glam/f32/
vec3.rs

1// Generated from vec.rs.tera template. Edit the template, not the generated file.
2
3use crate::{f32::math, BVec3, BVec3A, FloatExt, Quat, Vec2, Vec3A, Vec4};
4
5use core::fmt;
6use core::iter::{Product, Sum};
7use core::{f32, ops::*};
8
9#[cfg(feature = "zerocopy")]
10use zerocopy_derive::*;
11
12/// Creates a 3-dimensional vector.
13#[inline(always)]
14#[must_use]
15pub const fn vec3(x: f32, y: f32, z: f32) -> Vec3 {
16    Vec3::new(x, y, z)
17}
18
19/// A 3-dimensional vector.
20#[derive(Clone, Copy, PartialEq)]
21#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
22#[cfg_attr(
23    feature = "zerocopy",
24    derive(FromBytes, Immutable, IntoBytes, KnownLayout)
25)]
26#[repr(C)]
27#[cfg_attr(target_arch = "spirv", rust_gpu::vector::v1)]
28pub struct Vec3 {
29    pub x: f32,
30    pub y: f32,
31    pub z: f32,
32}
33
34impl Vec3 {
35    /// All zeroes.
36    pub const ZERO: Self = Self::splat(0.0);
37
38    /// All ones.
39    pub const ONE: Self = Self::splat(1.0);
40
41    /// All negative ones.
42    pub const NEG_ONE: Self = Self::splat(-1.0);
43
44    /// All `f32::MIN`.
45    pub const MIN: Self = Self::splat(f32::MIN);
46
47    /// All `f32::MAX`.
48    pub const MAX: Self = Self::splat(f32::MAX);
49
50    /// All `f32::NAN`.
51    pub const NAN: Self = Self::splat(f32::NAN);
52
53    /// All `f32::INFINITY`.
54    pub const INFINITY: Self = Self::splat(f32::INFINITY);
55
56    /// All `f32::NEG_INFINITY`.
57    pub const NEG_INFINITY: Self = Self::splat(f32::NEG_INFINITY);
58
59    /// A unit vector pointing along the positive X axis.
60    pub const X: Self = Self::new(1.0, 0.0, 0.0);
61
62    /// A unit vector pointing along the positive Y axis.
63    pub const Y: Self = Self::new(0.0, 1.0, 0.0);
64
65    /// A unit vector pointing along the positive Z axis.
66    pub const Z: Self = Self::new(0.0, 0.0, 1.0);
67
68    /// A unit vector pointing along the negative X axis.
69    pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0);
70
71    /// A unit vector pointing along the negative Y axis.
72    pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0);
73
74    /// A unit vector pointing along the negative Z axis.
75    pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0);
76
77    /// The unit axes.
78    pub const AXES: [Self; 3] = [Self::X, Self::Y, Self::Z];
79
80    /// Vec3 uses Rust Portable SIMD
81    pub const USES_CORE_SIMD: bool = false;
82    /// Vec3 uses Arm NEON
83    pub const USES_NEON: bool = false;
84    /// Vec3 uses scalar math
85    pub const USES_SCALAR_MATH: bool = true;
86    /// Vec3 uses Intel SSE2
87    pub const USES_SSE2: bool = false;
88    /// Vec3 uses WebAssembly 128-bit SIMD
89    pub const USES_WASM32_SIMD: bool = false;
90
91    /// Creates a new vector.
92    #[inline(always)]
93    #[must_use]
94    pub const fn new(x: f32, y: f32, z: f32) -> Self {
95        Self { x, y, z }
96    }
97
98    /// Creates a vector with all elements set to `v`.
99    #[inline]
100    #[must_use]
101    pub const fn splat(v: f32) -> Self {
102        Self { x: v, y: v, z: v }
103    }
104
105    /// Returns a vector containing each element of `self` modified by a mapping function `f`.
106    #[inline]
107    #[must_use]
108    pub fn map<F>(self, f: F) -> Self
109    where
110        F: Fn(f32) -> f32,
111    {
112        Self::new(f(self.x), f(self.y), f(self.z))
113    }
114
115    /// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use
116    /// for each element of `self`.
117    ///
118    /// A true element in the mask uses the corresponding element from `if_true`, and false
119    /// uses the element from `if_false`.
120    #[inline]
121    #[must_use]
122    pub fn select(mask: BVec3, if_true: Self, if_false: Self) -> Self {
123        Self {
124            x: if mask.test(0) { if_true.x } else { if_false.x },
125            y: if mask.test(1) { if_true.y } else { if_false.y },
126            z: if mask.test(2) { if_true.z } else { if_false.z },
127        }
128    }
129
130    /// Creates a new vector from an array.
131    #[inline]
132    #[must_use]
133    pub const fn from_array(a: [f32; 3]) -> Self {
134        Self::new(a[0], a[1], a[2])
135    }
136
137    /// Converts `self` to `[x, y, z]`
138    #[inline]
139    #[must_use]
140    pub const fn to_array(&self) -> [f32; 3] {
141        [self.x, self.y, self.z]
142    }
143
144    /// Creates a vector from the first 3 values in `slice`.
145    ///
146    /// # Panics
147    ///
148    /// Panics if `slice` is less than 3 elements long.
149    #[inline]
150    #[must_use]
151    pub const fn from_slice(slice: &[f32]) -> Self {
152        assert!(slice.len() >= 3);
153        Self::new(slice[0], slice[1], slice[2])
154    }
155
156    /// Writes the elements of `self` to the first 3 elements in `slice`.
157    ///
158    /// # Panics
159    ///
160    /// Panics if `slice` is less than 3 elements long.
161    #[inline]
162    pub fn write_to_slice(self, slice: &mut [f32]) {
163        slice[..3].copy_from_slice(&self.to_array());
164    }
165
166    /// Internal method for creating a 3D vector from a 4D vector, discarding `w`.
167    #[allow(dead_code)]
168    #[inline]
169    #[must_use]
170    pub(crate) fn from_vec4(v: Vec4) -> Self {
171        Self {
172            x: v.x,
173            y: v.y,
174            z: v.z,
175        }
176    }
177
178    /// Creates a 4D vector from `self` and the given `w` value.
179    #[inline]
180    #[must_use]
181    pub fn extend(self, w: f32) -> Vec4 {
182        Vec4::new(self.x, self.y, self.z, w)
183    }
184
185    /// Creates a 2D vector from the `x` and `y` elements of `self`, discarding `z`.
186    ///
187    /// Truncation may also be performed by using [`self.xy()`][crate::swizzles::Vec3Swizzles::xy()].
188    #[inline]
189    #[must_use]
190    pub fn truncate(self) -> Vec2 {
191        use crate::swizzles::Vec3Swizzles;
192        self.xy()
193    }
194
195    /// Projects a homogeneous coordinate to 3D space by performing perspective divide.
196    ///
197    /// # Panics
198    ///
199    /// Will panic if `v.w` is `0` when `glam_assert` is enabled.
200    #[inline]
201    #[must_use]
202    pub fn from_homogeneous(v: Vec4) -> Self {
203        glam_assert!(v.w != 0.0);
204        Self::from_vec4(v) / v.w
205    }
206
207    /// Creates a homogeneous coordinate from `self`, equivalent to `self.extend(1.0)`.
208    #[inline]
209    #[must_use]
210    pub fn to_homogeneous(self) -> Vec4 {
211        self.extend(1.0)
212    }
213
214    // Converts `self` to a `Vec3A`.
215    #[inline]
216    #[must_use]
217    pub fn to_vec3a(self) -> Vec3A {
218        Vec3A::from(self)
219    }
220
221    /// Creates a 3D vector from `self` with the given value of `x`.
222    #[inline]
223    #[must_use]
224    pub fn with_x(mut self, x: f32) -> Self {
225        self.x = x;
226        self
227    }
228
229    /// Creates a 3D vector from `self` with the given value of `y`.
230    #[inline]
231    #[must_use]
232    pub fn with_y(mut self, y: f32) -> Self {
233        self.y = y;
234        self
235    }
236
237    /// Creates a 3D vector from `self` with the given value of `z`.
238    #[inline]
239    #[must_use]
240    pub fn with_z(mut self, z: f32) -> Self {
241        self.z = z;
242        self
243    }
244
245    /// Computes the dot product of `self` and `rhs`.
246    #[inline]
247    #[must_use]
248    pub fn dot(self, rhs: Self) -> f32 {
249        (self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z)
250    }
251
252    /// Returns a vector where every component is the dot product of `self` and `rhs`.
253    #[inline]
254    #[must_use]
255    pub fn dot_into_vec(self, rhs: Self) -> Self {
256        Self::splat(self.dot(rhs))
257    }
258
259    /// Computes the cross product of `self` and `rhs`.
260    #[inline]
261    #[must_use]
262    pub fn cross(self, rhs: Self) -> Self {
263        Self {
264            x: self.y * rhs.z - rhs.y * self.z,
265            y: self.z * rhs.x - rhs.z * self.x,
266            z: self.x * rhs.y - rhs.x * self.y,
267        }
268    }
269
270    /// Returns a vector containing the minimum values for each element of `self` and `rhs`.
271    ///
272    /// In other words this computes `[min(x, rhs.x), min(self.y, rhs.y), ..]`.
273    ///
274    /// NaN propogation does not follow IEEE 754-2008 semantics for minNum and may differ on
275    /// different SIMD architectures.
276    #[inline]
277    #[must_use]
278    pub fn min(self, rhs: Self) -> Self {
279        Self {
280            x: if self.x < rhs.x { self.x } else { rhs.x },
281            y: if self.y < rhs.y { self.y } else { rhs.y },
282            z: if self.z < rhs.z { self.z } else { rhs.z },
283        }
284    }
285
286    /// Returns a vector containing the maximum values for each element of `self` and `rhs`.
287    ///
288    /// In other words this computes `[max(self.x, rhs.x), max(self.y, rhs.y), ..]`.
289    ///
290    /// NaN propogation does not follow IEEE 754-2008 semantics for maxNum and may differ on
291    /// different SIMD architectures.
292    #[inline]
293    #[must_use]
294    pub fn max(self, rhs: Self) -> Self {
295        Self {
296            x: if self.x > rhs.x { self.x } else { rhs.x },
297            y: if self.y > rhs.y { self.y } else { rhs.y },
298            z: if self.z > rhs.z { self.z } else { rhs.z },
299        }
300    }
301
302    /// Component-wise clamping of values, similar to [`f32::clamp`].
303    ///
304    /// Each element in `min` must be less-or-equal to the corresponding element in `max`.
305    ///
306    /// NaN propogation does not follow IEEE 754-2008 semantics and may differ on
307    /// different SIMD architectures.
308    ///
309    /// # Panics
310    ///
311    /// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
312    #[inline]
313    #[must_use]
314    pub fn clamp(self, min: Self, max: Self) -> Self {
315        glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
316        self.max(min).min(max)
317    }
318
319    /// Returns the horizontal minimum of `self`.
320    ///
321    /// In other words this computes `min(x, y, ..)`.
322    ///
323    /// NaN propogation does not follow IEEE 754-2008 semantics and may differ on
324    /// different SIMD architectures.
325    #[inline]
326    #[must_use]
327    pub fn min_element(self) -> f32 {
328        let min = |a, b| if a < b { a } else { b };
329        min(self.x, min(self.y, self.z))
330    }
331
332    /// Returns the horizontal maximum of `self`.
333    ///
334    /// In other words this computes `max(x, y, ..)`.
335    ///
336    /// NaN propogation does not follow IEEE 754-2008 semantics and may differ on
337    /// different SIMD architectures.
338    #[inline]
339    #[must_use]
340    pub fn max_element(self) -> f32 {
341        let max = |a, b| if a > b { a } else { b };
342        max(self.x, max(self.y, self.z))
343    }
344
345    /// Returns the index of the first minimum element of `self`.
346    #[doc(alias = "argmin")]
347    #[inline]
348    #[must_use]
349    pub fn min_position(self) -> usize {
350        let mut min = self.x;
351        let mut index = 0;
352        if self.y < min {
353            min = self.y;
354            index = 1;
355        }
356        if self.z < min {
357            index = 2;
358        }
359        index
360    }
361
362    /// Returns the index of the first maximum element of `self`.
363    #[doc(alias = "argmax")]
364    #[inline]
365    #[must_use]
366    pub fn max_position(self) -> usize {
367        let mut max = self.x;
368        let mut index = 0;
369        if self.y > max {
370            max = self.y;
371            index = 1;
372        }
373        if self.z > max {
374            index = 2;
375        }
376        index
377    }
378
379    /// Returns the sum of all elements of `self`.
380    ///
381    /// In other words, this computes `self.x + self.y + ..`.
382    #[inline]
383    #[must_use]
384    pub fn element_sum(self) -> f32 {
385        self.x + self.y + self.z
386    }
387
388    /// Returns the product of all elements of `self`.
389    ///
390    /// In other words, this computes `self.x * self.y * ..`.
391    #[inline]
392    #[must_use]
393    pub fn element_product(self) -> f32 {
394        self.x * self.y * self.z
395    }
396
397    /// Returns a vector mask containing the result of a `==` comparison for each element of
398    /// `self` and `rhs`.
399    ///
400    /// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
401    /// elements.
402    #[inline]
403    #[must_use]
404    pub fn cmpeq(self, rhs: Self) -> BVec3 {
405        BVec3::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y), self.z.eq(&rhs.z))
406    }
407
408    /// Returns a vector mask containing the result of a `!=` comparison for each element of
409    /// `self` and `rhs`.
410    ///
411    /// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
412    /// elements.
413    #[inline]
414    #[must_use]
415    pub fn cmpne(self, rhs: Self) -> BVec3 {
416        BVec3::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y), self.z.ne(&rhs.z))
417    }
418
419    /// Returns a vector mask containing the result of a `>=` comparison for each element of
420    /// `self` and `rhs`.
421    ///
422    /// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
423    /// elements.
424    #[inline]
425    #[must_use]
426    pub fn cmpge(self, rhs: Self) -> BVec3 {
427        BVec3::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y), self.z.ge(&rhs.z))
428    }
429
430    /// Returns a vector mask containing the result of a `>` comparison for each element of
431    /// `self` and `rhs`.
432    ///
433    /// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
434    /// elements.
435    #[inline]
436    #[must_use]
437    pub fn cmpgt(self, rhs: Self) -> BVec3 {
438        BVec3::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y), self.z.gt(&rhs.z))
439    }
440
441    /// Returns a vector mask containing the result of a `<=` comparison for each element of
442    /// `self` and `rhs`.
443    ///
444    /// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
445    /// elements.
446    #[inline]
447    #[must_use]
448    pub fn cmple(self, rhs: Self) -> BVec3 {
449        BVec3::new(self.x.le(&rhs.x), self.y.le(&rhs.y), self.z.le(&rhs.z))
450    }
451
452    /// Returns a vector mask containing the result of a `<` comparison for each element of
453    /// `self` and `rhs`.
454    ///
455    /// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
456    /// elements.
457    #[inline]
458    #[must_use]
459    pub fn cmplt(self, rhs: Self) -> BVec3 {
460        BVec3::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y), self.z.lt(&rhs.z))
461    }
462
463    /// Returns a vector containing the absolute value of each element of `self`.
464    #[inline]
465    #[must_use]
466    pub fn abs(self) -> Self {
467        Self {
468            x: math::abs(self.x),
469            y: math::abs(self.y),
470            z: math::abs(self.z),
471        }
472    }
473
474    /// Returns a vector with elements representing the sign of `self`.
475    ///
476    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
477    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
478    /// - `NAN` if the number is `NAN`
479    #[inline]
480    #[must_use]
481    pub fn signum(self) -> Self {
482        Self {
483            x: math::signum(self.x),
484            y: math::signum(self.y),
485            z: math::signum(self.z),
486        }
487    }
488
489    /// Returns a vector with signs of `rhs` and the magnitudes of `self`.
490    #[inline]
491    #[must_use]
492    pub fn copysign(self, rhs: Self) -> Self {
493        Self {
494            x: math::copysign(self.x, rhs.x),
495            y: math::copysign(self.y, rhs.y),
496            z: math::copysign(self.z, rhs.z),
497        }
498    }
499
500    /// Returns a bitmask with the lowest 3 bits set to the sign bits from the elements of `self`.
501    ///
502    /// A negative element results in a `1` bit and a positive element in a `0` bit.  Element `x` goes
503    /// into the first lowest bit, element `y` into the second, etc.
504    ///
505    /// An element is negative if it has a negative sign, including -0.0, NaNs with negative sign
506    /// bit and negative infinity.
507    #[inline]
508    #[must_use]
509    pub fn is_negative_bitmask(self) -> u32 {
510        (self.x.is_sign_negative() as u32)
511            | ((self.y.is_sign_negative() as u32) << 1)
512            | ((self.z.is_sign_negative() as u32) << 2)
513    }
514
515    /// Returns `true` if, and only if, all elements are finite.  If any element is either
516    /// `NaN`, positive or negative infinity, this will return `false`.
517    #[inline]
518    #[must_use]
519    pub fn is_finite(self) -> bool {
520        self.x.is_finite() && self.y.is_finite() && self.z.is_finite()
521    }
522
523    /// Performs `is_finite` on each element of self, returning a vector mask of the results.
524    ///
525    /// In other words, this computes `[x.is_finite(), y.is_finite(), ...]`.
526    #[inline]
527    #[must_use]
528    pub fn is_finite_mask(self) -> BVec3 {
529        BVec3::new(self.x.is_finite(), self.y.is_finite(), self.z.is_finite())
530    }
531
532    /// Returns `true` if any elements are `NaN`.
533    #[inline]
534    #[must_use]
535    pub fn is_nan(self) -> bool {
536        self.x.is_nan() || self.y.is_nan() || self.z.is_nan()
537    }
538
539    /// Performs `is_nan` on each element of self, returning a vector mask of the results.
540    ///
541    /// In other words, this computes `[x.is_nan(), y.is_nan(), ...]`.
542    #[inline]
543    #[must_use]
544    pub fn is_nan_mask(self) -> BVec3 {
545        BVec3::new(self.x.is_nan(), self.y.is_nan(), self.z.is_nan())
546    }
547
548    /// Computes the length of `self`.
549    #[doc(alias = "magnitude")]
550    #[inline]
551    #[must_use]
552    pub fn length(self) -> f32 {
553        math::sqrt(self.dot(self))
554    }
555
556    /// Computes the squared length of `self`.
557    ///
558    /// This is faster than `length()` as it avoids a square root operation.
559    #[doc(alias = "magnitude2")]
560    #[inline]
561    #[must_use]
562    pub fn length_squared(self) -> f32 {
563        self.dot(self)
564    }
565
566    /// Computes `1.0 / length()`.
567    ///
568    /// For valid results, `self` must _not_ be of length zero.
569    #[inline]
570    #[must_use]
571    pub fn length_recip(self) -> f32 {
572        self.length().recip()
573    }
574
575    /// Computes the Euclidean distance between two points in space.
576    #[inline]
577    #[must_use]
578    pub fn distance(self, rhs: Self) -> f32 {
579        (self - rhs).length()
580    }
581
582    /// Compute the squared euclidean distance between two points in space.
583    #[inline]
584    #[must_use]
585    pub fn distance_squared(self, rhs: Self) -> f32 {
586        (self - rhs).length_squared()
587    }
588
589    /// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`.
590    #[inline]
591    #[must_use]
592    pub fn div_euclid(self, rhs: Self) -> Self {
593        Self::new(
594            math::div_euclid(self.x, rhs.x),
595            math::div_euclid(self.y, rhs.y),
596            math::div_euclid(self.z, rhs.z),
597        )
598    }
599
600    /// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`.
601    ///
602    /// [Euclidean division]: f32::rem_euclid
603    #[inline]
604    #[must_use]
605    pub fn rem_euclid(self, rhs: Self) -> Self {
606        Self::new(
607            math::rem_euclid(self.x, rhs.x),
608            math::rem_euclid(self.y, rhs.y),
609            math::rem_euclid(self.z, rhs.z),
610        )
611    }
612
613    /// Returns `self` normalized to length 1.0.
614    ///
615    /// For valid results, `self` must be finite and _not_ of length zero, nor very close to zero.
616    ///
617    /// See also [`Self::try_normalize()`] and [`Self::normalize_or_zero()`].
618    ///
619    /// # Panics
620    ///
621    /// Will panic if the resulting normalized vector is not finite when `glam_assert` is enabled.
622    #[inline]
623    #[must_use]
624    pub fn normalize(self) -> Self {
625        #[allow(clippy::let_and_return)]
626        let normalized = self.mul(self.length_recip());
627        glam_assert!(normalized.is_finite());
628        normalized
629    }
630
631    /// Returns `self` normalized to length 1.0 if possible, else returns `None`.
632    ///
633    /// In particular, if the input is zero (or very close to zero), or non-finite,
634    /// the result of this operation will be `None`.
635    ///
636    /// See also [`Self::normalize_or_zero()`].
637    #[inline]
638    #[must_use]
639    pub fn try_normalize(self) -> Option<Self> {
640        let rcp = self.length_recip();
641        if rcp.is_finite() && rcp > 0.0 {
642            Some(self * rcp)
643        } else {
644            None
645        }
646    }
647
648    /// Returns `self` normalized to length 1.0 if possible, else returns a
649    /// fallback value.
650    ///
651    /// In particular, if the input is zero (or very close to zero), or non-finite,
652    /// the result of this operation will be the fallback value.
653    ///
654    /// See also [`Self::try_normalize()`].
655    #[inline]
656    #[must_use]
657    pub fn normalize_or(self, fallback: Self) -> Self {
658        let rcp = self.length_recip();
659        if rcp.is_finite() && rcp > 0.0 {
660            self * rcp
661        } else {
662            fallback
663        }
664    }
665
666    /// Returns `self` normalized to length 1.0 if possible, else returns zero.
667    ///
668    /// In particular, if the input is zero (or very close to zero), or non-finite,
669    /// the result of this operation will be zero.
670    ///
671    /// See also [`Self::try_normalize()`].
672    #[inline]
673    #[must_use]
674    pub fn normalize_or_zero(self) -> Self {
675        self.normalize_or(Self::ZERO)
676    }
677
678    /// Returns `self` normalized to length 1.0 and the length of `self`.
679    ///
680    /// If `self` is zero length then `(Self::X, 0.0)` is returned.
681    #[inline]
682    #[must_use]
683    pub fn normalize_and_length(self) -> (Self, f32) {
684        let length = self.length();
685        let rcp = 1.0 / length;
686        if rcp.is_finite() && rcp > 0.0 {
687            (self * rcp, length)
688        } else {
689            (Self::X, 0.0)
690        }
691    }
692
693    /// Returns whether `self` is length `1.0` or not.
694    ///
695    /// Uses a precision threshold of approximately `1e-4`.
696    #[inline]
697    #[must_use]
698    pub fn is_normalized(self) -> bool {
699        math::abs(self.length_squared() - 1.0) <= 2e-4
700    }
701
702    /// Returns the vector projection of `self` onto `rhs`.
703    ///
704    /// `rhs` must be of non-zero length.
705    ///
706    /// # Panics
707    ///
708    /// Will panic if `rhs` is zero length when `glam_assert` is enabled.
709    #[inline]
710    #[must_use]
711    pub fn project_onto(self, rhs: Self) -> Self {
712        let other_len_sq_rcp = rhs.dot(rhs).recip();
713        glam_assert!(other_len_sq_rcp.is_finite());
714        rhs * self.dot(rhs) * other_len_sq_rcp
715    }
716
717    /// Returns the vector rejection of `self` from `rhs`.
718    ///
719    /// The vector rejection is the vector perpendicular to the projection of `self` onto
720    /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
721    ///
722    /// `rhs` must be of non-zero length.
723    ///
724    /// # Panics
725    ///
726    /// Will panic if `rhs` has a length of zero when `glam_assert` is enabled.
727    #[doc(alias("plane"))]
728    #[inline]
729    #[must_use]
730    pub fn reject_from(self, rhs: Self) -> Self {
731        self - self.project_onto(rhs)
732    }
733
734    /// Returns the vector projection of `self` onto `rhs`.
735    ///
736    /// `rhs` must be normalized.
737    ///
738    /// # Panics
739    ///
740    /// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
741    #[inline]
742    #[must_use]
743    pub fn project_onto_normalized(self, rhs: Self) -> Self {
744        glam_assert!(rhs.is_normalized());
745        rhs * self.dot(rhs)
746    }
747
748    /// Returns the vector rejection of `self` from `rhs`.
749    ///
750    /// The vector rejection is the vector perpendicular to the projection of `self` onto
751    /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
752    ///
753    /// `rhs` must be normalized.
754    ///
755    /// # Panics
756    ///
757    /// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
758    #[doc(alias("plane"))]
759    #[inline]
760    #[must_use]
761    pub fn reject_from_normalized(self, rhs: Self) -> Self {
762        self - self.project_onto_normalized(rhs)
763    }
764
765    /// Returns a vector containing the nearest integer to a number for each element of `self`.
766    /// Round half-way cases away from 0.0.
767    #[inline]
768    #[must_use]
769    pub fn round(self) -> Self {
770        Self {
771            x: math::round(self.x),
772            y: math::round(self.y),
773            z: math::round(self.z),
774        }
775    }
776
777    /// Returns a vector containing the largest integer less than or equal to a number for each
778    /// element of `self`.
779    #[inline]
780    #[must_use]
781    pub fn floor(self) -> Self {
782        Self {
783            x: math::floor(self.x),
784            y: math::floor(self.y),
785            z: math::floor(self.z),
786        }
787    }
788
789    /// Returns a vector containing the smallest integer greater than or equal to a number for
790    /// each element of `self`.
791    #[inline]
792    #[must_use]
793    pub fn ceil(self) -> Self {
794        Self {
795            x: math::ceil(self.x),
796            y: math::ceil(self.y),
797            z: math::ceil(self.z),
798        }
799    }
800
801    /// Returns a vector containing the integer part each element of `self`. This means numbers are
802    /// always truncated towards zero.
803    #[inline]
804    #[must_use]
805    pub fn trunc(self) -> Self {
806        Self {
807            x: math::trunc(self.x),
808            y: math::trunc(self.y),
809            z: math::trunc(self.z),
810        }
811    }
812
813    /// Returns a vector containing `0.0` if `rhs < self` and 1.0 otherwise.
814    ///
815    /// Similar to glsl's step(edge, x), which translates into edge.step(x)
816    #[inline]
817    #[must_use]
818    pub fn step(self, rhs: Self) -> Self {
819        Self::select(rhs.cmplt(self), Self::ZERO, Self::ONE)
820    }
821
822    /// Returns a vector containing all elements of `self` clamped to the range of `[0, 1]`.
823    #[inline]
824    #[must_use]
825    pub fn saturate(self) -> Self {
826        self.clamp(Self::ZERO, Self::ONE)
827    }
828
829    /// Returns a vector containing the fractional part of the vector as `self - self.trunc()`.
830    ///
831    /// Note that this differs from the GLSL implementation of `fract` which returns
832    /// `self - self.floor()`.
833    ///
834    /// Note that this is fast but not precise for large numbers.
835    #[inline]
836    #[must_use]
837    pub fn fract(self) -> Self {
838        self - self.trunc()
839    }
840
841    /// Returns a vector containing the fractional part of the vector as `self - self.floor()`.
842    ///
843    /// Note that this differs from the Rust implementation of `fract` which returns
844    /// `self - self.trunc()`.
845    ///
846    /// Note that this is fast but not precise for large numbers.
847    #[inline]
848    #[must_use]
849    pub fn fract_gl(self) -> Self {
850        self - self.floor()
851    }
852
853    /// Returns a vector containing `e^self` (the exponential function) for each element of
854    /// `self`.
855    #[inline]
856    #[must_use]
857    pub fn exp(self) -> Self {
858        Self::new(math::exp(self.x), math::exp(self.y), math::exp(self.z))
859    }
860
861    /// Returns a vector containing `2^self` for each element of `self`.
862    #[inline]
863    #[must_use]
864    pub fn exp2(self) -> Self {
865        Self::new(math::exp2(self.x), math::exp2(self.y), math::exp2(self.z))
866    }
867
868    /// Returns a vector containing the natural logarithm for each element of `self`.
869    /// This returns NaN when the element is negative and negative infinity when the element is zero.
870    #[inline]
871    #[must_use]
872    pub fn ln(self) -> Self {
873        Self::new(math::ln(self.x), math::ln(self.y), math::ln(self.z))
874    }
875
876    /// Returns a vector containing the base 2 logarithm for each element of `self`.
877    /// This returns NaN when the element is negative and negative infinity when the element is zero.
878    #[inline]
879    #[must_use]
880    pub fn log2(self) -> Self {
881        Self::new(math::log2(self.x), math::log2(self.y), math::log2(self.z))
882    }
883
884    /// Returns a vector containing each element of `self` raised to the power of `n`.
885    #[inline]
886    #[must_use]
887    pub fn powf(self, n: f32) -> Self {
888        Self::new(
889            math::powf(self.x, n),
890            math::powf(self.y, n),
891            math::powf(self.z, n),
892        )
893    }
894
895    /// Returns a vector containing the square root for each element of `self`.
896    /// This returns NaN when the element is negative.
897    #[inline]
898    #[must_use]
899    pub fn sqrt(self) -> Self {
900        Self::new(math::sqrt(self.x), math::sqrt(self.y), math::sqrt(self.z))
901    }
902
903    /// Returns a vector containing the cosine for each element of `self`.
904    #[inline]
905    #[must_use]
906    pub fn cos(self) -> Self {
907        Self::new(math::cos(self.x), math::cos(self.y), math::cos(self.z))
908    }
909
910    /// Returns a vector containing the sine for each element of `self`.
911    #[inline]
912    #[must_use]
913    pub fn sin(self) -> Self {
914        Self::new(math::sin(self.x), math::sin(self.y), math::sin(self.z))
915    }
916
917    /// Returns a tuple of two vectors containing the sine and cosine for each element of `self`.
918    #[inline]
919    #[must_use]
920    pub fn sin_cos(self) -> (Self, Self) {
921        let (sin_x, cos_x) = math::sin_cos(self.x);
922        let (sin_y, cos_y) = math::sin_cos(self.y);
923        let (sin_z, cos_z) = math::sin_cos(self.z);
924
925        (
926            Self::new(sin_x, sin_y, sin_z),
927            Self::new(cos_x, cos_y, cos_z),
928        )
929    }
930
931    /// Returns a vector containing the reciprocal `1.0/n` of each element of `self`.
932    #[inline]
933    #[must_use]
934    pub fn recip(self) -> Self {
935        Self {
936            x: 1.0 / self.x,
937            y: 1.0 / self.y,
938            z: 1.0 / self.z,
939        }
940    }
941
942    /// Performs a linear interpolation between `self` and `rhs` based on the value `s`.
943    ///
944    /// When `s` is `0.0`, the result will be equal to `self`.  When `s` is `1.0`, the result
945    /// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly
946    /// extrapolated.
947    #[doc(alias = "mix")]
948    #[inline]
949    #[must_use]
950    pub fn lerp(self, rhs: Self, s: f32) -> Self {
951        self * (1.0 - s) + rhs * s
952    }
953
954    /// Moves towards `rhs` based on the value `d`.
955    ///
956    /// When `d` is `0.0`, the result will be equal to `self`. When `d` is equal to
957    /// `self.distance(rhs)`, the result will be equal to `rhs`. Will not go past `rhs`.
958    #[inline]
959    #[must_use]
960    pub fn move_towards(self, rhs: Self, d: f32) -> Self {
961        let a = rhs - self;
962        let len = a.length();
963        if len <= d || len <= 1e-4 {
964            return rhs;
965        }
966        self + a / len * d
967    }
968
969    /// Calculates the midpoint between `self` and `rhs`.
970    ///
971    /// The midpoint is the average of, or halfway point between, two vectors.
972    /// `a.midpoint(b)` should yield the same result as `a.lerp(b, 0.5)`
973    /// while being slightly cheaper to compute.
974    #[inline]
975    pub fn midpoint(self, rhs: Self) -> Self {
976        (self + rhs) * 0.5
977    }
978
979    /// Returns true if the absolute difference of all elements between `self` and `rhs` is
980    /// less than or equal to `max_abs_diff`.
981    ///
982    /// This can be used to compare if two vectors contain similar elements. It works best when
983    /// comparing with a known value. The `max_abs_diff` that should be used used depends on
984    /// the values being compared against.
985    ///
986    /// For more see
987    /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
988    #[inline]
989    #[must_use]
990    pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
991        self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
992    }
993
994    /// Returns a vector with a length no less than `min` and no more than `max`.
995    ///
996    /// # Panics
997    ///
998    /// Will panic if `min` is greater than `max`, or if either `min` or `max` is negative, when `glam_assert` is enabled.
999    #[inline]
1000    #[must_use]
1001    pub fn clamp_length(self, min: f32, max: f32) -> Self {
1002        glam_assert!(0.0 <= min);
1003        glam_assert!(min <= max);
1004        let length_sq = self.length_squared();
1005        if length_sq < min * min {
1006            min * (self / math::sqrt(length_sq))
1007        } else if length_sq > max * max {
1008            max * (self / math::sqrt(length_sq))
1009        } else {
1010            self
1011        }
1012    }
1013
1014    /// Returns a vector with a length no more than `max`.
1015    ///
1016    /// # Panics
1017    ///
1018    /// Will panic if `max` is negative when `glam_assert` is enabled.
1019    #[inline]
1020    #[must_use]
1021    pub fn clamp_length_max(self, max: f32) -> Self {
1022        glam_assert!(0.0 <= max);
1023        let length_sq = self.length_squared();
1024        if length_sq > max * max {
1025            max * (self / math::sqrt(length_sq))
1026        } else {
1027            self
1028        }
1029    }
1030
1031    /// Returns a vector with a length no less than `min`.
1032    ///
1033    /// # Panics
1034    ///
1035    /// Will panic if `min` is negative when `glam_assert` is enabled.
1036    #[inline]
1037    #[must_use]
1038    pub fn clamp_length_min(self, min: f32) -> Self {
1039        glam_assert!(0.0 <= min);
1040        let length_sq = self.length_squared();
1041        if length_sq < min * min {
1042            min * (self / math::sqrt(length_sq))
1043        } else {
1044            self
1045        }
1046    }
1047
1048    /// Fused multiply-add. Computes `(self * a) + b` element-wise with only one rounding
1049    /// error, yielding a more accurate result than an unfused multiply-add.
1050    ///
1051    /// Using `mul_add` *may* be more performant than an unfused multiply-add if the target
1052    /// architecture has a dedicated fma CPU instruction. However, this is not always true,
1053    /// and will be heavily dependant on designing algorithms with specific target hardware in
1054    /// mind.
1055    #[inline]
1056    #[must_use]
1057    pub fn mul_add(self, a: Self, b: Self) -> Self {
1058        Self::new(
1059            math::mul_add(self.x, a.x, b.x),
1060            math::mul_add(self.y, a.y, b.y),
1061            math::mul_add(self.z, a.z, b.z),
1062        )
1063    }
1064
1065    /// Returns the reflection vector for a given incident vector `self` and surface normal
1066    /// `normal`.
1067    ///
1068    /// `normal` must be normalized.
1069    ///
1070    /// # Panics
1071    ///
1072    /// Will panic if `normal` is not normalized when `glam_assert` is enabled.
1073    #[inline]
1074    #[must_use]
1075    pub fn reflect(self, normal: Self) -> Self {
1076        glam_assert!(normal.is_normalized());
1077        self - 2.0 * self.dot(normal) * normal
1078    }
1079
1080    /// Returns the refraction direction for a given incident vector `self`, surface normal
1081    /// `normal` and ratio of indices of refraction, `eta`. When total internal reflection occurs,
1082    /// a zero vector will be returned.
1083    ///
1084    /// `self` and `normal` must be normalized.
1085    ///
1086    /// # Panics
1087    ///
1088    /// Will panic if `self` or `normal` is not normalized when `glam_assert` is enabled.
1089    #[inline]
1090    #[must_use]
1091    pub fn refract(self, normal: Self, eta: f32) -> Self {
1092        glam_assert!(self.is_normalized());
1093        glam_assert!(normal.is_normalized());
1094        let n_dot_i = normal.dot(self);
1095        let k = 1.0 - eta * eta * (1.0 - n_dot_i * n_dot_i);
1096        if k >= 0.0 {
1097            eta * self - (eta * n_dot_i + math::sqrt(k)) * normal
1098        } else {
1099            Self::ZERO
1100        }
1101    }
1102
1103    /// Returns the angle (in radians) between two vectors in the range `[0, +Ï€]`.
1104    ///
1105    /// The inputs do not need to be unit vectors however they must be non-zero.
1106    #[inline]
1107    #[must_use]
1108    pub fn angle_between(self, rhs: Self) -> f32 {
1109        math::acos_approx(
1110            self.dot(rhs)
1111                .div(math::sqrt(self.length_squared().mul(rhs.length_squared()))),
1112        )
1113    }
1114
1115    /// Rotates around the x axis by `angle` (in radians).
1116    #[inline]
1117    #[must_use]
1118    pub fn rotate_x(self, angle: f32) -> Self {
1119        let (sina, cosa) = math::sin_cos(angle);
1120        Self::new(
1121            self.x,
1122            self.y * cosa - self.z * sina,
1123            self.y * sina + self.z * cosa,
1124        )
1125    }
1126
1127    /// Rotates around the y axis by `angle` (in radians).
1128    #[inline]
1129    #[must_use]
1130    pub fn rotate_y(self, angle: f32) -> Self {
1131        let (sina, cosa) = math::sin_cos(angle);
1132        Self::new(
1133            self.x * cosa + self.z * sina,
1134            self.y,
1135            self.x * -sina + self.z * cosa,
1136        )
1137    }
1138
1139    /// Rotates around the z axis by `angle` (in radians).
1140    #[inline]
1141    #[must_use]
1142    pub fn rotate_z(self, angle: f32) -> Self {
1143        let (sina, cosa) = math::sin_cos(angle);
1144        Self::new(
1145            self.x * cosa - self.y * sina,
1146            self.x * sina + self.y * cosa,
1147            self.z,
1148        )
1149    }
1150
1151    /// Rotates around `axis` by `angle` (in radians).
1152    ///
1153    /// The axis must be a unit vector.
1154    ///
1155    /// # Panics
1156    ///
1157    /// Will panic if `axis` is not normalized when `glam_assert` is enabled.
1158    #[inline]
1159    #[must_use]
1160    pub fn rotate_axis(self, axis: Self, angle: f32) -> Self {
1161        Quat::from_axis_angle(axis, angle) * self
1162    }
1163
1164    /// Rotates towards `rhs` up to `max_angle` (in radians).
1165    ///
1166    /// When `max_angle` is `0.0`, the result will be equal to `self`. When `max_angle` is equal to
1167    /// `self.angle_between(rhs)`, the result will be parallel to `rhs`. If `max_angle` is negative,
1168    /// rotates towards the exact opposite of `rhs`. Will not go past the target.
1169    #[inline]
1170    #[must_use]
1171    pub fn rotate_towards(self, rhs: Self, max_angle: f32) -> Self {
1172        let angle_between = self.angle_between(rhs);
1173        // When `max_angle < 0`, rotate no further than `PI` radians away
1174        let angle = max_angle.clamp(angle_between - core::f32::consts::PI, angle_between);
1175        let axis = self
1176            .cross(rhs)
1177            .try_normalize()
1178            .unwrap_or_else(|| self.any_orthogonal_vector().normalize());
1179        Quat::from_axis_angle(axis, angle) * self
1180    }
1181
1182    /// Returns some vector that is orthogonal to the given one.
1183    ///
1184    /// The input vector must be finite and non-zero.
1185    ///
1186    /// The output vector is not necessarily unit length. For that use
1187    /// [`Self::any_orthonormal_vector()`] instead.
1188    #[inline]
1189    #[must_use]
1190    pub fn any_orthogonal_vector(self) -> Self {
1191        // This can probably be optimized
1192        if math::abs(self.x) > math::abs(self.y) {
1193            Self::new(-self.z, 0.0, self.x) // self.cross(Self::Y)
1194        } else {
1195            Self::new(0.0, self.z, -self.y) // self.cross(Self::X)
1196        }
1197    }
1198
1199    /// Returns any unit vector that is orthogonal to the given one.
1200    ///
1201    /// The input vector must be unit length.
1202    ///
1203    /// # Panics
1204    ///
1205    /// Will panic if `self` is not normalized when `glam_assert` is enabled.
1206    #[inline]
1207    #[must_use]
1208    pub fn any_orthonormal_vector(self) -> Self {
1209        glam_assert!(self.is_normalized());
1210        // From https://graphics.pixar.com/library/OrthonormalB/paper.pdf
1211        let sign = math::signum(self.z);
1212        let a = -1.0 / (sign + self.z);
1213        let b = self.x * self.y * a;
1214        Self::new(b, sign + self.y * self.y * a, -self.y)
1215    }
1216
1217    /// Given a unit vector return two other vectors that together form an orthonormal
1218    /// basis. That is, all three vectors are orthogonal to each other and are normalized.
1219    ///
1220    /// # Panics
1221    ///
1222    /// Will panic if `self` is not normalized when `glam_assert` is enabled.
1223    #[inline]
1224    #[must_use]
1225    pub fn any_orthonormal_pair(self) -> (Self, Self) {
1226        glam_assert!(self.is_normalized());
1227        // From https://graphics.pixar.com/library/OrthonormalB/paper.pdf
1228        let sign = math::signum(self.z);
1229        let a = -1.0 / (sign + self.z);
1230        let b = self.x * self.y * a;
1231        (
1232            Self::new(1.0 + sign * self.x * self.x * a, sign * b, -sign * self.x),
1233            Self::new(b, sign + self.y * self.y * a, -self.y),
1234        )
1235    }
1236
1237    /// Performs a spherical linear interpolation between `self` and `rhs` based on the value `s`.
1238    ///
1239    /// When `s` is `0.0`, the result will be equal to `self`.  When `s` is `1.0`, the result
1240    /// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly
1241    /// extrapolated.
1242    #[inline]
1243    #[must_use]
1244    pub fn slerp(self, rhs: Self, s: f32) -> Self {
1245        let self_length = self.length();
1246        let rhs_length = rhs.length();
1247        // Cosine of the angle between the vectors [-1, 1], or NaN if either vector has a zero length
1248        let dot = self.dot(rhs) / (self_length * rhs_length);
1249        // If dot is close to 1 or -1, or is NaN the calculations for t1 and t2 break down
1250        if math::abs(dot) < 1.0 - 3e-7 {
1251            // Angle between the vectors [0, +Ï€]
1252            let theta = math::acos_approx(dot);
1253            // Sine of the angle between vectors [0, 1]
1254            let sin_theta = math::sin(theta);
1255            let t1 = math::sin(theta * (1. - s));
1256            let t2 = math::sin(theta * s);
1257
1258            // Interpolate vector lengths
1259            let result_length = self_length.lerp(rhs_length, s);
1260            // Scale the vectors to the target length and interpolate them
1261            return (self * (result_length / self_length) * t1
1262                + rhs * (result_length / rhs_length) * t2)
1263                * sin_theta.recip();
1264        }
1265        if dot < 0.0 {
1266            // Vectors are almost parallel in opposing directions
1267
1268            // Create a rotation from self to rhs along some axis
1269            let axis = self.any_orthogonal_vector().normalize();
1270            let rotation = Quat::from_axis_angle(axis, core::f32::consts::PI * s);
1271            // Interpolate vector lengths
1272            let result_length = self_length.lerp(rhs_length, s);
1273            rotation * self * (result_length / self_length)
1274        } else {
1275            // Vectors are almost parallel in the same direction, or dot was NaN
1276            self.lerp(rhs, s)
1277        }
1278    }
1279
1280    /// Casts all elements of `self` to `f64`.
1281    #[inline]
1282    #[must_use]
1283    pub fn as_dvec3(self) -> crate::DVec3 {
1284        crate::DVec3::new(self.x as f64, self.y as f64, self.z as f64)
1285    }
1286
1287    /// Casts all elements of `self` to `i8`.
1288    #[inline]
1289    #[must_use]
1290    pub fn as_i8vec3(self) -> crate::I8Vec3 {
1291        crate::I8Vec3::new(self.x as i8, self.y as i8, self.z as i8)
1292    }
1293
1294    /// Casts all elements of `self` to `u8`.
1295    #[inline]
1296    #[must_use]
1297    pub fn as_u8vec3(self) -> crate::U8Vec3 {
1298        crate::U8Vec3::new(self.x as u8, self.y as u8, self.z as u8)
1299    }
1300
1301    /// Casts all elements of `self` to `i16`.
1302    #[inline]
1303    #[must_use]
1304    pub fn as_i16vec3(self) -> crate::I16Vec3 {
1305        crate::I16Vec3::new(self.x as i16, self.y as i16, self.z as i16)
1306    }
1307
1308    /// Casts all elements of `self` to `u16`.
1309    #[inline]
1310    #[must_use]
1311    pub fn as_u16vec3(self) -> crate::U16Vec3 {
1312        crate::U16Vec3::new(self.x as u16, self.y as u16, self.z as u16)
1313    }
1314
1315    /// Casts all elements of `self` to `i32`.
1316    #[inline]
1317    #[must_use]
1318    pub fn as_ivec3(self) -> crate::IVec3 {
1319        crate::IVec3::new(self.x as i32, self.y as i32, self.z as i32)
1320    }
1321
1322    /// Casts all elements of `self` to `u32`.
1323    #[inline]
1324    #[must_use]
1325    pub fn as_uvec3(self) -> crate::UVec3 {
1326        crate::UVec3::new(self.x as u32, self.y as u32, self.z as u32)
1327    }
1328
1329    /// Casts all elements of `self` to `i64`.
1330    #[inline]
1331    #[must_use]
1332    pub fn as_i64vec3(self) -> crate::I64Vec3 {
1333        crate::I64Vec3::new(self.x as i64, self.y as i64, self.z as i64)
1334    }
1335
1336    /// Casts all elements of `self` to `u64`.
1337    #[inline]
1338    #[must_use]
1339    pub fn as_u64vec3(self) -> crate::U64Vec3 {
1340        crate::U64Vec3::new(self.x as u64, self.y as u64, self.z as u64)
1341    }
1342
1343    /// Casts all elements of `self` to `usize`.
1344    #[inline]
1345    #[must_use]
1346    pub fn as_usizevec3(self) -> crate::USizeVec3 {
1347        crate::USizeVec3::new(self.x as usize, self.y as usize, self.z as usize)
1348    }
1349}
1350
1351impl Default for Vec3 {
1352    #[inline(always)]
1353    fn default() -> Self {
1354        Self::ZERO
1355    }
1356}
1357
1358impl Div for Vec3 {
1359    type Output = Self;
1360    #[inline]
1361    fn div(self, rhs: Self) -> Self {
1362        Self {
1363            x: self.x.div(rhs.x),
1364            y: self.y.div(rhs.y),
1365            z: self.z.div(rhs.z),
1366        }
1367    }
1368}
1369
1370impl Div<&Self> for Vec3 {
1371    type Output = Self;
1372    #[inline]
1373    fn div(self, rhs: &Self) -> Self {
1374        self.div(*rhs)
1375    }
1376}
1377
1378impl Div<&Vec3> for &Vec3 {
1379    type Output = Vec3;
1380    #[inline]
1381    fn div(self, rhs: &Vec3) -> Vec3 {
1382        (*self).div(*rhs)
1383    }
1384}
1385
1386impl Div<Vec3> for &Vec3 {
1387    type Output = Vec3;
1388    #[inline]
1389    fn div(self, rhs: Vec3) -> Vec3 {
1390        (*self).div(rhs)
1391    }
1392}
1393
1394impl DivAssign for Vec3 {
1395    #[inline]
1396    fn div_assign(&mut self, rhs: Self) {
1397        self.x.div_assign(rhs.x);
1398        self.y.div_assign(rhs.y);
1399        self.z.div_assign(rhs.z);
1400    }
1401}
1402
1403impl DivAssign<&Self> for Vec3 {
1404    #[inline]
1405    fn div_assign(&mut self, rhs: &Self) {
1406        self.div_assign(*rhs);
1407    }
1408}
1409
1410impl Div<f32> for Vec3 {
1411    type Output = Self;
1412    #[inline]
1413    fn div(self, rhs: f32) -> Self {
1414        Self {
1415            x: self.x.div(rhs),
1416            y: self.y.div(rhs),
1417            z: self.z.div(rhs),
1418        }
1419    }
1420}
1421
1422impl Div<&f32> for Vec3 {
1423    type Output = Self;
1424    #[inline]
1425    fn div(self, rhs: &f32) -> Self {
1426        self.div(*rhs)
1427    }
1428}
1429
1430impl Div<&f32> for &Vec3 {
1431    type Output = Vec3;
1432    #[inline]
1433    fn div(self, rhs: &f32) -> Vec3 {
1434        (*self).div(*rhs)
1435    }
1436}
1437
1438impl Div<f32> for &Vec3 {
1439    type Output = Vec3;
1440    #[inline]
1441    fn div(self, rhs: f32) -> Vec3 {
1442        (*self).div(rhs)
1443    }
1444}
1445
1446impl DivAssign<f32> for Vec3 {
1447    #[inline]
1448    fn div_assign(&mut self, rhs: f32) {
1449        self.x.div_assign(rhs);
1450        self.y.div_assign(rhs);
1451        self.z.div_assign(rhs);
1452    }
1453}
1454
1455impl DivAssign<&f32> for Vec3 {
1456    #[inline]
1457    fn div_assign(&mut self, rhs: &f32) {
1458        self.div_assign(*rhs);
1459    }
1460}
1461
1462impl Div<Vec3> for f32 {
1463    type Output = Vec3;
1464    #[inline]
1465    fn div(self, rhs: Vec3) -> Vec3 {
1466        Vec3 {
1467            x: self.div(rhs.x),
1468            y: self.div(rhs.y),
1469            z: self.div(rhs.z),
1470        }
1471    }
1472}
1473
1474impl Div<&Vec3> for f32 {
1475    type Output = Vec3;
1476    #[inline]
1477    fn div(self, rhs: &Vec3) -> Vec3 {
1478        self.div(*rhs)
1479    }
1480}
1481
1482impl Div<&Vec3> for &f32 {
1483    type Output = Vec3;
1484    #[inline]
1485    fn div(self, rhs: &Vec3) -> Vec3 {
1486        (*self).div(*rhs)
1487    }
1488}
1489
1490impl Div<Vec3> for &f32 {
1491    type Output = Vec3;
1492    #[inline]
1493    fn div(self, rhs: Vec3) -> Vec3 {
1494        (*self).div(rhs)
1495    }
1496}
1497
1498impl Mul for Vec3 {
1499    type Output = Self;
1500    #[inline]
1501    fn mul(self, rhs: Self) -> Self {
1502        Self {
1503            x: self.x.mul(rhs.x),
1504            y: self.y.mul(rhs.y),
1505            z: self.z.mul(rhs.z),
1506        }
1507    }
1508}
1509
1510impl Mul<&Self> for Vec3 {
1511    type Output = Self;
1512    #[inline]
1513    fn mul(self, rhs: &Self) -> Self {
1514        self.mul(*rhs)
1515    }
1516}
1517
1518impl Mul<&Vec3> for &Vec3 {
1519    type Output = Vec3;
1520    #[inline]
1521    fn mul(self, rhs: &Vec3) -> Vec3 {
1522        (*self).mul(*rhs)
1523    }
1524}
1525
1526impl Mul<Vec3> for &Vec3 {
1527    type Output = Vec3;
1528    #[inline]
1529    fn mul(self, rhs: Vec3) -> Vec3 {
1530        (*self).mul(rhs)
1531    }
1532}
1533
1534impl MulAssign for Vec3 {
1535    #[inline]
1536    fn mul_assign(&mut self, rhs: Self) {
1537        self.x.mul_assign(rhs.x);
1538        self.y.mul_assign(rhs.y);
1539        self.z.mul_assign(rhs.z);
1540    }
1541}
1542
1543impl MulAssign<&Self> for Vec3 {
1544    #[inline]
1545    fn mul_assign(&mut self, rhs: &Self) {
1546        self.mul_assign(*rhs);
1547    }
1548}
1549
1550impl Mul<f32> for Vec3 {
1551    type Output = Self;
1552    #[inline]
1553    fn mul(self, rhs: f32) -> Self {
1554        Self {
1555            x: self.x.mul(rhs),
1556            y: self.y.mul(rhs),
1557            z: self.z.mul(rhs),
1558        }
1559    }
1560}
1561
1562impl Mul<&f32> for Vec3 {
1563    type Output = Self;
1564    #[inline]
1565    fn mul(self, rhs: &f32) -> Self {
1566        self.mul(*rhs)
1567    }
1568}
1569
1570impl Mul<&f32> for &Vec3 {
1571    type Output = Vec3;
1572    #[inline]
1573    fn mul(self, rhs: &f32) -> Vec3 {
1574        (*self).mul(*rhs)
1575    }
1576}
1577
1578impl Mul<f32> for &Vec3 {
1579    type Output = Vec3;
1580    #[inline]
1581    fn mul(self, rhs: f32) -> Vec3 {
1582        (*self).mul(rhs)
1583    }
1584}
1585
1586impl MulAssign<f32> for Vec3 {
1587    #[inline]
1588    fn mul_assign(&mut self, rhs: f32) {
1589        self.x.mul_assign(rhs);
1590        self.y.mul_assign(rhs);
1591        self.z.mul_assign(rhs);
1592    }
1593}
1594
1595impl MulAssign<&f32> for Vec3 {
1596    #[inline]
1597    fn mul_assign(&mut self, rhs: &f32) {
1598        self.mul_assign(*rhs);
1599    }
1600}
1601
1602impl Mul<Vec3> for f32 {
1603    type Output = Vec3;
1604    #[inline]
1605    fn mul(self, rhs: Vec3) -> Vec3 {
1606        Vec3 {
1607            x: self.mul(rhs.x),
1608            y: self.mul(rhs.y),
1609            z: self.mul(rhs.z),
1610        }
1611    }
1612}
1613
1614impl Mul<&Vec3> for f32 {
1615    type Output = Vec3;
1616    #[inline]
1617    fn mul(self, rhs: &Vec3) -> Vec3 {
1618        self.mul(*rhs)
1619    }
1620}
1621
1622impl Mul<&Vec3> for &f32 {
1623    type Output = Vec3;
1624    #[inline]
1625    fn mul(self, rhs: &Vec3) -> Vec3 {
1626        (*self).mul(*rhs)
1627    }
1628}
1629
1630impl Mul<Vec3> for &f32 {
1631    type Output = Vec3;
1632    #[inline]
1633    fn mul(self, rhs: Vec3) -> Vec3 {
1634        (*self).mul(rhs)
1635    }
1636}
1637
1638impl Add for Vec3 {
1639    type Output = Self;
1640    #[inline]
1641    fn add(self, rhs: Self) -> Self {
1642        Self {
1643            x: self.x.add(rhs.x),
1644            y: self.y.add(rhs.y),
1645            z: self.z.add(rhs.z),
1646        }
1647    }
1648}
1649
1650impl Add<&Self> for Vec3 {
1651    type Output = Self;
1652    #[inline]
1653    fn add(self, rhs: &Self) -> Self {
1654        self.add(*rhs)
1655    }
1656}
1657
1658impl Add<&Vec3> for &Vec3 {
1659    type Output = Vec3;
1660    #[inline]
1661    fn add(self, rhs: &Vec3) -> Vec3 {
1662        (*self).add(*rhs)
1663    }
1664}
1665
1666impl Add<Vec3> for &Vec3 {
1667    type Output = Vec3;
1668    #[inline]
1669    fn add(self, rhs: Vec3) -> Vec3 {
1670        (*self).add(rhs)
1671    }
1672}
1673
1674impl AddAssign for Vec3 {
1675    #[inline]
1676    fn add_assign(&mut self, rhs: Self) {
1677        self.x.add_assign(rhs.x);
1678        self.y.add_assign(rhs.y);
1679        self.z.add_assign(rhs.z);
1680    }
1681}
1682
1683impl AddAssign<&Self> for Vec3 {
1684    #[inline]
1685    fn add_assign(&mut self, rhs: &Self) {
1686        self.add_assign(*rhs);
1687    }
1688}
1689
1690impl Add<f32> for Vec3 {
1691    type Output = Self;
1692    #[inline]
1693    fn add(self, rhs: f32) -> Self {
1694        Self {
1695            x: self.x.add(rhs),
1696            y: self.y.add(rhs),
1697            z: self.z.add(rhs),
1698        }
1699    }
1700}
1701
1702impl Add<&f32> for Vec3 {
1703    type Output = Self;
1704    #[inline]
1705    fn add(self, rhs: &f32) -> Self {
1706        self.add(*rhs)
1707    }
1708}
1709
1710impl Add<&f32> for &Vec3 {
1711    type Output = Vec3;
1712    #[inline]
1713    fn add(self, rhs: &f32) -> Vec3 {
1714        (*self).add(*rhs)
1715    }
1716}
1717
1718impl Add<f32> for &Vec3 {
1719    type Output = Vec3;
1720    #[inline]
1721    fn add(self, rhs: f32) -> Vec3 {
1722        (*self).add(rhs)
1723    }
1724}
1725
1726impl AddAssign<f32> for Vec3 {
1727    #[inline]
1728    fn add_assign(&mut self, rhs: f32) {
1729        self.x.add_assign(rhs);
1730        self.y.add_assign(rhs);
1731        self.z.add_assign(rhs);
1732    }
1733}
1734
1735impl AddAssign<&f32> for Vec3 {
1736    #[inline]
1737    fn add_assign(&mut self, rhs: &f32) {
1738        self.add_assign(*rhs);
1739    }
1740}
1741
1742impl Add<Vec3> for f32 {
1743    type Output = Vec3;
1744    #[inline]
1745    fn add(self, rhs: Vec3) -> Vec3 {
1746        Vec3 {
1747            x: self.add(rhs.x),
1748            y: self.add(rhs.y),
1749            z: self.add(rhs.z),
1750        }
1751    }
1752}
1753
1754impl Add<&Vec3> for f32 {
1755    type Output = Vec3;
1756    #[inline]
1757    fn add(self, rhs: &Vec3) -> Vec3 {
1758        self.add(*rhs)
1759    }
1760}
1761
1762impl Add<&Vec3> for &f32 {
1763    type Output = Vec3;
1764    #[inline]
1765    fn add(self, rhs: &Vec3) -> Vec3 {
1766        (*self).add(*rhs)
1767    }
1768}
1769
1770impl Add<Vec3> for &f32 {
1771    type Output = Vec3;
1772    #[inline]
1773    fn add(self, rhs: Vec3) -> Vec3 {
1774        (*self).add(rhs)
1775    }
1776}
1777
1778impl Sub for Vec3 {
1779    type Output = Self;
1780    #[inline]
1781    fn sub(self, rhs: Self) -> Self {
1782        Self {
1783            x: self.x.sub(rhs.x),
1784            y: self.y.sub(rhs.y),
1785            z: self.z.sub(rhs.z),
1786        }
1787    }
1788}
1789
1790impl Sub<&Self> for Vec3 {
1791    type Output = Self;
1792    #[inline]
1793    fn sub(self, rhs: &Self) -> Self {
1794        self.sub(*rhs)
1795    }
1796}
1797
1798impl Sub<&Vec3> for &Vec3 {
1799    type Output = Vec3;
1800    #[inline]
1801    fn sub(self, rhs: &Vec3) -> Vec3 {
1802        (*self).sub(*rhs)
1803    }
1804}
1805
1806impl Sub<Vec3> for &Vec3 {
1807    type Output = Vec3;
1808    #[inline]
1809    fn sub(self, rhs: Vec3) -> Vec3 {
1810        (*self).sub(rhs)
1811    }
1812}
1813
1814impl SubAssign for Vec3 {
1815    #[inline]
1816    fn sub_assign(&mut self, rhs: Self) {
1817        self.x.sub_assign(rhs.x);
1818        self.y.sub_assign(rhs.y);
1819        self.z.sub_assign(rhs.z);
1820    }
1821}
1822
1823impl SubAssign<&Self> for Vec3 {
1824    #[inline]
1825    fn sub_assign(&mut self, rhs: &Self) {
1826        self.sub_assign(*rhs);
1827    }
1828}
1829
1830impl Sub<f32> for Vec3 {
1831    type Output = Self;
1832    #[inline]
1833    fn sub(self, rhs: f32) -> Self {
1834        Self {
1835            x: self.x.sub(rhs),
1836            y: self.y.sub(rhs),
1837            z: self.z.sub(rhs),
1838        }
1839    }
1840}
1841
1842impl Sub<&f32> for Vec3 {
1843    type Output = Self;
1844    #[inline]
1845    fn sub(self, rhs: &f32) -> Self {
1846        self.sub(*rhs)
1847    }
1848}
1849
1850impl Sub<&f32> for &Vec3 {
1851    type Output = Vec3;
1852    #[inline]
1853    fn sub(self, rhs: &f32) -> Vec3 {
1854        (*self).sub(*rhs)
1855    }
1856}
1857
1858impl Sub<f32> for &Vec3 {
1859    type Output = Vec3;
1860    #[inline]
1861    fn sub(self, rhs: f32) -> Vec3 {
1862        (*self).sub(rhs)
1863    }
1864}
1865
1866impl SubAssign<f32> for Vec3 {
1867    #[inline]
1868    fn sub_assign(&mut self, rhs: f32) {
1869        self.x.sub_assign(rhs);
1870        self.y.sub_assign(rhs);
1871        self.z.sub_assign(rhs);
1872    }
1873}
1874
1875impl SubAssign<&f32> for Vec3 {
1876    #[inline]
1877    fn sub_assign(&mut self, rhs: &f32) {
1878        self.sub_assign(*rhs);
1879    }
1880}
1881
1882impl Sub<Vec3> for f32 {
1883    type Output = Vec3;
1884    #[inline]
1885    fn sub(self, rhs: Vec3) -> Vec3 {
1886        Vec3 {
1887            x: self.sub(rhs.x),
1888            y: self.sub(rhs.y),
1889            z: self.sub(rhs.z),
1890        }
1891    }
1892}
1893
1894impl Sub<&Vec3> for f32 {
1895    type Output = Vec3;
1896    #[inline]
1897    fn sub(self, rhs: &Vec3) -> Vec3 {
1898        self.sub(*rhs)
1899    }
1900}
1901
1902impl Sub<&Vec3> for &f32 {
1903    type Output = Vec3;
1904    #[inline]
1905    fn sub(self, rhs: &Vec3) -> Vec3 {
1906        (*self).sub(*rhs)
1907    }
1908}
1909
1910impl Sub<Vec3> for &f32 {
1911    type Output = Vec3;
1912    #[inline]
1913    fn sub(self, rhs: Vec3) -> Vec3 {
1914        (*self).sub(rhs)
1915    }
1916}
1917
1918impl Rem for Vec3 {
1919    type Output = Self;
1920    #[inline]
1921    fn rem(self, rhs: Self) -> Self {
1922        Self {
1923            x: self.x.rem(rhs.x),
1924            y: self.y.rem(rhs.y),
1925            z: self.z.rem(rhs.z),
1926        }
1927    }
1928}
1929
1930impl Rem<&Self> for Vec3 {
1931    type Output = Self;
1932    #[inline]
1933    fn rem(self, rhs: &Self) -> Self {
1934        self.rem(*rhs)
1935    }
1936}
1937
1938impl Rem<&Vec3> for &Vec3 {
1939    type Output = Vec3;
1940    #[inline]
1941    fn rem(self, rhs: &Vec3) -> Vec3 {
1942        (*self).rem(*rhs)
1943    }
1944}
1945
1946impl Rem<Vec3> for &Vec3 {
1947    type Output = Vec3;
1948    #[inline]
1949    fn rem(self, rhs: Vec3) -> Vec3 {
1950        (*self).rem(rhs)
1951    }
1952}
1953
1954impl RemAssign for Vec3 {
1955    #[inline]
1956    fn rem_assign(&mut self, rhs: Self) {
1957        self.x.rem_assign(rhs.x);
1958        self.y.rem_assign(rhs.y);
1959        self.z.rem_assign(rhs.z);
1960    }
1961}
1962
1963impl RemAssign<&Self> for Vec3 {
1964    #[inline]
1965    fn rem_assign(&mut self, rhs: &Self) {
1966        self.rem_assign(*rhs);
1967    }
1968}
1969
1970impl Rem<f32> for Vec3 {
1971    type Output = Self;
1972    #[inline]
1973    fn rem(self, rhs: f32) -> Self {
1974        Self {
1975            x: self.x.rem(rhs),
1976            y: self.y.rem(rhs),
1977            z: self.z.rem(rhs),
1978        }
1979    }
1980}
1981
1982impl Rem<&f32> for Vec3 {
1983    type Output = Self;
1984    #[inline]
1985    fn rem(self, rhs: &f32) -> Self {
1986        self.rem(*rhs)
1987    }
1988}
1989
1990impl Rem<&f32> for &Vec3 {
1991    type Output = Vec3;
1992    #[inline]
1993    fn rem(self, rhs: &f32) -> Vec3 {
1994        (*self).rem(*rhs)
1995    }
1996}
1997
1998impl Rem<f32> for &Vec3 {
1999    type Output = Vec3;
2000    #[inline]
2001    fn rem(self, rhs: f32) -> Vec3 {
2002        (*self).rem(rhs)
2003    }
2004}
2005
2006impl RemAssign<f32> for Vec3 {
2007    #[inline]
2008    fn rem_assign(&mut self, rhs: f32) {
2009        self.x.rem_assign(rhs);
2010        self.y.rem_assign(rhs);
2011        self.z.rem_assign(rhs);
2012    }
2013}
2014
2015impl RemAssign<&f32> for Vec3 {
2016    #[inline]
2017    fn rem_assign(&mut self, rhs: &f32) {
2018        self.rem_assign(*rhs);
2019    }
2020}
2021
2022impl Rem<Vec3> for f32 {
2023    type Output = Vec3;
2024    #[inline]
2025    fn rem(self, rhs: Vec3) -> Vec3 {
2026        Vec3 {
2027            x: self.rem(rhs.x),
2028            y: self.rem(rhs.y),
2029            z: self.rem(rhs.z),
2030        }
2031    }
2032}
2033
2034impl Rem<&Vec3> for f32 {
2035    type Output = Vec3;
2036    #[inline]
2037    fn rem(self, rhs: &Vec3) -> Vec3 {
2038        self.rem(*rhs)
2039    }
2040}
2041
2042impl Rem<&Vec3> for &f32 {
2043    type Output = Vec3;
2044    #[inline]
2045    fn rem(self, rhs: &Vec3) -> Vec3 {
2046        (*self).rem(*rhs)
2047    }
2048}
2049
2050impl Rem<Vec3> for &f32 {
2051    type Output = Vec3;
2052    #[inline]
2053    fn rem(self, rhs: Vec3) -> Vec3 {
2054        (*self).rem(rhs)
2055    }
2056}
2057
2058impl AsRef<[f32; 3]> for Vec3 {
2059    #[inline]
2060    fn as_ref(&self) -> &[f32; 3] {
2061        unsafe { &*(self as *const Self as *const [f32; 3]) }
2062    }
2063}
2064
2065impl AsMut<[f32; 3]> for Vec3 {
2066    #[inline]
2067    fn as_mut(&mut self) -> &mut [f32; 3] {
2068        unsafe { &mut *(self as *mut Self as *mut [f32; 3]) }
2069    }
2070}
2071
2072impl Sum for Vec3 {
2073    #[inline]
2074    fn sum<I>(iter: I) -> Self
2075    where
2076        I: Iterator<Item = Self>,
2077    {
2078        iter.fold(Self::ZERO, Self::add)
2079    }
2080}
2081
2082impl<'a> Sum<&'a Self> for Vec3 {
2083    #[inline]
2084    fn sum<I>(iter: I) -> Self
2085    where
2086        I: Iterator<Item = &'a Self>,
2087    {
2088        iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
2089    }
2090}
2091
2092impl Product for Vec3 {
2093    #[inline]
2094    fn product<I>(iter: I) -> Self
2095    where
2096        I: Iterator<Item = Self>,
2097    {
2098        iter.fold(Self::ONE, Self::mul)
2099    }
2100}
2101
2102impl<'a> Product<&'a Self> for Vec3 {
2103    #[inline]
2104    fn product<I>(iter: I) -> Self
2105    where
2106        I: Iterator<Item = &'a Self>,
2107    {
2108        iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
2109    }
2110}
2111
2112impl Neg for Vec3 {
2113    type Output = Self;
2114    #[inline]
2115    fn neg(self) -> Self {
2116        Self {
2117            x: self.x.neg(),
2118            y: self.y.neg(),
2119            z: self.z.neg(),
2120        }
2121    }
2122}
2123
2124impl Neg for &Vec3 {
2125    type Output = Vec3;
2126    #[inline]
2127    fn neg(self) -> Vec3 {
2128        (*self).neg()
2129    }
2130}
2131
2132impl Index<usize> for Vec3 {
2133    type Output = f32;
2134    #[inline]
2135    fn index(&self, index: usize) -> &Self::Output {
2136        match index {
2137            0 => &self.x,
2138            1 => &self.y,
2139            2 => &self.z,
2140            _ => panic!("index out of bounds"),
2141        }
2142    }
2143}
2144
2145impl IndexMut<usize> for Vec3 {
2146    #[inline]
2147    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
2148        match index {
2149            0 => &mut self.x,
2150            1 => &mut self.y,
2151            2 => &mut self.z,
2152            _ => panic!("index out of bounds"),
2153        }
2154    }
2155}
2156
2157impl fmt::Display for Vec3 {
2158    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2159        if let Some(p) = f.precision() {
2160            write!(f, "[{:.*}, {:.*}, {:.*}]", p, self.x, p, self.y, p, self.z)
2161        } else {
2162            write!(f, "[{}, {}, {}]", self.x, self.y, self.z)
2163        }
2164    }
2165}
2166
2167impl fmt::Debug for Vec3 {
2168    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2169        fmt.debug_tuple(stringify!(Vec3))
2170            .field(&self.x)
2171            .field(&self.y)
2172            .field(&self.z)
2173            .finish()
2174    }
2175}
2176
2177impl From<[f32; 3]> for Vec3 {
2178    #[inline]
2179    fn from(a: [f32; 3]) -> Self {
2180        Self::new(a[0], a[1], a[2])
2181    }
2182}
2183
2184impl From<Vec3> for [f32; 3] {
2185    #[inline]
2186    fn from(v: Vec3) -> Self {
2187        [v.x, v.y, v.z]
2188    }
2189}
2190
2191impl From<(f32, f32, f32)> for Vec3 {
2192    #[inline]
2193    fn from(t: (f32, f32, f32)) -> Self {
2194        Self::new(t.0, t.1, t.2)
2195    }
2196}
2197
2198impl From<Vec3> for (f32, f32, f32) {
2199    #[inline]
2200    fn from(v: Vec3) -> Self {
2201        (v.x, v.y, v.z)
2202    }
2203}
2204
2205impl From<(Vec2, f32)> for Vec3 {
2206    #[inline]
2207    fn from((v, z): (Vec2, f32)) -> Self {
2208        Self::new(v.x, v.y, z)
2209    }
2210}
2211
2212impl From<BVec3> for Vec3 {
2213    #[inline]
2214    fn from(v: BVec3) -> Self {
2215        Self::new(f32::from(v.x), f32::from(v.y), f32::from(v.z))
2216    }
2217}
2218
2219impl From<BVec3A> for Vec3 {
2220    #[inline]
2221    fn from(v: BVec3A) -> Self {
2222        let bool_array: [bool; 3] = v.into();
2223        Self::new(
2224            f32::from(bool_array[0]),
2225            f32::from(bool_array[1]),
2226            f32::from(bool_array[2]),
2227        )
2228    }
2229}