glam/
lib.rs

1/*!
2# glam
3
4`glam` is a simple and fast linear algebra library for games and graphics.
5
6## Features
7
8* [`f32`](mod@f32) types
9  * vectors: [`Vec2`], [`Vec3`], [`Vec3A`] and [`Vec4`]
10  * square matrices: [`Mat2`], [`Mat3`], [`Mat3A`] and [`Mat4`]
11  * a quaternion type: [`Quat`]
12  * affine transformation types: [`Affine2`] and [`Affine3A`]
13* [`f64`](mod@f64) types
14  * vectors: [`DVec2`], [`DVec3`] and [`DVec4`]
15  * square matrices: [`DMat2`], [`DMat3`] and [`DMat4`]
16  * a quaternion type: [`DQuat`]
17  * affine transformation types: [`DAffine2`] and [`DAffine3`]
18* [`i8`](mod@i8) types
19  * vectors: [`I8Vec2`], [`I8Vec3`] and [`I8Vec4`]
20* [`u8`](mod@u8) types
21  * vectors: [`U8Vec2`], [`U8Vec3`] and [`U8Vec4`]
22* [`i16`](mod@i16) types
23  * vectors: [`I16Vec2`], [`I16Vec3`] and [`I16Vec4`]
24* [`u16`](mod@u16) types
25  * vectors: [`U16Vec2`], [`U16Vec3`] and [`U16Vec4`]
26* [`i32`](mod@i32) types
27  * vectors: [`IVec2`], [`IVec3`] and [`IVec4`]
28* [`u32`](mod@u32) types
29  * vectors: [`UVec2`], [`UVec3`] and [`UVec4`]
30* [`i64`](mod@i64) types
31  * vectors: [`I64Vec2`], [`I64Vec3`] and [`I64Vec4`]
32* [`u64`](mod@u64) types
33  * vectors: [`U64Vec2`], [`U64Vec3`] and [`U64Vec4`]
34* [`usize`](mod@usize) types
35  * vectors: [`USizeVec2`], [`USizeVec3`] and [`USizeVec4`]
36* [`bool`](mod@bool) types
37  * vectors: [`BVec2`], [`BVec3`] and [`BVec4`]
38
39## SIMD
40
41`glam` is built with SIMD in mind. Many `f32` types use 128-bit SIMD vector types for storage
42and/or implementation. The use of SIMD generally enables better performance than using primitive
43numeric types such as `f32`.
44
45Some `glam` types use SIMD for storage meaning they are 16 byte aligned, these types include
46`Mat2`, `Mat3A`, `Mat4`, `Quat`, `Vec3A`, `Vec4`, `Affine2` an `Affine3A`. Types
47with an `A` suffix are a SIMD alternative to a scalar type, e.g. `Vec3` uses `f32` storage and
48`Vec3A` uses SIMD storage.
49
50When SIMD is not available on the target the types will maintain 16 byte alignment and internal
51padding so that object sizes and layouts will not change between architectures. There are scalar
52math fallback implementations exist when SIMD is not available. It is intended to add support for
53other SIMD architectures once they appear in stable Rust.
54
55Currently only SSE2 on x86/x86_64, NEON on Aarch64, and simd128 on WASM are supported.
56
57## Vec3A and Mat3A
58
59`Vec3A` is a SIMD optimized version of the `Vec3` type, which due to 16 byte alignment results
60in `Vec3A` containing 4 bytes of padding making it 16 bytes in size in total. `Mat3A` is composed
61of three `Vec3A` columns.
62
63| Type       | `f32` bytes | Align bytes | Size bytes | Padding |
64|:-----------|------------:|------------:|-----------:|--------:|
65|[`Vec3`]    |           12|            4|          12|        0|
66|[`Vec3A`]   |           12|           16|          16|        4|
67|[`Mat3`]    |           36|            4|          36|        0|
68|[`Mat3A`]   |           36|           16|          48|       12|
69
70Despite this wasted space the SIMD implementations tend to outperform `f32` implementations in
71[**mathbench**](https://github.com/bitshifter/mathbench-rs) benchmarks.
72
73`glam` treats [`Vec3`] as the default 3D vector type and [`Vec3A`] a special case for optimization.
74When methods need to return a 3D vector they will generally return [`Vec3`].
75
76There are [`From`] trait implementations for converting from [`Vec4`] to a [`Vec3A`] and between
77[`Vec3`] and [`Vec3A`] (and vice versa).
78
79```
80use glam::{Vec3, Vec3A, Vec4};
81
82let v4 = Vec4::new(1.0, 2.0, 3.0, 4.0);
83
84// Convert from `Vec4` to `Vec3A`, this is a no-op if SIMD is supported.
85// We use an explicit method here instead of a From impl as data is lost in the conversion.
86let v3a = Vec3A::from_vec4(v4);
87assert_eq!(Vec3A::new(1.0, 2.0, 3.0), v3a);
88
89// Convert from `Vec3A` to `Vec3`.
90let v3 = Vec3::from(v3a);
91assert_eq!(Vec3::new(1.0, 2.0, 3.0), v3);
92
93// Convert from `Vec3` to `Vec3A`.
94let v3a = Vec3A::from(v3);
95assert_eq!(Vec3A::new(1.0, 2.0, 3.0), v3a);
96```
97
98## Affine2 and Affine3A
99
100`Affine2` and `Affine3A` are composed of a linear transform matrix and a vector translation. The
101represent 2D and 3D affine transformations which are commonly used in games.
102
103The table below shows the performance advantage of `Affine2` over `Mat3A` and `Mat3A` over `Mat3`.
104
105| operation          | `Mat3`      | `Mat3A`    | `Affine2`  |
106|--------------------|-------------|------------|------------|
107| inverse            | 11.4±0.09ns | 7.1±0.09ns | 5.4±0.06ns |
108| mul self           | 10.5±0.04ns | 5.2±0.05ns | 4.0±0.05ns |
109| transform point2   |  2.7±0.02ns | 2.7±0.03ns | 2.8±0.04ns |
110| transform vector2  |  2.6±0.01ns | 2.6±0.03ns | 2.3±0.02ns |
111
112Performance is much closer between `Mat4` and `Affine3A` with the affine type being faster to
113invert.
114
115| operation          | `Mat4`      | `Affine3A`  |
116|--------------------|-------------|-------------|
117| inverse            | 15.9±0.11ns | 10.8±0.06ns |
118| mul self           |  7.3±0.05ns |  7.0±0.06ns |
119| transform point3   |  3.6±0.02ns |  4.3±0.04ns |
120| transform point3a  |  3.0±0.02ns |  3.0±0.04ns |
121| transform vector3  |  4.1±0.02ns |  3.9±0.04ns |
122| transform vector3a |  2.8±0.02ns |  2.8±0.02ns |
123
124Benchmarks were taken on an Intel Core i7-4710HQ.
125
126## Linear algebra conventions
127
128`glam` interprets vectors as column matrices (also known as column vectors) meaning when
129transforming a vector with a matrix the matrix goes on the left.
130
131```
132use glam::{Mat3, Vec3};
133let m = Mat3::IDENTITY;
134let x = Vec3::X;
135let v = m * x;
136assert_eq!(v, x);
137```
138
139Matrices are stored in memory in column-major order.
140
141All angles are in radians. Rust provides the `f32::to_radians()` and `f64::to_radians()` methods to
142convert from degrees.
143
144## Direct element access
145
146Because some types may internally be implemented using SIMD types, direct access to vector elements
147is supported by implementing the [`Deref`] and [`DerefMut`] traits.
148
149```
150use glam::Vec3A;
151let mut v = Vec3A::new(1.0, 2.0, 3.0);
152assert_eq!(3.0, v.z);
153v.z += 1.0;
154assert_eq!(4.0, v.z);
155```
156
157[`Deref`]: https://doc.rust-lang.org/std/ops/trait.Deref.html
158[`DerefMut`]: https://doc.rust-lang.org/std/ops/trait.DerefMut.html
159
160## glam assertions
161
162`glam` does not enforce validity checks on method parameters at runtime. For example methods that
163require normalized vectors as input such as `Quat::from_axis_angle(axis, angle)` will not check
164that axis is a valid normalized vector. To help catch unintended misuse of `glam` the
165`debug-glam-assert` or `glam-assert` features can be enabled to add checks ensure that inputs to
166are valid.
167
168## Vector swizzles
169
170`glam` vector types have functions allowing elements of vectors to be reordered, this includes
171creating a vector of a different size from the vectors elements.
172
173The swizzle functions are implemented using traits to add them to each vector type. This is
174primarily because there are a lot of swizzle functions which can obfuscate the other vector
175functions in documentation and so on. The traits are [`Vec2Swizzles`], [`Vec3Swizzles`] and
176[`Vec4Swizzles`].
177
178Note that the [`Vec3Swizzles`] implementation for [`Vec3A`] will return a [`Vec3A`] for 3 element
179swizzles, all other implementations will return [`Vec3`].
180
181```
182use glam::{swizzles::*, Vec2, Vec3, Vec3A, Vec4};
183
184let v = Vec4::new(1.0, 2.0, 3.0, 4.0);
185
186// Reverse elements of `v`, if SIMD is supported this will use a vector shuffle.
187let wzyx = v.wzyx();
188assert_eq!(Vec4::new(4.0, 3.0, 2.0, 1.0), wzyx);
189
190// Swizzle the yzw elements of `v` into a `Vec3`
191let yzw = v.yzw();
192assert_eq!(Vec3::new(2.0, 3.0, 4.0), yzw);
193
194// To swizzle a `Vec4` into a `Vec3A` swizzle the `Vec4` first then convert to
195// `Vec3A`. If SIMD is supported this will use a vector shuffle. The last
196// element of the shuffled `Vec4` is ignored by the `Vec3A`.
197let yzw = Vec3A::from_vec4(v.yzwx());
198assert_eq!(Vec3A::new(2.0, 3.0, 4.0), yzw);
199
200// You can swizzle from a `Vec4` to a `Vec2`
201let xy = v.xy();
202assert_eq!(Vec2::new(1.0, 2.0), xy);
203
204// And back again
205let yyxx = xy.yyxx();
206assert_eq!(Vec4::new(2.0, 2.0, 1.0, 1.0), yyxx);
207```
208
209## SIMD and scalar consistency
210
211`glam` types implement `serde` `Serialize` and `Deserialize` traits to ensure
212that they will serialize and deserialize exactly the same whether or not
213SIMD support is being used.
214
215The SIMD versions implement the `core::fmt::Debug` and `core::fmt::Display`
216traits so they print the same as the scalar version.
217
218```
219use glam::Vec4;
220let a = Vec4::new(1.0, 2.0, 3.0, 4.0);
221assert_eq!(format!("{}", a), "[1, 2, 3, 4]");
222```
223
224## Feature gates
225
226All `glam` dependencies are optional, however some are required for tests
227and benchmarks.
228
229* `std` - the default feature, has no dependencies.
230* `approx` - traits and macros for approximate float comparisons
231* `bytemuck` - for casting into slices of bytes
232* `libm` - uses `libm` math functions instead of `std`
233* `nostd-libm` - uses `libm` math functions if `std` is not available
234* `mint` - for interoperating with other 3D math libraries
235* `rand` - implementations of `Distribution` trait for all `glam` types.
236* `rkyv` - implementations of `Archive`, `Serialize` and `Deserialize` for all
237  `glam` types. Note that serialization is not interoperable with and without the
238  `scalar-math` feature. It should work between all other builds of `glam`.
239  Endian conversion is currently not supported
240* `bytecheck` - to perform archive validation when using the `rkyv` feature
241* `serde` - implementations of `Serialize` and `Deserialize` for all `glam`
242  types. Note that serialization should work between builds of `glam` with and without SIMD enabled
243* `scalar-math` - disables SIMD support and uses native alignment for all types.
244* `debug-glam-assert` - adds assertions in debug builds which check the validity of parameters
245  passed to `glam` to help catch runtime errors.
246* `glam-assert` - adds assertions to all builds which check the validity of parameters passed to
247  `glam` to help catch runtime errors.
248* `cuda` - forces `glam` types to match expected cuda alignment
249* `fast-math` - By default, glam attempts to provide bit-for-bit identical
250  results on all platforms. Using this feature will enable platform specific
251  optimizations that may not be identical to other platforms. **Intermediate
252  libraries should not use this feature and defer the decision to the final
253  binary build**.
254* `core-simd` - enables SIMD support via the portable simd module. This is an
255  unstable feature which requires a nightly Rust toolchain and `std` support.
256
257## Minimum Supported Rust Version (MSRV)
258
259The minimum supported Rust version is `1.68.2`.
260
261*/
262#![doc(html_root_url = "https://docs.rs/glam/0.30.2")]
263#![cfg_attr(not(feature = "std"), no_std)]
264#![cfg_attr(target_arch = "spirv", feature(repr_simd))]
265#![deny(
266    rust_2018_compatibility,
267    rust_2018_idioms,
268    future_incompatible,
269    nonstandard_style
270)]
271// clippy doesn't like `to_array(&self)`
272#![allow(clippy::wrong_self_convention)]
273#![cfg_attr(
274    all(feature = "core-simd", not(feature = "scalar-math")),
275    feature(portable_simd)
276)]
277
278#[cfg(all(
279    not(feature = "std"),
280    not(feature = "libm"),
281    not(feature = "nostd-libm")
282))]
283compile_error!(
284    "You must specify a math backend. Consider enabling either `std`, `libm`, or `nostd-libm`."
285);
286
287#[macro_use]
288mod macros;
289
290mod align16;
291mod deref;
292mod euler;
293mod features;
294
295#[cfg(all(
296    target_arch = "aarch64",
297    not(any(feature = "core-simd", feature = "scalar-math"))
298))]
299mod neon;
300
301#[cfg(target_arch = "spirv")]
302mod spirv;
303
304#[cfg(all(
305    target_feature = "sse2",
306    not(any(feature = "core-simd", feature = "scalar-math"))
307))]
308mod sse2;
309
310#[cfg(all(
311    target_feature = "simd128",
312    not(any(feature = "core-simd", feature = "scalar-math"))
313))]
314mod wasm32;
315
316#[cfg(all(feature = "core-simd", not(feature = "scalar-math")))]
317mod coresimd;
318
319#[cfg(all(
320    target_feature = "sse2",
321    not(any(feature = "core-simd", feature = "scalar-math"))
322))]
323use align16::Align16;
324
325/** `bool` vector mask types. */
326pub mod bool;
327pub use self::bool::*;
328
329/** `f32` vector, quaternion and matrix types. */
330pub mod f32;
331pub use self::f32::*;
332
333/** `f64` vector, quaternion and matrix types. */
334pub mod f64;
335pub use self::f64::*;
336
337/** `i8` vector types. */
338pub mod i8;
339pub use self::i8::*;
340
341/** `u8` vector types. */
342pub mod u8;
343pub use self::u8::*;
344
345/** `i16` vector types. */
346pub mod i16;
347pub use self::i16::*;
348
349/** `u16` vector types. */
350pub mod u16;
351pub use self::u16::*;
352
353/** `i32` vector types. */
354pub mod i32;
355pub use self::i32::*;
356
357/** `u32` vector types. */
358pub mod u32;
359pub use self::u32::*;
360
361/** `i64` vector types. */
362pub mod i64;
363pub use self::i64::*;
364
365/** `u64` vector types. */
366pub mod u64;
367pub use self::u64::*;
368
369/** `usize` vector types. */
370pub mod usize;
371pub use self::usize::*;
372
373/** Traits adding swizzle methods to all vector types. */
374pub mod swizzles;
375pub use self::swizzles::{Vec2Swizzles, Vec3Swizzles, Vec4Swizzles};
376
377/** Rotation Helper */
378pub use euler::EulerRot;
379
380/** A trait for extending [`prim@f32`] and [`prim@f64`] with extra methods. */
381mod float;
382pub use float::FloatExt;