1use crate::{f32::math, BVec3, BVec3A, FloatExt, Quat, Vec2, Vec3A, Vec4};
4
5use core::fmt;
6use core::iter::{Product, Sum};
7use core::{f32, ops::*};
8
9#[cfg(feature = "zerocopy")]
10use zerocopy_derive::*;
11
12#[inline(always)]
14#[must_use]
15pub const fn vec3(x: f32, y: f32, z: f32) -> Vec3 {
16 Vec3::new(x, y, z)
17}
18
19#[derive(Clone, Copy, PartialEq)]
21#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
22#[cfg_attr(
23 feature = "zerocopy",
24 derive(FromBytes, Immutable, IntoBytes, KnownLayout)
25)]
26#[repr(C)]
27#[cfg_attr(target_arch = "spirv", rust_gpu::vector::v1)]
28pub struct Vec3 {
29 pub x: f32,
30 pub y: f32,
31 pub z: f32,
32}
33
34impl Vec3 {
35 pub const ZERO: Self = Self::splat(0.0);
37
38 pub const ONE: Self = Self::splat(1.0);
40
41 pub const NEG_ONE: Self = Self::splat(-1.0);
43
44 pub const MIN: Self = Self::splat(f32::MIN);
46
47 pub const MAX: Self = Self::splat(f32::MAX);
49
50 pub const NAN: Self = Self::splat(f32::NAN);
52
53 pub const INFINITY: Self = Self::splat(f32::INFINITY);
55
56 pub const NEG_INFINITY: Self = Self::splat(f32::NEG_INFINITY);
58
59 pub const X: Self = Self::new(1.0, 0.0, 0.0);
61
62 pub const Y: Self = Self::new(0.0, 1.0, 0.0);
64
65 pub const Z: Self = Self::new(0.0, 0.0, 1.0);
67
68 pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0);
70
71 pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0);
73
74 pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0);
76
77 pub const AXES: [Self; 3] = [Self::X, Self::Y, Self::Z];
79
80 pub const USES_CORE_SIMD: bool = false;
82 pub const USES_NEON: bool = false;
84 pub const USES_SCALAR_MATH: bool = true;
86 pub const USES_SSE2: bool = false;
88 pub const USES_WASM32_SIMD: bool = false;
90
91 #[inline(always)]
93 #[must_use]
94 pub const fn new(x: f32, y: f32, z: f32) -> Self {
95 Self { x, y, z }
96 }
97
98 #[inline]
100 #[must_use]
101 pub const fn splat(v: f32) -> Self {
102 Self { x: v, y: v, z: v }
103 }
104
105 #[inline]
107 #[must_use]
108 pub fn map<F>(self, f: F) -> Self
109 where
110 F: Fn(f32) -> f32,
111 {
112 Self::new(f(self.x), f(self.y), f(self.z))
113 }
114
115 #[inline]
121 #[must_use]
122 pub fn select(mask: BVec3, if_true: Self, if_false: Self) -> Self {
123 Self {
124 x: if mask.test(0) { if_true.x } else { if_false.x },
125 y: if mask.test(1) { if_true.y } else { if_false.y },
126 z: if mask.test(2) { if_true.z } else { if_false.z },
127 }
128 }
129
130 #[inline]
132 #[must_use]
133 pub const fn from_array(a: [f32; 3]) -> Self {
134 Self::new(a[0], a[1], a[2])
135 }
136
137 #[inline]
139 #[must_use]
140 pub const fn to_array(&self) -> [f32; 3] {
141 [self.x, self.y, self.z]
142 }
143
144 #[inline]
150 #[must_use]
151 pub const fn from_slice(slice: &[f32]) -> Self {
152 assert!(slice.len() >= 3);
153 Self::new(slice[0], slice[1], slice[2])
154 }
155
156 #[inline]
162 pub fn write_to_slice(self, slice: &mut [f32]) {
163 slice[..3].copy_from_slice(&self.to_array());
164 }
165
166 #[allow(dead_code)]
168 #[inline]
169 #[must_use]
170 pub(crate) fn from_vec4(v: Vec4) -> Self {
171 Self {
172 x: v.x,
173 y: v.y,
174 z: v.z,
175 }
176 }
177
178 #[inline]
180 #[must_use]
181 pub fn extend(self, w: f32) -> Vec4 {
182 Vec4::new(self.x, self.y, self.z, w)
183 }
184
185 #[inline]
189 #[must_use]
190 pub fn truncate(self) -> Vec2 {
191 use crate::swizzles::Vec3Swizzles;
192 self.xy()
193 }
194
195 #[inline]
201 #[must_use]
202 pub fn from_homogeneous(v: Vec4) -> Self {
203 glam_assert!(v.w != 0.0);
204 Self::from_vec4(v) / v.w
205 }
206
207 #[inline]
209 #[must_use]
210 pub fn to_homogeneous(self) -> Vec4 {
211 self.extend(1.0)
212 }
213
214 #[inline]
216 #[must_use]
217 pub fn to_vec3a(self) -> Vec3A {
218 Vec3A::from(self)
219 }
220
221 #[inline]
223 #[must_use]
224 pub fn with_x(mut self, x: f32) -> Self {
225 self.x = x;
226 self
227 }
228
229 #[inline]
231 #[must_use]
232 pub fn with_y(mut self, y: f32) -> Self {
233 self.y = y;
234 self
235 }
236
237 #[inline]
239 #[must_use]
240 pub fn with_z(mut self, z: f32) -> Self {
241 self.z = z;
242 self
243 }
244
245 #[inline]
247 #[must_use]
248 pub fn dot(self, rhs: Self) -> f32 {
249 (self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z)
250 }
251
252 #[inline]
254 #[must_use]
255 pub fn dot_into_vec(self, rhs: Self) -> Self {
256 Self::splat(self.dot(rhs))
257 }
258
259 #[inline]
261 #[must_use]
262 pub fn cross(self, rhs: Self) -> Self {
263 Self {
264 x: self.y * rhs.z - rhs.y * self.z,
265 y: self.z * rhs.x - rhs.z * self.x,
266 z: self.x * rhs.y - rhs.x * self.y,
267 }
268 }
269
270 #[inline]
277 #[must_use]
278 pub fn min(self, rhs: Self) -> Self {
279 Self {
280 x: if self.x < rhs.x { self.x } else { rhs.x },
281 y: if self.y < rhs.y { self.y } else { rhs.y },
282 z: if self.z < rhs.z { self.z } else { rhs.z },
283 }
284 }
285
286 #[inline]
293 #[must_use]
294 pub fn max(self, rhs: Self) -> Self {
295 Self {
296 x: if self.x > rhs.x { self.x } else { rhs.x },
297 y: if self.y > rhs.y { self.y } else { rhs.y },
298 z: if self.z > rhs.z { self.z } else { rhs.z },
299 }
300 }
301
302 #[inline]
313 #[must_use]
314 pub fn clamp(self, min: Self, max: Self) -> Self {
315 glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
316 self.max(min).min(max)
317 }
318
319 #[inline]
326 #[must_use]
327 pub fn min_element(self) -> f32 {
328 let min = |a, b| if a < b { a } else { b };
329 min(self.x, min(self.y, self.z))
330 }
331
332 #[inline]
339 #[must_use]
340 pub fn max_element(self) -> f32 {
341 let max = |a, b| if a > b { a } else { b };
342 max(self.x, max(self.y, self.z))
343 }
344
345 #[doc(alias = "argmin")]
347 #[inline]
348 #[must_use]
349 pub fn min_position(self) -> usize {
350 let mut min = self.x;
351 let mut index = 0;
352 if self.y < min {
353 min = self.y;
354 index = 1;
355 }
356 if self.z < min {
357 index = 2;
358 }
359 index
360 }
361
362 #[doc(alias = "argmax")]
364 #[inline]
365 #[must_use]
366 pub fn max_position(self) -> usize {
367 let mut max = self.x;
368 let mut index = 0;
369 if self.y > max {
370 max = self.y;
371 index = 1;
372 }
373 if self.z > max {
374 index = 2;
375 }
376 index
377 }
378
379 #[inline]
383 #[must_use]
384 pub fn element_sum(self) -> f32 {
385 self.x + self.y + self.z
386 }
387
388 #[inline]
392 #[must_use]
393 pub fn element_product(self) -> f32 {
394 self.x * self.y * self.z
395 }
396
397 #[inline]
403 #[must_use]
404 pub fn cmpeq(self, rhs: Self) -> BVec3 {
405 BVec3::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y), self.z.eq(&rhs.z))
406 }
407
408 #[inline]
414 #[must_use]
415 pub fn cmpne(self, rhs: Self) -> BVec3 {
416 BVec3::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y), self.z.ne(&rhs.z))
417 }
418
419 #[inline]
425 #[must_use]
426 pub fn cmpge(self, rhs: Self) -> BVec3 {
427 BVec3::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y), self.z.ge(&rhs.z))
428 }
429
430 #[inline]
436 #[must_use]
437 pub fn cmpgt(self, rhs: Self) -> BVec3 {
438 BVec3::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y), self.z.gt(&rhs.z))
439 }
440
441 #[inline]
447 #[must_use]
448 pub fn cmple(self, rhs: Self) -> BVec3 {
449 BVec3::new(self.x.le(&rhs.x), self.y.le(&rhs.y), self.z.le(&rhs.z))
450 }
451
452 #[inline]
458 #[must_use]
459 pub fn cmplt(self, rhs: Self) -> BVec3 {
460 BVec3::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y), self.z.lt(&rhs.z))
461 }
462
463 #[inline]
465 #[must_use]
466 pub fn abs(self) -> Self {
467 Self {
468 x: math::abs(self.x),
469 y: math::abs(self.y),
470 z: math::abs(self.z),
471 }
472 }
473
474 #[inline]
480 #[must_use]
481 pub fn signum(self) -> Self {
482 Self {
483 x: math::signum(self.x),
484 y: math::signum(self.y),
485 z: math::signum(self.z),
486 }
487 }
488
489 #[inline]
491 #[must_use]
492 pub fn copysign(self, rhs: Self) -> Self {
493 Self {
494 x: math::copysign(self.x, rhs.x),
495 y: math::copysign(self.y, rhs.y),
496 z: math::copysign(self.z, rhs.z),
497 }
498 }
499
500 #[inline]
508 #[must_use]
509 pub fn is_negative_bitmask(self) -> u32 {
510 (self.x.is_sign_negative() as u32)
511 | ((self.y.is_sign_negative() as u32) << 1)
512 | ((self.z.is_sign_negative() as u32) << 2)
513 }
514
515 #[inline]
518 #[must_use]
519 pub fn is_finite(self) -> bool {
520 self.x.is_finite() && self.y.is_finite() && self.z.is_finite()
521 }
522
523 #[inline]
527 #[must_use]
528 pub fn is_finite_mask(self) -> BVec3 {
529 BVec3::new(self.x.is_finite(), self.y.is_finite(), self.z.is_finite())
530 }
531
532 #[inline]
534 #[must_use]
535 pub fn is_nan(self) -> bool {
536 self.x.is_nan() || self.y.is_nan() || self.z.is_nan()
537 }
538
539 #[inline]
543 #[must_use]
544 pub fn is_nan_mask(self) -> BVec3 {
545 BVec3::new(self.x.is_nan(), self.y.is_nan(), self.z.is_nan())
546 }
547
548 #[doc(alias = "magnitude")]
550 #[inline]
551 #[must_use]
552 pub fn length(self) -> f32 {
553 math::sqrt(self.dot(self))
554 }
555
556 #[doc(alias = "magnitude2")]
560 #[inline]
561 #[must_use]
562 pub fn length_squared(self) -> f32 {
563 self.dot(self)
564 }
565
566 #[inline]
570 #[must_use]
571 pub fn length_recip(self) -> f32 {
572 self.length().recip()
573 }
574
575 #[inline]
577 #[must_use]
578 pub fn distance(self, rhs: Self) -> f32 {
579 (self - rhs).length()
580 }
581
582 #[inline]
584 #[must_use]
585 pub fn distance_squared(self, rhs: Self) -> f32 {
586 (self - rhs).length_squared()
587 }
588
589 #[inline]
591 #[must_use]
592 pub fn div_euclid(self, rhs: Self) -> Self {
593 Self::new(
594 math::div_euclid(self.x, rhs.x),
595 math::div_euclid(self.y, rhs.y),
596 math::div_euclid(self.z, rhs.z),
597 )
598 }
599
600 #[inline]
604 #[must_use]
605 pub fn rem_euclid(self, rhs: Self) -> Self {
606 Self::new(
607 math::rem_euclid(self.x, rhs.x),
608 math::rem_euclid(self.y, rhs.y),
609 math::rem_euclid(self.z, rhs.z),
610 )
611 }
612
613 #[inline]
623 #[must_use]
624 pub fn normalize(self) -> Self {
625 #[allow(clippy::let_and_return)]
626 let normalized = self.mul(self.length_recip());
627 glam_assert!(normalized.is_finite());
628 normalized
629 }
630
631 #[inline]
638 #[must_use]
639 pub fn try_normalize(self) -> Option<Self> {
640 let rcp = self.length_recip();
641 if rcp.is_finite() && rcp > 0.0 {
642 Some(self * rcp)
643 } else {
644 None
645 }
646 }
647
648 #[inline]
656 #[must_use]
657 pub fn normalize_or(self, fallback: Self) -> Self {
658 let rcp = self.length_recip();
659 if rcp.is_finite() && rcp > 0.0 {
660 self * rcp
661 } else {
662 fallback
663 }
664 }
665
666 #[inline]
673 #[must_use]
674 pub fn normalize_or_zero(self) -> Self {
675 self.normalize_or(Self::ZERO)
676 }
677
678 #[inline]
682 #[must_use]
683 pub fn normalize_and_length(self) -> (Self, f32) {
684 let length = self.length();
685 let rcp = 1.0 / length;
686 if rcp.is_finite() && rcp > 0.0 {
687 (self * rcp, length)
688 } else {
689 (Self::X, 0.0)
690 }
691 }
692
693 #[inline]
697 #[must_use]
698 pub fn is_normalized(self) -> bool {
699 math::abs(self.length_squared() - 1.0) <= 2e-4
700 }
701
702 #[inline]
710 #[must_use]
711 pub fn project_onto(self, rhs: Self) -> Self {
712 let other_len_sq_rcp = rhs.dot(rhs).recip();
713 glam_assert!(other_len_sq_rcp.is_finite());
714 rhs * self.dot(rhs) * other_len_sq_rcp
715 }
716
717 #[doc(alias("plane"))]
728 #[inline]
729 #[must_use]
730 pub fn reject_from(self, rhs: Self) -> Self {
731 self - self.project_onto(rhs)
732 }
733
734 #[inline]
742 #[must_use]
743 pub fn project_onto_normalized(self, rhs: Self) -> Self {
744 glam_assert!(rhs.is_normalized());
745 rhs * self.dot(rhs)
746 }
747
748 #[doc(alias("plane"))]
759 #[inline]
760 #[must_use]
761 pub fn reject_from_normalized(self, rhs: Self) -> Self {
762 self - self.project_onto_normalized(rhs)
763 }
764
765 #[inline]
768 #[must_use]
769 pub fn round(self) -> Self {
770 Self {
771 x: math::round(self.x),
772 y: math::round(self.y),
773 z: math::round(self.z),
774 }
775 }
776
777 #[inline]
780 #[must_use]
781 pub fn floor(self) -> Self {
782 Self {
783 x: math::floor(self.x),
784 y: math::floor(self.y),
785 z: math::floor(self.z),
786 }
787 }
788
789 #[inline]
792 #[must_use]
793 pub fn ceil(self) -> Self {
794 Self {
795 x: math::ceil(self.x),
796 y: math::ceil(self.y),
797 z: math::ceil(self.z),
798 }
799 }
800
801 #[inline]
804 #[must_use]
805 pub fn trunc(self) -> Self {
806 Self {
807 x: math::trunc(self.x),
808 y: math::trunc(self.y),
809 z: math::trunc(self.z),
810 }
811 }
812
813 #[inline]
817 #[must_use]
818 pub fn step(self, rhs: Self) -> Self {
819 Self::select(rhs.cmplt(self), Self::ZERO, Self::ONE)
820 }
821
822 #[inline]
824 #[must_use]
825 pub fn saturate(self) -> Self {
826 self.clamp(Self::ZERO, Self::ONE)
827 }
828
829 #[inline]
836 #[must_use]
837 pub fn fract(self) -> Self {
838 self - self.trunc()
839 }
840
841 #[inline]
848 #[must_use]
849 pub fn fract_gl(self) -> Self {
850 self - self.floor()
851 }
852
853 #[inline]
856 #[must_use]
857 pub fn exp(self) -> Self {
858 Self::new(math::exp(self.x), math::exp(self.y), math::exp(self.z))
859 }
860
861 #[inline]
863 #[must_use]
864 pub fn exp2(self) -> Self {
865 Self::new(math::exp2(self.x), math::exp2(self.y), math::exp2(self.z))
866 }
867
868 #[inline]
871 #[must_use]
872 pub fn ln(self) -> Self {
873 Self::new(math::ln(self.x), math::ln(self.y), math::ln(self.z))
874 }
875
876 #[inline]
879 #[must_use]
880 pub fn log2(self) -> Self {
881 Self::new(math::log2(self.x), math::log2(self.y), math::log2(self.z))
882 }
883
884 #[inline]
886 #[must_use]
887 pub fn powf(self, n: f32) -> Self {
888 Self::new(
889 math::powf(self.x, n),
890 math::powf(self.y, n),
891 math::powf(self.z, n),
892 )
893 }
894
895 #[inline]
898 #[must_use]
899 pub fn sqrt(self) -> Self {
900 Self::new(math::sqrt(self.x), math::sqrt(self.y), math::sqrt(self.z))
901 }
902
903 #[inline]
905 #[must_use]
906 pub fn cos(self) -> Self {
907 Self::new(math::cos(self.x), math::cos(self.y), math::cos(self.z))
908 }
909
910 #[inline]
912 #[must_use]
913 pub fn sin(self) -> Self {
914 Self::new(math::sin(self.x), math::sin(self.y), math::sin(self.z))
915 }
916
917 #[inline]
919 #[must_use]
920 pub fn sin_cos(self) -> (Self, Self) {
921 let (sin_x, cos_x) = math::sin_cos(self.x);
922 let (sin_y, cos_y) = math::sin_cos(self.y);
923 let (sin_z, cos_z) = math::sin_cos(self.z);
924
925 (
926 Self::new(sin_x, sin_y, sin_z),
927 Self::new(cos_x, cos_y, cos_z),
928 )
929 }
930
931 #[inline]
933 #[must_use]
934 pub fn recip(self) -> Self {
935 Self {
936 x: 1.0 / self.x,
937 y: 1.0 / self.y,
938 z: 1.0 / self.z,
939 }
940 }
941
942 #[doc(alias = "mix")]
948 #[inline]
949 #[must_use]
950 pub fn lerp(self, rhs: Self, s: f32) -> Self {
951 self * (1.0 - s) + rhs * s
952 }
953
954 #[inline]
959 #[must_use]
960 pub fn move_towards(self, rhs: Self, d: f32) -> Self {
961 let a = rhs - self;
962 let len = a.length();
963 if len <= d || len <= 1e-4 {
964 return rhs;
965 }
966 self + a / len * d
967 }
968
969 #[inline]
975 pub fn midpoint(self, rhs: Self) -> Self {
976 (self + rhs) * 0.5
977 }
978
979 #[inline]
989 #[must_use]
990 pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
991 self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
992 }
993
994 #[inline]
1000 #[must_use]
1001 pub fn clamp_length(self, min: f32, max: f32) -> Self {
1002 glam_assert!(0.0 <= min);
1003 glam_assert!(min <= max);
1004 let length_sq = self.length_squared();
1005 if length_sq < min * min {
1006 min * (self / math::sqrt(length_sq))
1007 } else if length_sq > max * max {
1008 max * (self / math::sqrt(length_sq))
1009 } else {
1010 self
1011 }
1012 }
1013
1014 #[inline]
1020 #[must_use]
1021 pub fn clamp_length_max(self, max: f32) -> Self {
1022 glam_assert!(0.0 <= max);
1023 let length_sq = self.length_squared();
1024 if length_sq > max * max {
1025 max * (self / math::sqrt(length_sq))
1026 } else {
1027 self
1028 }
1029 }
1030
1031 #[inline]
1037 #[must_use]
1038 pub fn clamp_length_min(self, min: f32) -> Self {
1039 glam_assert!(0.0 <= min);
1040 let length_sq = self.length_squared();
1041 if length_sq < min * min {
1042 min * (self / math::sqrt(length_sq))
1043 } else {
1044 self
1045 }
1046 }
1047
1048 #[inline]
1056 #[must_use]
1057 pub fn mul_add(self, a: Self, b: Self) -> Self {
1058 Self::new(
1059 math::mul_add(self.x, a.x, b.x),
1060 math::mul_add(self.y, a.y, b.y),
1061 math::mul_add(self.z, a.z, b.z),
1062 )
1063 }
1064
1065 #[inline]
1074 #[must_use]
1075 pub fn reflect(self, normal: Self) -> Self {
1076 glam_assert!(normal.is_normalized());
1077 self - 2.0 * self.dot(normal) * normal
1078 }
1079
1080 #[inline]
1090 #[must_use]
1091 pub fn refract(self, normal: Self, eta: f32) -> Self {
1092 glam_assert!(self.is_normalized());
1093 glam_assert!(normal.is_normalized());
1094 let n_dot_i = normal.dot(self);
1095 let k = 1.0 - eta * eta * (1.0 - n_dot_i * n_dot_i);
1096 if k >= 0.0 {
1097 eta * self - (eta * n_dot_i + math::sqrt(k)) * normal
1098 } else {
1099 Self::ZERO
1100 }
1101 }
1102
1103 #[inline]
1107 #[must_use]
1108 pub fn angle_between(self, rhs: Self) -> f32 {
1109 math::acos_approx(
1110 self.dot(rhs)
1111 .div(math::sqrt(self.length_squared().mul(rhs.length_squared()))),
1112 )
1113 }
1114
1115 #[inline]
1117 #[must_use]
1118 pub fn rotate_x(self, angle: f32) -> Self {
1119 let (sina, cosa) = math::sin_cos(angle);
1120 Self::new(
1121 self.x,
1122 self.y * cosa - self.z * sina,
1123 self.y * sina + self.z * cosa,
1124 )
1125 }
1126
1127 #[inline]
1129 #[must_use]
1130 pub fn rotate_y(self, angle: f32) -> Self {
1131 let (sina, cosa) = math::sin_cos(angle);
1132 Self::new(
1133 self.x * cosa + self.z * sina,
1134 self.y,
1135 self.x * -sina + self.z * cosa,
1136 )
1137 }
1138
1139 #[inline]
1141 #[must_use]
1142 pub fn rotate_z(self, angle: f32) -> Self {
1143 let (sina, cosa) = math::sin_cos(angle);
1144 Self::new(
1145 self.x * cosa - self.y * sina,
1146 self.x * sina + self.y * cosa,
1147 self.z,
1148 )
1149 }
1150
1151 #[inline]
1159 #[must_use]
1160 pub fn rotate_axis(self, axis: Self, angle: f32) -> Self {
1161 Quat::from_axis_angle(axis, angle) * self
1162 }
1163
1164 #[inline]
1170 #[must_use]
1171 pub fn rotate_towards(self, rhs: Self, max_angle: f32) -> Self {
1172 let angle_between = self.angle_between(rhs);
1173 let angle = max_angle.clamp(angle_between - core::f32::consts::PI, angle_between);
1175 let axis = self
1176 .cross(rhs)
1177 .try_normalize()
1178 .unwrap_or_else(|| self.any_orthogonal_vector().normalize());
1179 Quat::from_axis_angle(axis, angle) * self
1180 }
1181
1182 #[inline]
1189 #[must_use]
1190 pub fn any_orthogonal_vector(self) -> Self {
1191 if math::abs(self.x) > math::abs(self.y) {
1193 Self::new(-self.z, 0.0, self.x) } else {
1195 Self::new(0.0, self.z, -self.y) }
1197 }
1198
1199 #[inline]
1207 #[must_use]
1208 pub fn any_orthonormal_vector(self) -> Self {
1209 glam_assert!(self.is_normalized());
1210 let sign = math::signum(self.z);
1212 let a = -1.0 / (sign + self.z);
1213 let b = self.x * self.y * a;
1214 Self::new(b, sign + self.y * self.y * a, -self.y)
1215 }
1216
1217 #[inline]
1224 #[must_use]
1225 pub fn any_orthonormal_pair(self) -> (Self, Self) {
1226 glam_assert!(self.is_normalized());
1227 let sign = math::signum(self.z);
1229 let a = -1.0 / (sign + self.z);
1230 let b = self.x * self.y * a;
1231 (
1232 Self::new(1.0 + sign * self.x * self.x * a, sign * b, -sign * self.x),
1233 Self::new(b, sign + self.y * self.y * a, -self.y),
1234 )
1235 }
1236
1237 #[inline]
1243 #[must_use]
1244 pub fn slerp(self, rhs: Self, s: f32) -> Self {
1245 let self_length = self.length();
1246 let rhs_length = rhs.length();
1247 let dot = self.dot(rhs) / (self_length * rhs_length);
1249 if math::abs(dot) < 1.0 - 3e-7 {
1251 let theta = math::acos_approx(dot);
1253 let sin_theta = math::sin(theta);
1255 let t1 = math::sin(theta * (1. - s));
1256 let t2 = math::sin(theta * s);
1257
1258 let result_length = self_length.lerp(rhs_length, s);
1260 return (self * (result_length / self_length) * t1
1262 + rhs * (result_length / rhs_length) * t2)
1263 * sin_theta.recip();
1264 }
1265 if dot < 0.0 {
1266 let axis = self.any_orthogonal_vector().normalize();
1270 let rotation = Quat::from_axis_angle(axis, core::f32::consts::PI * s);
1271 let result_length = self_length.lerp(rhs_length, s);
1273 rotation * self * (result_length / self_length)
1274 } else {
1275 self.lerp(rhs, s)
1277 }
1278 }
1279
1280 #[inline]
1282 #[must_use]
1283 pub fn as_dvec3(self) -> crate::DVec3 {
1284 crate::DVec3::new(self.x as f64, self.y as f64, self.z as f64)
1285 }
1286
1287 #[inline]
1289 #[must_use]
1290 pub fn as_i8vec3(self) -> crate::I8Vec3 {
1291 crate::I8Vec3::new(self.x as i8, self.y as i8, self.z as i8)
1292 }
1293
1294 #[inline]
1296 #[must_use]
1297 pub fn as_u8vec3(self) -> crate::U8Vec3 {
1298 crate::U8Vec3::new(self.x as u8, self.y as u8, self.z as u8)
1299 }
1300
1301 #[inline]
1303 #[must_use]
1304 pub fn as_i16vec3(self) -> crate::I16Vec3 {
1305 crate::I16Vec3::new(self.x as i16, self.y as i16, self.z as i16)
1306 }
1307
1308 #[inline]
1310 #[must_use]
1311 pub fn as_u16vec3(self) -> crate::U16Vec3 {
1312 crate::U16Vec3::new(self.x as u16, self.y as u16, self.z as u16)
1313 }
1314
1315 #[inline]
1317 #[must_use]
1318 pub fn as_ivec3(self) -> crate::IVec3 {
1319 crate::IVec3::new(self.x as i32, self.y as i32, self.z as i32)
1320 }
1321
1322 #[inline]
1324 #[must_use]
1325 pub fn as_uvec3(self) -> crate::UVec3 {
1326 crate::UVec3::new(self.x as u32, self.y as u32, self.z as u32)
1327 }
1328
1329 #[inline]
1331 #[must_use]
1332 pub fn as_i64vec3(self) -> crate::I64Vec3 {
1333 crate::I64Vec3::new(self.x as i64, self.y as i64, self.z as i64)
1334 }
1335
1336 #[inline]
1338 #[must_use]
1339 pub fn as_u64vec3(self) -> crate::U64Vec3 {
1340 crate::U64Vec3::new(self.x as u64, self.y as u64, self.z as u64)
1341 }
1342
1343 #[inline]
1345 #[must_use]
1346 pub fn as_usizevec3(self) -> crate::USizeVec3 {
1347 crate::USizeVec3::new(self.x as usize, self.y as usize, self.z as usize)
1348 }
1349}
1350
1351impl Default for Vec3 {
1352 #[inline(always)]
1353 fn default() -> Self {
1354 Self::ZERO
1355 }
1356}
1357
1358impl Div for Vec3 {
1359 type Output = Self;
1360 #[inline]
1361 fn div(self, rhs: Self) -> Self {
1362 Self {
1363 x: self.x.div(rhs.x),
1364 y: self.y.div(rhs.y),
1365 z: self.z.div(rhs.z),
1366 }
1367 }
1368}
1369
1370impl Div<&Self> for Vec3 {
1371 type Output = Self;
1372 #[inline]
1373 fn div(self, rhs: &Self) -> Self {
1374 self.div(*rhs)
1375 }
1376}
1377
1378impl Div<&Vec3> for &Vec3 {
1379 type Output = Vec3;
1380 #[inline]
1381 fn div(self, rhs: &Vec3) -> Vec3 {
1382 (*self).div(*rhs)
1383 }
1384}
1385
1386impl Div<Vec3> for &Vec3 {
1387 type Output = Vec3;
1388 #[inline]
1389 fn div(self, rhs: Vec3) -> Vec3 {
1390 (*self).div(rhs)
1391 }
1392}
1393
1394impl DivAssign for Vec3 {
1395 #[inline]
1396 fn div_assign(&mut self, rhs: Self) {
1397 self.x.div_assign(rhs.x);
1398 self.y.div_assign(rhs.y);
1399 self.z.div_assign(rhs.z);
1400 }
1401}
1402
1403impl DivAssign<&Self> for Vec3 {
1404 #[inline]
1405 fn div_assign(&mut self, rhs: &Self) {
1406 self.div_assign(*rhs);
1407 }
1408}
1409
1410impl Div<f32> for Vec3 {
1411 type Output = Self;
1412 #[inline]
1413 fn div(self, rhs: f32) -> Self {
1414 Self {
1415 x: self.x.div(rhs),
1416 y: self.y.div(rhs),
1417 z: self.z.div(rhs),
1418 }
1419 }
1420}
1421
1422impl Div<&f32> for Vec3 {
1423 type Output = Self;
1424 #[inline]
1425 fn div(self, rhs: &f32) -> Self {
1426 self.div(*rhs)
1427 }
1428}
1429
1430impl Div<&f32> for &Vec3 {
1431 type Output = Vec3;
1432 #[inline]
1433 fn div(self, rhs: &f32) -> Vec3 {
1434 (*self).div(*rhs)
1435 }
1436}
1437
1438impl Div<f32> for &Vec3 {
1439 type Output = Vec3;
1440 #[inline]
1441 fn div(self, rhs: f32) -> Vec3 {
1442 (*self).div(rhs)
1443 }
1444}
1445
1446impl DivAssign<f32> for Vec3 {
1447 #[inline]
1448 fn div_assign(&mut self, rhs: f32) {
1449 self.x.div_assign(rhs);
1450 self.y.div_assign(rhs);
1451 self.z.div_assign(rhs);
1452 }
1453}
1454
1455impl DivAssign<&f32> for Vec3 {
1456 #[inline]
1457 fn div_assign(&mut self, rhs: &f32) {
1458 self.div_assign(*rhs);
1459 }
1460}
1461
1462impl Div<Vec3> for f32 {
1463 type Output = Vec3;
1464 #[inline]
1465 fn div(self, rhs: Vec3) -> Vec3 {
1466 Vec3 {
1467 x: self.div(rhs.x),
1468 y: self.div(rhs.y),
1469 z: self.div(rhs.z),
1470 }
1471 }
1472}
1473
1474impl Div<&Vec3> for f32 {
1475 type Output = Vec3;
1476 #[inline]
1477 fn div(self, rhs: &Vec3) -> Vec3 {
1478 self.div(*rhs)
1479 }
1480}
1481
1482impl Div<&Vec3> for &f32 {
1483 type Output = Vec3;
1484 #[inline]
1485 fn div(self, rhs: &Vec3) -> Vec3 {
1486 (*self).div(*rhs)
1487 }
1488}
1489
1490impl Div<Vec3> for &f32 {
1491 type Output = Vec3;
1492 #[inline]
1493 fn div(self, rhs: Vec3) -> Vec3 {
1494 (*self).div(rhs)
1495 }
1496}
1497
1498impl Mul for Vec3 {
1499 type Output = Self;
1500 #[inline]
1501 fn mul(self, rhs: Self) -> Self {
1502 Self {
1503 x: self.x.mul(rhs.x),
1504 y: self.y.mul(rhs.y),
1505 z: self.z.mul(rhs.z),
1506 }
1507 }
1508}
1509
1510impl Mul<&Self> for Vec3 {
1511 type Output = Self;
1512 #[inline]
1513 fn mul(self, rhs: &Self) -> Self {
1514 self.mul(*rhs)
1515 }
1516}
1517
1518impl Mul<&Vec3> for &Vec3 {
1519 type Output = Vec3;
1520 #[inline]
1521 fn mul(self, rhs: &Vec3) -> Vec3 {
1522 (*self).mul(*rhs)
1523 }
1524}
1525
1526impl Mul<Vec3> for &Vec3 {
1527 type Output = Vec3;
1528 #[inline]
1529 fn mul(self, rhs: Vec3) -> Vec3 {
1530 (*self).mul(rhs)
1531 }
1532}
1533
1534impl MulAssign for Vec3 {
1535 #[inline]
1536 fn mul_assign(&mut self, rhs: Self) {
1537 self.x.mul_assign(rhs.x);
1538 self.y.mul_assign(rhs.y);
1539 self.z.mul_assign(rhs.z);
1540 }
1541}
1542
1543impl MulAssign<&Self> for Vec3 {
1544 #[inline]
1545 fn mul_assign(&mut self, rhs: &Self) {
1546 self.mul_assign(*rhs);
1547 }
1548}
1549
1550impl Mul<f32> for Vec3 {
1551 type Output = Self;
1552 #[inline]
1553 fn mul(self, rhs: f32) -> Self {
1554 Self {
1555 x: self.x.mul(rhs),
1556 y: self.y.mul(rhs),
1557 z: self.z.mul(rhs),
1558 }
1559 }
1560}
1561
1562impl Mul<&f32> for Vec3 {
1563 type Output = Self;
1564 #[inline]
1565 fn mul(self, rhs: &f32) -> Self {
1566 self.mul(*rhs)
1567 }
1568}
1569
1570impl Mul<&f32> for &Vec3 {
1571 type Output = Vec3;
1572 #[inline]
1573 fn mul(self, rhs: &f32) -> Vec3 {
1574 (*self).mul(*rhs)
1575 }
1576}
1577
1578impl Mul<f32> for &Vec3 {
1579 type Output = Vec3;
1580 #[inline]
1581 fn mul(self, rhs: f32) -> Vec3 {
1582 (*self).mul(rhs)
1583 }
1584}
1585
1586impl MulAssign<f32> for Vec3 {
1587 #[inline]
1588 fn mul_assign(&mut self, rhs: f32) {
1589 self.x.mul_assign(rhs);
1590 self.y.mul_assign(rhs);
1591 self.z.mul_assign(rhs);
1592 }
1593}
1594
1595impl MulAssign<&f32> for Vec3 {
1596 #[inline]
1597 fn mul_assign(&mut self, rhs: &f32) {
1598 self.mul_assign(*rhs);
1599 }
1600}
1601
1602impl Mul<Vec3> for f32 {
1603 type Output = Vec3;
1604 #[inline]
1605 fn mul(self, rhs: Vec3) -> Vec3 {
1606 Vec3 {
1607 x: self.mul(rhs.x),
1608 y: self.mul(rhs.y),
1609 z: self.mul(rhs.z),
1610 }
1611 }
1612}
1613
1614impl Mul<&Vec3> for f32 {
1615 type Output = Vec3;
1616 #[inline]
1617 fn mul(self, rhs: &Vec3) -> Vec3 {
1618 self.mul(*rhs)
1619 }
1620}
1621
1622impl Mul<&Vec3> for &f32 {
1623 type Output = Vec3;
1624 #[inline]
1625 fn mul(self, rhs: &Vec3) -> Vec3 {
1626 (*self).mul(*rhs)
1627 }
1628}
1629
1630impl Mul<Vec3> for &f32 {
1631 type Output = Vec3;
1632 #[inline]
1633 fn mul(self, rhs: Vec3) -> Vec3 {
1634 (*self).mul(rhs)
1635 }
1636}
1637
1638impl Add for Vec3 {
1639 type Output = Self;
1640 #[inline]
1641 fn add(self, rhs: Self) -> Self {
1642 Self {
1643 x: self.x.add(rhs.x),
1644 y: self.y.add(rhs.y),
1645 z: self.z.add(rhs.z),
1646 }
1647 }
1648}
1649
1650impl Add<&Self> for Vec3 {
1651 type Output = Self;
1652 #[inline]
1653 fn add(self, rhs: &Self) -> Self {
1654 self.add(*rhs)
1655 }
1656}
1657
1658impl Add<&Vec3> for &Vec3 {
1659 type Output = Vec3;
1660 #[inline]
1661 fn add(self, rhs: &Vec3) -> Vec3 {
1662 (*self).add(*rhs)
1663 }
1664}
1665
1666impl Add<Vec3> for &Vec3 {
1667 type Output = Vec3;
1668 #[inline]
1669 fn add(self, rhs: Vec3) -> Vec3 {
1670 (*self).add(rhs)
1671 }
1672}
1673
1674impl AddAssign for Vec3 {
1675 #[inline]
1676 fn add_assign(&mut self, rhs: Self) {
1677 self.x.add_assign(rhs.x);
1678 self.y.add_assign(rhs.y);
1679 self.z.add_assign(rhs.z);
1680 }
1681}
1682
1683impl AddAssign<&Self> for Vec3 {
1684 #[inline]
1685 fn add_assign(&mut self, rhs: &Self) {
1686 self.add_assign(*rhs);
1687 }
1688}
1689
1690impl Add<f32> for Vec3 {
1691 type Output = Self;
1692 #[inline]
1693 fn add(self, rhs: f32) -> Self {
1694 Self {
1695 x: self.x.add(rhs),
1696 y: self.y.add(rhs),
1697 z: self.z.add(rhs),
1698 }
1699 }
1700}
1701
1702impl Add<&f32> for Vec3 {
1703 type Output = Self;
1704 #[inline]
1705 fn add(self, rhs: &f32) -> Self {
1706 self.add(*rhs)
1707 }
1708}
1709
1710impl Add<&f32> for &Vec3 {
1711 type Output = Vec3;
1712 #[inline]
1713 fn add(self, rhs: &f32) -> Vec3 {
1714 (*self).add(*rhs)
1715 }
1716}
1717
1718impl Add<f32> for &Vec3 {
1719 type Output = Vec3;
1720 #[inline]
1721 fn add(self, rhs: f32) -> Vec3 {
1722 (*self).add(rhs)
1723 }
1724}
1725
1726impl AddAssign<f32> for Vec3 {
1727 #[inline]
1728 fn add_assign(&mut self, rhs: f32) {
1729 self.x.add_assign(rhs);
1730 self.y.add_assign(rhs);
1731 self.z.add_assign(rhs);
1732 }
1733}
1734
1735impl AddAssign<&f32> for Vec3 {
1736 #[inline]
1737 fn add_assign(&mut self, rhs: &f32) {
1738 self.add_assign(*rhs);
1739 }
1740}
1741
1742impl Add<Vec3> for f32 {
1743 type Output = Vec3;
1744 #[inline]
1745 fn add(self, rhs: Vec3) -> Vec3 {
1746 Vec3 {
1747 x: self.add(rhs.x),
1748 y: self.add(rhs.y),
1749 z: self.add(rhs.z),
1750 }
1751 }
1752}
1753
1754impl Add<&Vec3> for f32 {
1755 type Output = Vec3;
1756 #[inline]
1757 fn add(self, rhs: &Vec3) -> Vec3 {
1758 self.add(*rhs)
1759 }
1760}
1761
1762impl Add<&Vec3> for &f32 {
1763 type Output = Vec3;
1764 #[inline]
1765 fn add(self, rhs: &Vec3) -> Vec3 {
1766 (*self).add(*rhs)
1767 }
1768}
1769
1770impl Add<Vec3> for &f32 {
1771 type Output = Vec3;
1772 #[inline]
1773 fn add(self, rhs: Vec3) -> Vec3 {
1774 (*self).add(rhs)
1775 }
1776}
1777
1778impl Sub for Vec3 {
1779 type Output = Self;
1780 #[inline]
1781 fn sub(self, rhs: Self) -> Self {
1782 Self {
1783 x: self.x.sub(rhs.x),
1784 y: self.y.sub(rhs.y),
1785 z: self.z.sub(rhs.z),
1786 }
1787 }
1788}
1789
1790impl Sub<&Self> for Vec3 {
1791 type Output = Self;
1792 #[inline]
1793 fn sub(self, rhs: &Self) -> Self {
1794 self.sub(*rhs)
1795 }
1796}
1797
1798impl Sub<&Vec3> for &Vec3 {
1799 type Output = Vec3;
1800 #[inline]
1801 fn sub(self, rhs: &Vec3) -> Vec3 {
1802 (*self).sub(*rhs)
1803 }
1804}
1805
1806impl Sub<Vec3> for &Vec3 {
1807 type Output = Vec3;
1808 #[inline]
1809 fn sub(self, rhs: Vec3) -> Vec3 {
1810 (*self).sub(rhs)
1811 }
1812}
1813
1814impl SubAssign for Vec3 {
1815 #[inline]
1816 fn sub_assign(&mut self, rhs: Self) {
1817 self.x.sub_assign(rhs.x);
1818 self.y.sub_assign(rhs.y);
1819 self.z.sub_assign(rhs.z);
1820 }
1821}
1822
1823impl SubAssign<&Self> for Vec3 {
1824 #[inline]
1825 fn sub_assign(&mut self, rhs: &Self) {
1826 self.sub_assign(*rhs);
1827 }
1828}
1829
1830impl Sub<f32> for Vec3 {
1831 type Output = Self;
1832 #[inline]
1833 fn sub(self, rhs: f32) -> Self {
1834 Self {
1835 x: self.x.sub(rhs),
1836 y: self.y.sub(rhs),
1837 z: self.z.sub(rhs),
1838 }
1839 }
1840}
1841
1842impl Sub<&f32> for Vec3 {
1843 type Output = Self;
1844 #[inline]
1845 fn sub(self, rhs: &f32) -> Self {
1846 self.sub(*rhs)
1847 }
1848}
1849
1850impl Sub<&f32> for &Vec3 {
1851 type Output = Vec3;
1852 #[inline]
1853 fn sub(self, rhs: &f32) -> Vec3 {
1854 (*self).sub(*rhs)
1855 }
1856}
1857
1858impl Sub<f32> for &Vec3 {
1859 type Output = Vec3;
1860 #[inline]
1861 fn sub(self, rhs: f32) -> Vec3 {
1862 (*self).sub(rhs)
1863 }
1864}
1865
1866impl SubAssign<f32> for Vec3 {
1867 #[inline]
1868 fn sub_assign(&mut self, rhs: f32) {
1869 self.x.sub_assign(rhs);
1870 self.y.sub_assign(rhs);
1871 self.z.sub_assign(rhs);
1872 }
1873}
1874
1875impl SubAssign<&f32> for Vec3 {
1876 #[inline]
1877 fn sub_assign(&mut self, rhs: &f32) {
1878 self.sub_assign(*rhs);
1879 }
1880}
1881
1882impl Sub<Vec3> for f32 {
1883 type Output = Vec3;
1884 #[inline]
1885 fn sub(self, rhs: Vec3) -> Vec3 {
1886 Vec3 {
1887 x: self.sub(rhs.x),
1888 y: self.sub(rhs.y),
1889 z: self.sub(rhs.z),
1890 }
1891 }
1892}
1893
1894impl Sub<&Vec3> for f32 {
1895 type Output = Vec3;
1896 #[inline]
1897 fn sub(self, rhs: &Vec3) -> Vec3 {
1898 self.sub(*rhs)
1899 }
1900}
1901
1902impl Sub<&Vec3> for &f32 {
1903 type Output = Vec3;
1904 #[inline]
1905 fn sub(self, rhs: &Vec3) -> Vec3 {
1906 (*self).sub(*rhs)
1907 }
1908}
1909
1910impl Sub<Vec3> for &f32 {
1911 type Output = Vec3;
1912 #[inline]
1913 fn sub(self, rhs: Vec3) -> Vec3 {
1914 (*self).sub(rhs)
1915 }
1916}
1917
1918impl Rem for Vec3 {
1919 type Output = Self;
1920 #[inline]
1921 fn rem(self, rhs: Self) -> Self {
1922 Self {
1923 x: self.x.rem(rhs.x),
1924 y: self.y.rem(rhs.y),
1925 z: self.z.rem(rhs.z),
1926 }
1927 }
1928}
1929
1930impl Rem<&Self> for Vec3 {
1931 type Output = Self;
1932 #[inline]
1933 fn rem(self, rhs: &Self) -> Self {
1934 self.rem(*rhs)
1935 }
1936}
1937
1938impl Rem<&Vec3> for &Vec3 {
1939 type Output = Vec3;
1940 #[inline]
1941 fn rem(self, rhs: &Vec3) -> Vec3 {
1942 (*self).rem(*rhs)
1943 }
1944}
1945
1946impl Rem<Vec3> for &Vec3 {
1947 type Output = Vec3;
1948 #[inline]
1949 fn rem(self, rhs: Vec3) -> Vec3 {
1950 (*self).rem(rhs)
1951 }
1952}
1953
1954impl RemAssign for Vec3 {
1955 #[inline]
1956 fn rem_assign(&mut self, rhs: Self) {
1957 self.x.rem_assign(rhs.x);
1958 self.y.rem_assign(rhs.y);
1959 self.z.rem_assign(rhs.z);
1960 }
1961}
1962
1963impl RemAssign<&Self> for Vec3 {
1964 #[inline]
1965 fn rem_assign(&mut self, rhs: &Self) {
1966 self.rem_assign(*rhs);
1967 }
1968}
1969
1970impl Rem<f32> for Vec3 {
1971 type Output = Self;
1972 #[inline]
1973 fn rem(self, rhs: f32) -> Self {
1974 Self {
1975 x: self.x.rem(rhs),
1976 y: self.y.rem(rhs),
1977 z: self.z.rem(rhs),
1978 }
1979 }
1980}
1981
1982impl Rem<&f32> for Vec3 {
1983 type Output = Self;
1984 #[inline]
1985 fn rem(self, rhs: &f32) -> Self {
1986 self.rem(*rhs)
1987 }
1988}
1989
1990impl Rem<&f32> for &Vec3 {
1991 type Output = Vec3;
1992 #[inline]
1993 fn rem(self, rhs: &f32) -> Vec3 {
1994 (*self).rem(*rhs)
1995 }
1996}
1997
1998impl Rem<f32> for &Vec3 {
1999 type Output = Vec3;
2000 #[inline]
2001 fn rem(self, rhs: f32) -> Vec3 {
2002 (*self).rem(rhs)
2003 }
2004}
2005
2006impl RemAssign<f32> for Vec3 {
2007 #[inline]
2008 fn rem_assign(&mut self, rhs: f32) {
2009 self.x.rem_assign(rhs);
2010 self.y.rem_assign(rhs);
2011 self.z.rem_assign(rhs);
2012 }
2013}
2014
2015impl RemAssign<&f32> for Vec3 {
2016 #[inline]
2017 fn rem_assign(&mut self, rhs: &f32) {
2018 self.rem_assign(*rhs);
2019 }
2020}
2021
2022impl Rem<Vec3> for f32 {
2023 type Output = Vec3;
2024 #[inline]
2025 fn rem(self, rhs: Vec3) -> Vec3 {
2026 Vec3 {
2027 x: self.rem(rhs.x),
2028 y: self.rem(rhs.y),
2029 z: self.rem(rhs.z),
2030 }
2031 }
2032}
2033
2034impl Rem<&Vec3> for f32 {
2035 type Output = Vec3;
2036 #[inline]
2037 fn rem(self, rhs: &Vec3) -> Vec3 {
2038 self.rem(*rhs)
2039 }
2040}
2041
2042impl Rem<&Vec3> for &f32 {
2043 type Output = Vec3;
2044 #[inline]
2045 fn rem(self, rhs: &Vec3) -> Vec3 {
2046 (*self).rem(*rhs)
2047 }
2048}
2049
2050impl Rem<Vec3> for &f32 {
2051 type Output = Vec3;
2052 #[inline]
2053 fn rem(self, rhs: Vec3) -> Vec3 {
2054 (*self).rem(rhs)
2055 }
2056}
2057
2058impl AsRef<[f32; 3]> for Vec3 {
2059 #[inline]
2060 fn as_ref(&self) -> &[f32; 3] {
2061 unsafe { &*(self as *const Self as *const [f32; 3]) }
2062 }
2063}
2064
2065impl AsMut<[f32; 3]> for Vec3 {
2066 #[inline]
2067 fn as_mut(&mut self) -> &mut [f32; 3] {
2068 unsafe { &mut *(self as *mut Self as *mut [f32; 3]) }
2069 }
2070}
2071
2072impl Sum for Vec3 {
2073 #[inline]
2074 fn sum<I>(iter: I) -> Self
2075 where
2076 I: Iterator<Item = Self>,
2077 {
2078 iter.fold(Self::ZERO, Self::add)
2079 }
2080}
2081
2082impl<'a> Sum<&'a Self> for Vec3 {
2083 #[inline]
2084 fn sum<I>(iter: I) -> Self
2085 where
2086 I: Iterator<Item = &'a Self>,
2087 {
2088 iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
2089 }
2090}
2091
2092impl Product for Vec3 {
2093 #[inline]
2094 fn product<I>(iter: I) -> Self
2095 where
2096 I: Iterator<Item = Self>,
2097 {
2098 iter.fold(Self::ONE, Self::mul)
2099 }
2100}
2101
2102impl<'a> Product<&'a Self> for Vec3 {
2103 #[inline]
2104 fn product<I>(iter: I) -> Self
2105 where
2106 I: Iterator<Item = &'a Self>,
2107 {
2108 iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
2109 }
2110}
2111
2112impl Neg for Vec3 {
2113 type Output = Self;
2114 #[inline]
2115 fn neg(self) -> Self {
2116 Self {
2117 x: self.x.neg(),
2118 y: self.y.neg(),
2119 z: self.z.neg(),
2120 }
2121 }
2122}
2123
2124impl Neg for &Vec3 {
2125 type Output = Vec3;
2126 #[inline]
2127 fn neg(self) -> Vec3 {
2128 (*self).neg()
2129 }
2130}
2131
2132impl Index<usize> for Vec3 {
2133 type Output = f32;
2134 #[inline]
2135 fn index(&self, index: usize) -> &Self::Output {
2136 match index {
2137 0 => &self.x,
2138 1 => &self.y,
2139 2 => &self.z,
2140 _ => panic!("index out of bounds"),
2141 }
2142 }
2143}
2144
2145impl IndexMut<usize> for Vec3 {
2146 #[inline]
2147 fn index_mut(&mut self, index: usize) -> &mut Self::Output {
2148 match index {
2149 0 => &mut self.x,
2150 1 => &mut self.y,
2151 2 => &mut self.z,
2152 _ => panic!("index out of bounds"),
2153 }
2154 }
2155}
2156
2157impl fmt::Display for Vec3 {
2158 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2159 if let Some(p) = f.precision() {
2160 write!(f, "[{:.*}, {:.*}, {:.*}]", p, self.x, p, self.y, p, self.z)
2161 } else {
2162 write!(f, "[{}, {}, {}]", self.x, self.y, self.z)
2163 }
2164 }
2165}
2166
2167impl fmt::Debug for Vec3 {
2168 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2169 fmt.debug_tuple(stringify!(Vec3))
2170 .field(&self.x)
2171 .field(&self.y)
2172 .field(&self.z)
2173 .finish()
2174 }
2175}
2176
2177impl From<[f32; 3]> for Vec3 {
2178 #[inline]
2179 fn from(a: [f32; 3]) -> Self {
2180 Self::new(a[0], a[1], a[2])
2181 }
2182}
2183
2184impl From<Vec3> for [f32; 3] {
2185 #[inline]
2186 fn from(v: Vec3) -> Self {
2187 [v.x, v.y, v.z]
2188 }
2189}
2190
2191impl From<(f32, f32, f32)> for Vec3 {
2192 #[inline]
2193 fn from(t: (f32, f32, f32)) -> Self {
2194 Self::new(t.0, t.1, t.2)
2195 }
2196}
2197
2198impl From<Vec3> for (f32, f32, f32) {
2199 #[inline]
2200 fn from(v: Vec3) -> Self {
2201 (v.x, v.y, v.z)
2202 }
2203}
2204
2205impl From<(Vec2, f32)> for Vec3 {
2206 #[inline]
2207 fn from((v, z): (Vec2, f32)) -> Self {
2208 Self::new(v.x, v.y, z)
2209 }
2210}
2211
2212impl From<BVec3> for Vec3 {
2213 #[inline]
2214 fn from(v: BVec3) -> Self {
2215 Self::new(f32::from(v.x), f32::from(v.y), f32::from(v.z))
2216 }
2217}
2218
2219impl From<BVec3A> for Vec3 {
2220 #[inline]
2221 fn from(v: BVec3A) -> Self {
2222 let bool_array: [bool; 3] = v.into();
2223 Self::new(
2224 f32::from(bool_array[0]),
2225 f32::from(bool_array[1]),
2226 f32::from(bool_array[2]),
2227 )
2228 }
2229}