp02, swp03);
vsubq_f32(mul00, mul01)
};
let fac2 = {
let swp0a = swizzle2266(self.w_axis.0, self.z_axis.0);
let swp0b = swizzle1155(self.w_axis.0, self.z_axis.0);
let swp00 = swizzle1155(self.z_axis.0, self.y_axis.0);
let swp01 = swizzle0046(swp0a, swp0a);
let swp02 = swizzle0046(swp0b, swp0b);
let swp03 = swizzle2266(self.z_axis.0, self.y_axis.0);
let mul00 = vmulq_f32(swp00, swp01);
let mul01 = vmulq_f32(swp02, swp03);
vsubq_f32(mul00, mul01)
};
let fac3 = {
let swp0a = swizzle3377(self.w_axis.0, self.z_axis.0);
let swp0b = swizzle0044(self.w_axis.0, self.z_axis.0);
let swp00 = swizzle0044(self.z_axis.0, self.y_axis.0);
let swp01 = swizzle0046(swp0a, swp0a);
let swp02 = swizzle0046(swp0b, swp0b);
let swp03 = swizzle3377(self.z_axis.0, self.y_axis.0);
let mul00 = vmulq_f32(swp00, swp01);
let mul01 = vmulq_f32(swp02, swp03);
vsubq_f32(mul00, mul01)
};
let fac4 = {
let swp0a = swizzle2266(self.w_axis.0, self.z_axis.0);
let swp0b = swizzle0044(self.w_axis.0, self.z_axis.0);
let swp00 = swizzle0044(self.z_axis.0, self.y_axis.0);
let swp01 = swizzle0046(swp0a, swp0a);
let swp02 = swizzle0046(swp0b, swp0b);
let swp03 = swizzle2266(self.z_axis.0, self.y_axis.0);
let mul00 = vmulq_f32(swp00, swp01);
let mul01 = vmulq_f32(swp02, swp03);
vsubq_f32(mul00, mul01)
};
let fac5 = {
let swp0a = swizzle1155(self.w_axis.0, self.z_axis.0);
let swp0b = swizzle0044(self.w_axis.0, self.z_axis.0);
let swp00 = swizzle0044(self.z_axis.0, self.y_axis.0);
let swp01 = swizzle0046(swp0a, swp0a);
let swp02 = swizzle0046(swp0b, swp0b);
let swp03 = swizzle1155(self.z_axis.0, self.y_axis.0);
let mul00 = vmulq_f32(swp00, swp01);
let mul01 = vmulq_f32(swp02, swp03);
vsubq_f32(mul00, mul01)
};
const SIGN_A: float32x4_t = Vec4::new(-1.0, 1.0, -1.0, 1.0).0;
const SIGN_B: float32x4_t = Vec4::new(1.0, -1.0, 1.0, -1.0).0;
let temp0 = swizzle0044(self.y_axis.0, self.x_axis.0);
let vec0 = swizzle0266(temp0, temp0);
let temp1 = swizzle1155(self.y_axis.0, self.x_axis.0);
let vec1 = swizzle0266(temp1, temp1);
let temp2 = swizzle2266(self.y_axis.0, self.x_axis.0);
let vec2 = swizzle0266(temp2, temp2);
let temp3 = swizzle3377(self.y_axis.0, self.x_axis.0);
let vec3 = swizzle0266(temp3, temp3);
let mul00 = vmulq_f32(vec1, fac0);
let mul01 = vmulq_f32(vec2, fac1);
let mul02 = vmulq_f32(vec3, fac2);
let sub00 = vsubq_f32(mul00, mul01);
let add00 = vaddq_f32(sub00, mul02);
let inv0 = vmulq_f32(SIGN_B, add00);
let mul03 = vmulq_f32(vec0, fac0);
let mul04 = vmulq_f32(vec2, fac3);
let mul05 = vmulq_f32(vec3, fac4);
let sub01 = vsubq_f32(mul03, mul04);
let add01 = vaddq_f32(sub01, mul05);
let inv1 = vmulq_f32(SIGN_A, add01);
let mul06 = vmulq_f32(vec0, fac1);
let mul07 = vmulq_f32(vec1, fac3);
let mul08 = vmulq_f32(vec3, fac5);
let sub02 = vsubq_f32(mul06, mul07);
let add02 = vaddq_f32(sub02, mul08);
let inv2 = vmulq_f32(SIGN_B, add02);
let mul09 = vmulq_f32(vec0, fac2);
let mul10 = vmulq_f32(vec1, fac4);
let mul11 = vmulq_f32(vec2, fac5);
let sub03 = vsubq_f32(mul09, mul10);
let add03 = vaddq_f32(sub03, mul11);
let inv3 = vmulq_f32(SIGN_A, add03);
let row0 = swizzle0044(inv0, inv1);
let row1 = swizzle0044(inv2, inv3);
let row2 = swizzle0246(row0, row1);
let dot0 = dot4(self.x_axis.0, row2);
glam_assert!(dot0 != 0.0);
let rcp0 = dot0.recip();
Self {
x_axis: Vec4(vmulq_n_f32(inv0, rcp0)),
y_axis: Vec4(vmulq_n_f32(inv1, rcp0)),
z_axis: Vec4(vmulq_n_f32(inv2, rcp0)),
w_axis: Vec4(vmulq_n_f32(inv3, rcp0)),
}
}
}
/// Creates a left-handed view matrix using a camera position, an up direction, and a facing
/// direction.
///
/// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=forward`.
#[inline]
#[must_use]
pub fn look_to_lh(eye: Vec3, dir: Vec3, up: Vec3) -> Self {
Self::look_to_rh(eye, -dir, up)
}
/// Creates a right-handed view matrix using a camera position, an up direction, and a facing
/// direction.
///
/// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=back`.
#[inline]
#[must_use]
pub fn look_to_rh(eye: Vec3, dir: Vec3, up: Vec3) -> Self {
let f = dir.normalize();
let s = f.cross(up).normalize();
let u = s.cross(f);
Self::from_cols(
Vec4::new(s.x, u.x, -f.x, 0.0),
Vec4::new(s.y, u.y, -f.y, 0.0),
Vec4::new(s.z, u.z, -f.z, 0.0),
Vec4::new(-eye.dot(s), -eye.dot(u), eye.dot(f), 1.0),
)
}
/// Creates a left-handed view matrix using a camera position, an up direction, and a focal
/// point.
/// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=forward`.
///
/// # Panics
///
/// Will panic if `up` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn look_at_lh(eye: Vec3, center: Vec3, up: Vec3) -> Self {
glam_assert!(up.is_normalized());
Self::look_to_lh(eye, center.sub(eye), up)
}
/// Creates a right-handed view matrix using a camera position, an up direction, and a focal
/// point.
/// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=back`.
///
/// # Panics
///
/// Will panic if `up` is not normalized when `glam_assert` is enabled.
#[inline]
pub fn look_at_rh(eye: Vec3, center: Vec3, up: Vec3) -> Self {
glam_assert!(up.is_normalized());
Self::look_to_rh(eye, center.sub(eye), up)
}
/// Creates a right-handed perspective projection matrix with [-1,1] depth range.
/// This is the same as the OpenGL `gluPerspective` function.
/// See <https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml>
#[inline]
#[must_use]
pub fn perspective_rh_gl(
fov_y_radians: f32,
aspect_ratio: f32,
z_near: f32,
z_far: f32,
) -> Self {
let inv_length = 1.0 / (z_near - z_far);
let f = 1.0 / math::tan(0.5 * fov_y_radians);
let a = f / aspect_ratio;
let b = (z_near + z_far) * inv_length;
let c = (2.0 * z_near * z_far) * inv_length;
Self::from_cols(
Vec4::new(a, 0.0, 0.0, 0.0),
Vec4::new(0.0, f, 0.0, 0.0),
Vec4::new(0.0, 0.0, b, -1.0),
Vec4::new(0.0, 0.0, c, 0.0),
)
}
/// Creates a left-handed perspective projection matrix with `[0,1]` depth range.
///
/// # Panics
///
/// Will panic if `z_near` or `z_far` are less than or equal to zero when `glam_assert` is
/// enabled.
#[inline]
#[must_use]
pub fn perspective_lh(fov_y_radians: f32, aspect_ratio: f32, z_near: f32, z_far: f32) -> Self {
glam_assert!(z_near > 0.0 && z_far > 0.0);
let (sin_fov, cos_fov) = math::sin_cos(0.5 * fov_y_radians);
let h = cos_fov / sin_fov;
let w = h / aspect_ratio;
let r = z_far / (z_far - z_near);
Self::from_cols(
Vec4::new(w, 0.0, 0.0, 0.0),
Vec4::new(0.0, h, 0.0, 0.0),
Vec4::new(0.0, 0.0, r, 1.0),
Vec4::new(0.0, 0.0, -r * z_near, 0.0),
)
}
/// Creates a right-handed perspective projection matrix with `[0,1]` depth range.
///
/// # Panics
///
/// Will panic if `z_near` or `z_far` are less than or equal to zero when `glam_assert` is
/// enabled.
#[inline]
#[must_use]
pub fn perspective_rh(fov_y_radians: f32, aspect_ratio: f32, z_near: f32, z_far: f32) -> Self {
glam_assert!(z_near > 0.0 && z_far > 0.0);
let (sin_fov, cos_fov) = math::sin_cos(0.5 * fov_y_radians);
let h = cos_fov / sin_fov;
let w = h / aspect_ratio;
let r = z_far / (z_near - z_far);
Self::from_cols(
Vec4::new(w, 0.0, 0.0, 0.0),
Vec4::new(0.0, h, 0.0, 0.0),
Vec4::new(0.0, 0.0, r, -1.0),
Vec4::new(0.0, 0.0, r * z_near, 0.0),
)
}
/// Creates an infinite left-handed perspective projection matrix with `[0,1]` depth range.
///
/// # Panics
///
/// Will panic if `z_near` is less than or equal to zero when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn perspective_infinite_lh(fov_y_radians: f32, aspect_ratio: f32, z_near: f32) -> Self {
glam_assert!(z_near > 0.0);
let (sin_fov, cos_fov) = math::sin_cos(0.5 * fov_y_radians);
let h = cos_fov / sin_fov;
let w = h / aspect_ratio;
Self::from_cols(
Vec4::new(w, 0.0, 0.0, 0.0),
Vec4::new(0.0, h, 0.0, 0.0),
Vec4::new(0.0, 0.0, 1.0, 1.0),
Vec4::new(0.0, 0.0, -z_near, 0.0),
)
}
/// Creates an infinite left-handed perspective projection matrix with `[0,1]` depth range.
///
/// # Panics
///
/// Will panic if `z_near` is less than or equal to zero when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn perspective_infinite_reverse_lh(
fov_y_radians: f32,
aspect_ratio: f32,
z_near: f32,
) -> Self {
glam_assert!(z_near > 0.0);
let (sin_fov, cos_fov) = math::sin_cos(0.5 * fov_y_radians);
let h = cos_fov / sin_fov;
let w = h / aspect_ratio;
Self::from_cols(
Vec4::new(w, 0.0, 0.0, 0.0),
Vec4::new(0.0, h, 0.0, 0.0),
Vec4::new(0.0, 0.0, 0.0, 1.0),
Vec4::new(0.0, 0.0, z_near, 0.0),
)
}
/// Creates an infinite right-handed perspective projection matrix with
/// `[0,1]` depth range.
#[inline]
#[must_use]
pub fn perspective_infinite_rh(fov_y_radians: f32, aspect_ratio: f32, z_near: f32) -> Self {
glam_assert!(z_near > 0.0);
let f = 1.0 / math::tan(0.5 * fov_y_radians);
Self::from_cols(
Vec4::new(f / aspect_ratio, 0.0, 0.0, 0.0),
Vec4::new(0.0, f, 0.0, 0.0),
Vec4::new(0.0, 0.0, -1.0, -1.0),
Vec4::new(0.0, 0.0, -z_near, 0.0),
)
}
/// Creates an infinite reverse right-handed perspective projection matrix
/// with `[0,1]` depth range.
#[inline]
#[must_use]
pub fn perspective_infinite_reverse_rh(
fov_y_radians: f32,
aspect_ratio: f32,
z_near: f32,
) -> Self {
glam_assert!(z_near > 0.0);
let f = 1.0 / math::tan(0.5 * fov_y_radians);
Self::from_cols(
Vec4::new(f / aspect_ratio, 0.0, 0.0, 0.0),
Vec4::new(0.0, f, 0.0, 0.0),
Vec4::new(0.0, 0.0, 0.0, -1.0),
Vec4::new(0.0, 0.0, z_near, 0.0),
)
}
/// Creates a right-handed orthographic projection matrix with `[-1,1]` depth
/// range. This is the same as the OpenGL `glOrtho` function in OpenGL.
/// See
/// <https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glOrtho.xml>
#[inline]
#[must_use]
pub fn orthographic_rh_gl(
left: f32,
right: f32,
bottom: f32,
top: f32,
near: f32,
far: f32,
) -> Self {
let a = 2.0 / (right - left);
let b = 2.0 / (top - bottom);
let c = -2.0 / (far - near);
let tx = -(right + left) / (right - left);
let ty = -(top + bottom) / (top - bottom);
let tz = -(far + near) / (far - near);
Self::from_cols(
Vec4::new(a, 0.0, 0.0, 0.0),
Vec4::new(0.0, b, 0.0, 0.0),
Vec4::new(0.0, 0.0, c, 0.0),
Vec4::new(tx, ty, tz, 1.0),
)
}
/// Creates a left-handed orthographic projection matrix with `[0,1]` depth range.
#[inline]
#[must_use]
pub fn orthographic_lh(
left: f32,
right: f32,
bottom: f32,
top: f32,
near: f32,
far: f32,
) -> Self {
let rcp_width = 1.0 / (right - left);
let rcp_height = 1.0 / (top - bottom);
let r = 1.0 / (far - near);
Self::from_cols(
Vec4::new(rcp_width + rcp_width, 0.0, 0.0, 0.0),
Vec4::new(0.0, rcp_height + rcp_height, 0.0, 0.0),
Vec4::new(0.0, 0.0, r, 0.0),
Vec4::new(
-(left + right) * rcp_width,
-(top + bottom) * rcp_height,
-r * near,
1.0,
),
)
}
/// Creates a right-handed orthographic projection matrix with `[0,1]` depth range.
#[inline]
#[must_use]
pub fn orthographic_rh(
left: f32,
right: f32,
bottom: f32,
top: f32,
near: f32,
far: f32,
) -> Self {
let rcp_width = 1.0 / (right - left);
let rcp_height = 1.0 / (top - bottom);
let r = 1.0 / (near - far);
Self::from_cols(
Vec4::new(rcp_width + rcp_width, 0.0, 0.0, 0.0),
Vec4::new(0.0, rcp_height + rcp_height, 0.0, 0.0),
Vec4::new(0.0, 0.0, r, 0.0),
Vec4::new(
-(left + right) * rcp_width,
-(top + bottom) * rcp_height,
r * near,
1.0,
),
)
}
/// Transforms the given 3D vector as a point, applying perspective correction.
///
/// This is the equivalent of multiplying the 3D vector as a 4D vector where `w` is `1.0`.
/// The perspective divide is performed meaning the resulting 3D vector is divided by `w`.
///
/// This method assumes that `self` contains a projective transform.
#[inline]
#[must_use]
pub fn project_point3(&self, rhs: Vec3) -> Vec3 {
let mut res = self.x_axis.mul(rhs.x);
res = self.y_axis.mul(rhs.y).add(res);
res = self.z_axis.mul(rhs.z).add(res);
res = self.w_axis.add(res);
res = res.mul(res.wwww().recip());
res.xyz()
}
/// Transforms the given 3D vector as a point.
///
/// This is the equivalent of multiplying the 3D vector as a 4D vector where `w` is
/// `1.0`.
///
/// This method assumes that `self` contains a valid affine transform. It does not perform
/// a perspective divide, if `self` contains a perspective transform, or if you are unsure,
/// the [`Self::project_point3()`] method should be used instead.
///
/// # Panics
///
/// Will panic if the 3rd row of `self` is not `(0, 0, 0, 1)` when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn transform_point3(&self, rhs: Vec3) -> Vec3 {
glam_assert!(self.row(3).abs_diff_eq(Vec4::W, 1e-6));
let mut res = self.x_axis.mul(rhs.x);
res = self.y_axis.mul(rhs.y).add(res);
res = self.z_axis.mul(rhs.z).add(res);
res = self.w_axis.add(res);
res.xyz()
}
/// Transforms the give 3D vector as a direction.
///
/// This is the equivalent of multiplying the 3D vector as a 4D vector where `w` is
/// `0.0`.
///
/// This method assumes that `self` contains a valid affine transform.
///
/// # Panics
///
/// Will panic if the 3rd row of `self` is not `(0, 0, 0, 1)` when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn transform_vector3(&self, rhs: Vec3) -> Vec3 {
glam_assert!(self.row(3).abs_diff_eq(Vec4::W, 1e-6));
let mut res = self.x_axis.mul(rhs.x);
res = self.y_axis.mul(rhs.y).add(res);
res = self.z_axis.mul(rhs.z).add(res);
res.xyz()
}
/// Transforms the given [`Vec3A`] as 3D point.
///
/// This is the equivalent of multiplying the [`Vec3A`] as a 4D vector where `w` is `1.0`.
#[inline]
#[must_use]
pub fn transform_point3a(&self, rhs: Vec3A) -> Vec3A {
glam_assert!(self.row(3).abs_diff_eq(Vec4::W, 1e-6));
let mut res = self.x_axis.mul(rhs.xxxx());
res = self.y_axis.mul(rhs.yyyy()).add(res);
res = self.z_axis.mul(rhs.zzzz()).add(res);
res = self.w_axis.add(res);
Vec3A::from_vec4(res)
}
/// Transforms the give [`Vec3A`] as 3D vector.
///
/// This is the equivalent of multiplying the [`Vec3A`] as a 4D vector where `w` is `0.0`.
#[inline]
#[must_use]
pub fn transform_vector3a(&self, rhs: Vec3A) -> Vec3A {
glam_assert!(self.row(3).abs_diff_eq(Vec4::W, 1e-6));
let mut res = self.x_axis.mul(rhs.xxxx());
res = self.y_axis.mul(rhs.yyyy()).add(res);
res = self.z_axis.mul(rhs.zzzz()).add(res);
Vec3A::from_vec4(res)
}
/// Transforms a 4D vector.
#[inline]
#[must_use]
pub fn mul_vec4(&self, rhs: Vec4) -> Vec4 {
let mut res = self.x_axis.mul(rhs.xxxx());
res = res.add(self.y_axis.mul(rhs.yyyy()));
res = res.add(self.z_axis.mul(rhs.zzzz()));
res = res.add(self.w_axis.mul(rhs.wwww()));
res
}
/// Multiplies two 4x4 matrices.
#[inline]
#[must_use]
pub fn mul_mat4(&self, rhs: &Self) -> Self {
Self::from_cols(
self.mul(rhs.x_axis),
self.mul(rhs.y_axis),
self.mul(rhs.z_axis),
self.mul(rhs.w_axis),
)
}
/// Adds two 4x4 matrices.
#[inline]
#[must_use]
pub fn add_mat4(&self, rhs: &Self) -> Self {
Self::from_cols(
self.x_axis.add(rhs.x_axis),
self.y_axis.add(rhs.y_axis),
self.z_axis.add(rhs.z_axis),
self.w_axis.add(rhs.w_axis),
)
}
/// Subtracts two 4x4 matrices.
#[inline]
#[must_use]
pub fn sub_mat4(&self, rhs: &Self) -> Self {
Self::from_cols(
self.x_axis.sub(rhs.x_axis),
self.y_axis.sub(rhs.y_axis),
self.z_axis.sub(rhs.z_axis),
self.w_axis.sub(rhs.w_axis),
)
}
/// Multiplies a 4x4 matrix by a scalar.
#[inline]
#[must_use]
pub fn mul_scalar(&self, rhs: f32) -> Self {
Self::from_cols(
self.x_axis.mul(rhs),
self.y_axis.mul(rhs),
self.z_axis.mul(rhs),
self.w_axis.mul(rhs),
)
}
/// Divides a 4x4 matrix by a scalar.
#[inline]
#[must_use]
pub fn div_scalar(&self, rhs: f32) -> Self {
let rhs = Vec4::splat(rhs);
Self::from_cols(
self.x_axis.div(rhs),
self.y_axis.div(rhs),
self.z_axis.div(rhs),
self.w_axis.div(rhs),
)
}
/// Returns true if the absolute difference of all elements between `self` and `rhs`
/// is less than or equal to `max_abs_diff`.
///
/// This can be used to compare if two matrices contain similar elements. It works best
/// when comparing with a known value. The `max_abs_diff` that should be used used
/// depends on the values being compared against.
///
/// For more see
/// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
#[inline]
#[must_use]
pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f32) -> bool {
self.x_axis.abs_diff_eq(rhs.x_axis, max_abs_diff)
&& self.y_axis.abs_diff_eq(rhs.y_axis, max_abs_diff)
&& self.z_axis.abs_diff_eq(rhs.z_axis, max_abs_diff)
&& self.w_axis.abs_diff_eq(rhs.w_axis, max_abs_diff)
}
/// Takes the absolute value of each element in `self`
#[inline]
#[must_use]
pub fn abs(&self) -> Self {
Self::from_cols(
self.x_axis.abs(),
self.y_axis.abs(),
self.z_axis.abs(),
self.w_axis.abs(),
)
}
#[inline]
pub fn as_dmat4(&self) -> DMat4 {
DMat4::from_cols(
self.x_axis.as_dvec4(),
self.y_axis.as_dvec4(),
self.z_axis.as_dvec4(),
self.w_axis.as_dvec4(),
)
}
}
impl Default for Mat4 {
#[inline]
fn default() -> Self {
Self::IDENTITY
}
}
impl Add<Mat4> for Mat4 {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self::Output {
self.add_mat4(&rhs)
}
}
impl AddAssign<Mat4> for Mat4 {
#[inline]
fn add_assign(&mut self, rhs: Self) {
*self = self.add_mat4(&rhs);
}
}
impl Sub<Mat4> for Mat4 {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self::Output {
self.sub_mat4(&rhs)
}
}
impl SubAssign<Mat4> for Mat4 {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
*self = self.sub_mat4(&rhs);
}
}
impl Neg for Mat4 {
type Output = Self;
#[inline]
fn neg(self) -> Self::Output {
Self::from_cols(
self.x_axis.neg(),
self.y_axis.neg(),
self.z_axis.neg(),
self.w_axis.neg(),
)
}
}
impl Mul<Mat4> for Mat4 {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self::Output {
self.mul_mat4(&rhs)
}
}
impl MulAssign<Mat4> for Mat4 {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
*self = self.mul_mat4(&rhs);
}
}
impl Mul<Vec4> for Mat4 {
type Output = Vec4;
#[inline]
fn mul(self, rhs: Vec4) -> Self::Output {
self.mul_vec4(rhs)
}
}
impl Mul<Mat4> for f32 {
type Output = Mat4;
#[inline]
fn mul(self, rhs: Mat4) -> Self::Output {
rhs.mul_scalar(self)
}
}
impl Mul<f32> for Mat4 {
type Output = Self;
#[inline]
fn mul(self, rhs: f32) -> Self::Output {
self.mul_scalar(rhs)
}
}
impl MulAssign<f32> for Mat4 {
#[inline]
fn mul_assign(&mut self, rhs: f32) {
*self = self.mul_scalar(rhs);
}
}
impl Div<Mat4> for f32 {
type Output = Mat4;
#[inline]
fn div(self, rhs: Mat4) -> Self::Output {
rhs.div_scalar(self)
}
}
impl Div<f32> for Mat4 {
type Output = Self;
#[inline]
fn div(self, rhs: f32) -> Self::Output {
self.div_scalar(rhs)
}
}
impl DivAssign<f32> for Mat4 {
#[inline]
fn div_assign(&mut self, rhs: f32) {
*self = self.div_scalar(rhs);
}
}
impl Sum<Self> for Mat4 {
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ZERO, Self::add)
}
}
impl<'a> Sum<&'a Self> for Mat4 {
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
}
}
impl Product for Mat4 {
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::IDENTITY, Self::mul)
}
}
impl<'a> Product<&'a Self> for Mat4 {
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b))
}
}
impl PartialEq for Mat4 {
#[inline]
fn eq(&self, rhs: &Self) -> bool {
self.x_axis.eq(&rhs.x_axis)
&& self.y_axis.eq(&rhs.y_axis)
&& self.z_axis.eq(&rhs.z_axis)
&& self.w_axis.eq(&rhs.w_axis)
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsRef<[f32; 16]> for Mat4 {
#[inline]
fn as_ref(&self) -> &[f32; 16] {
unsafe { &*(self as *const Self as *const [f32; 16]) }
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsMut<[f32; 16]> for Mat4 {
#[inline]
fn as_mut(&mut self) -> &mut [f32; 16] {
unsafe { &mut *(self as *mut Self as *mut [f32; 16]) }
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Debug for Mat4 {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct(stringify!(Mat4))
.field("x_axis", &self.x_axis)
.field("y_axis", &self.y_axis)
.field("z_axis", &self.z_axis)
.field("w_axis", &self.w_axis)
.finish()
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Display for Mat4 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(p) = f.precision() {
write!(
f,
"[{:.*}, {:.*}, {:.*}, {:.*}]",
p, self.x_axis, p, self.y_axis, p, self.z_axis, p, self.w_axis
)
} else {
write!(
f,
"[{}, {}, {}, {}]",
self.x_axis, self.y_axis, self.z_axis, self.w_axis
)
}
}
}