internal_iterator/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
#![doc = "Internal iterator equivalent of [`std::iter::Iterator`].

In some cases implementing `Iterator` can be difficult - for tree shaped
structures you would need to store iteration state at every level, which
implies dynamic allocation and nontrivial amounts of state. On the other
hand, internal iteration is roughly equivalent to calling a provided
function on every element you need to yield and is much simpler to
implement.

This library aims to provide `std`-like iteration facilities, but
based on internal iteration. The goal is to be easy to make use of and feel
familiar to users of `Iterator`. There is one core trait, [`InternalIterator`].
By implementing it you can use its provided methods to construct iterator
pipelines similar to those possible by using regular iterators.

# Implementing `InternalIterator`

Whereas the driving method for regular iterators is [`Iterator::next`], the one
used here is [`InternalIterator::try_for_each`].

```rust
use std::ops::ControlFlow;
use internal_iterator::{InternalIterator, IteratorExt};

struct Tree {
    value: i32,
    children: Vec<Tree>,
}

// We implement InternalIterator on the tree directly. You could also
// introduce a wrapper struct and create it in `.iter()`, `.iter_mut()`, just
// like with usual collections.
impl InternalIterator for Tree {
    type Item = i32;

    fn try_for_each<T, F>(self, mut f: F) -> ControlFlow<T>
    where
        F: FnMut(i32) -> ControlFlow<T>,
    {
        self.iter_helper(&mut f)
    }
}

impl Tree {
    fn iter_helper<T>(&self, f: &mut impl FnMut(i32) -> ControlFlow<T>) -> ControlFlow<T> {
        f(self.value)?;
        for child in &self.children {
            child.iter_helper(f)?;
        }
        ControlFlow::Continue(())
    }
}

// now we can use InternalIterator facilities to construct iterator pipelines

let tree = Tree {
    value: 1,
    children: vec![
        Tree {
            value: 2,
            children: Vec::new(),
        },
        Tree {
            value: 3,
            children: vec![
                Tree {
                    value: 4,
                    children: Vec::new(),
                },
            ]
        },
    ]
};

let result = tree
    .map(|x| x * 2)
    .filter(|&x| x > 3)
    .flat_map(|x| [x, x * 10])
    .collect::<Vec<_>>();

assert_eq!(result, vec![4, 40, 6, 60, 8, 80]);
```

# Differences from `std::iter::Iterator`

The main difference between `Iterator` and `InternalIterator` traits is that
all methods in `InternalIterator` consume the iterators. While for regular
iterators you can for example call `nth` and then keep using the iterator with
remaining elements being untouched, you cannot do so with `InternalIterator`.
This is a deliberate choice, as the goal of this library allow having a simpler
iterator implementation without losing too much power. Regular iterators must
keep state to be able to implement `next`, but state is not a hard requirement
for internal iteration and requiring it would defeat the purpose of the library.

Because internal iterators drive themselves instead of being driven by an
outside called, some methods from `Iterator` are not possible to implement. The
most prominent example is [`Iterator::zip`].

# `nostd` compatibility

This crate has two optional features:

* `alloc` - includes `FromInternalIterator` and `IntoInternalIterator` impls
for `String`, `Vec`, `BTreeMap`, and `BTreeSet`. Brings in a dependency on
`alloc`.
* `std` - includes `FromInternalIterator` and `IntoInternalIterator` impls for
`HashSet` and `HashMap`. Brings in a dependency on `std`.

Both of these features are enabled by default, but you can disable them if you
are compiling without `std` or even without `alloc`."]

#![cfg_attr(not(feature = "std"), no_std)]

#![forbid(unsafe_code)]
#![deny(missing_docs)]

mod adaptors;
mod from_fn_impl;

#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "alloc")]
mod alloc_impls;

#[cfg(feature = "std")]
mod std_impls;

#[cfg(test)]
mod tests;

use core::cmp::Ordering;
use core::ops::ControlFlow;
pub use crate::adaptors::*;
pub use crate::from_fn_impl::{FromFn, BreakValue, from_fn};

/// Internal iterator over a collection.
#[must_use = "internal iterators are lazy and do nothing unless consumed"]
pub trait InternalIterator: Sized {
    /// Type of items yielded by the iterator.
    type Item;

    /// Applies function each elements of the iterator. Stops early if the
    /// function returns `ControlFlow::Break`.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// # use std::ops::ControlFlow;
    /// let a = [1, 2, 3, 4, 5, 6];
    /// let mut collected = Vec::new();
    ///
    /// let result = a.iter().into_internal().try_for_each(|&x| {
    ///     collected.push(x);
    ///     if x == 4 {
    ///         ControlFlow::Break("stopped!")
    ///     } else {
    ///         ControlFlow::Continue(())
    ///     }
    /// });
    ///
    /// assert_eq!(collected, [1, 2, 3, 4]);
    /// assert_eq!(result, ControlFlow::Break("stopped!"));
    /// ```
    fn try_for_each<R, F>(self, f: F) -> ControlFlow<R>
    where
        F: FnMut(Self::Item) -> ControlFlow<R>;

    /// Applies function to the elements of iterator and returns the first
    /// non-none result.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = ["lol", "two", "NaN", "4", "5"];
    ///
    /// let parsed = a
    ///     .iter()
    ///     .into_internal()
    ///     .find_map(|x| x.parse().ok());
    ///
    /// assert_eq!(parsed, Some(4));
    /// ```
    fn find_map<R, F>(self, mut f: F) -> Option<R>
    where
        F: FnMut(Self::Item) -> Option<R>
    {
        let value = self.try_for_each(|item| {
            if let Some(value) = f(item) {
                ControlFlow::Break(value)
            } else {
                ControlFlow::Continue(())
            }
        });
        match value {
            ControlFlow::Continue(()) => None,
            ControlFlow::Break(value) => Some(value),
        }
    }

    /// Tests if every element of the iterator matches the predicate.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3];
    /// assert!(a.iter().into_internal().all(|&x| x > 0));
    /// assert!(!a.iter().into_internal().all(|&x| x < 2));
    /// ```
    fn all<F>(self, mut f: F) -> bool
    where
        F: FnMut(Self::Item) -> bool,
    {
        self.find_map(|item| if f(item) { None } else { Some(()) }).is_none()
    }

    /// Tests if any element of the iterator matches the predicate.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3];
    /// assert!(a.iter().into_internal().any(|&x| x == 2));
    /// assert!(!a.iter().into_internal().any(|&x| x > 5));
    /// ```
    fn any<F>(self, mut f: F) -> bool
    where
        F: FnMut(Self::Item) -> bool,
    {
        self.find_map(|item| if f(item) { Some(()) } else { None }).is_some()
    }

    /// Takes two iterators and returns an iterator that first iterates over the
    /// elements of the first iterator, and then over the second one.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a1 = [1, 2, 3];
    /// let a2 = [4, 5, 6];
    ///
    /// let chained = a1.iter().into_internal()
    ///     .chain(a2.iter().into_internal())
    ///     .collect::<Vec<_>>();
    ///
    /// assert_eq!(chained, vec![&1, &2, &3, &4, &5, &6]);
    /// ```
    fn chain<U>(self, other: U) -> Chain<Self, <U as IntoInternalIterator>::IntoIter>
    where
        U: IntoInternalIterator<Item = Self::Item>,
    {
        Chain { first: self, second: other.into_internal_iter() }
    }

    /// Creates an iterator yields cloned elements of the original iterator.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3];
    ///
    /// let cloned = a.iter().into_internal().cloned().collect::<Vec<_>>();
    ///
    /// assert_eq!(cloned, vec![1, 2, 3]);
    /// ```
    fn cloned<'a, T: 'a>(self) -> Cloned<Self>
    where
        Self: InternalIterator<Item = &'a T>,
        T: Clone,
    {
        Cloned { iter: self }
    }

    /// Transforms the iterator into a collection.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3];
    ///
    /// let doubled = a
    ///     .iter()
    ///     .into_internal()
    ///     .map(|&x| x * 2)
    ///     .collect::<Vec<_>>();
    ///
    /// assert_eq!(doubled, vec![2, 4, 6]);
    /// ```
    fn collect<B>(self) -> B
    where
        B: FromInternalIterator<Self::Item>,
    {
        B::from_iter(self)
    }

    /// Creates an iterator yields copied elements of the original iterator.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3];
    ///
    /// let cloned = a.iter().into_internal().copied().collect::<Vec<_>>();
    ///
    /// assert_eq!(cloned, vec![1, 2, 3]);
    /// ```
    fn copied<'a, T: 'a>(self) -> Copied<Self>
    where
        Self: InternalIterator<Item = &'a T>,
        T: Copy,
    {
        Copied { iter: self }
    }

    /// Returns the number of elements yielded by the iterator.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3];
    ///
    /// assert_eq!(a.iter().into_internal().count(), 3);
    /// ```
    fn count(self) -> usize {
        let mut count = 0;
        self.for_each(|_| count += 1);
        count
    }

    // TODO: cycle

    /// Creates an iterator that adds the index to every value of the original
    /// iterator.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = ['a', 'b', 'c'];
    ///
    /// let enumerated = a.iter().into_internal().enumerate().collect::<Vec<_>>();
    ///
    /// assert_eq!(enumerated, vec![(0, &'a'), (1, &'b'), (2, &'c')]);
    /// ```
    fn enumerate(self) -> Enumerate<Self> {
        Enumerate { iter: self }
    }

    /// Creates an iterator which only yields elements matching the predicate.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [0i32, 1, 2];
    ///
    /// let positive = a.iter().into_internal().filter(|x| x.is_positive()).collect::<Vec<_>>();
    ///
    /// assert_eq!(positive, vec![&1, &2]);
    /// ```
    fn filter<P>(self, predicate: P) -> Filter<Self, P>
    where
        P: FnMut(&Self::Item) -> bool,
    {
        Filter { iter: self, predicate }
    }

    /// A combination of [`InternalIterator::filter`] and
    /// [`InternalIterator::map`].
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = ["1", "two", "NaN", "four", "5"];
    ///
    /// let parsed: Vec<_> = a
    ///     .iter()
    ///     .into_internal()
    ///     .filter_map(|x| x.parse::<i32>().ok())
    ///     .collect();
    ///
    /// assert_eq!(parsed, vec![1, 5]);
    /// ```
    fn filter_map<T, F>(self, f: F) -> FilterMap<Self, F>
    where
        F: FnMut(Self::Item) -> Option<T>,
    {
        FilterMap { iter: self, f }
    }

    /// Returns the first element of the iterator that matches the predicate.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3];
    ///
    /// assert_eq!(a.iter().into_internal().find(|&&x| x == 2), Some(&2));
    ///
    /// assert_eq!(a.iter().into_internal().find(|&&x| x == 5), None);
    /// ```
    fn find<F>(self, mut f: F) -> Option<Self::Item>
    where
        F: FnMut(&Self::Item) -> bool,
    {
        self.find_map(|item| {
            if f(&item) {
                Some(item)
            } else {
                None
            }
        })
    }

    /// Creates and iterator which maps over the elements and flattens the
    /// resulting structure.
    ///
    /// The provided closure is expected to return a type implementing
    /// [`IntoInternalIterator`]. The usual types that work with
    /// [`std::iter::Iterator::flat_map`] don't work here, so you will need to
    /// use [`IteratorExt::into_internal`] to use regular iterators with this
    /// function.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3];
    ///
    /// let mapped = a.iter()
    ///     .into_internal()
    ///     .flat_map(|&x| [x * 10 + 2, x * 10 + 3])
    ///     .collect::<Vec<_>>();
    ///
    /// assert_eq!(mapped, vec![12, 13, 22, 23, 32, 33]);
    /// ```
    fn flat_map<U, F>(self, f: F) -> FlatMap<Self, F>
    where
        F: FnMut(Self::Item) -> U,
        U: IntoInternalIterator,
    {
        FlatMap { iter: self, f }
    }

    // TODO: flatten

    /// Folds every element into an accumulator by applying an operation, returning the final result.
    /// 
    /// ```
    /// # use internal_iterator::{InternalIterator, IntoInternalIterator};
    /// let a = [1, 2, 3];
    /// let sum = a.into_internal_iter().fold(0, |acc, x| acc + x);
    /// assert_eq!(sum, 6);
    /// ```
    fn fold<B, F>(self, init: B, mut f: F) -> B
    where
        F: FnMut(B, Self::Item) -> B,
    {
        let mut acc = Some(init);
        self.for_each(|item|
            acc = acc.take().map(|acc| f(acc, item))
        );
        acc.unwrap()
    }

    /// Run the closure on each element.
    fn for_each<F>(self, mut f: F)
    where
        F: FnMut(Self::Item)
    {
        self.try_for_each::<(), _>(|item| {
            f(item);
            ControlFlow::Continue(())
        });
    }

    /// Run the closure on each element, while passing that element on.
    ///
    /// This can be used to inspect the values passed through the iterator
    /// while not modifying the rest of the iterator pipeline.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 4, 6, 3, 2];
    ///
    /// let v = a.iter()
    ///     .into_internal()
    ///     .filter(|&x| x % 2 == 0)
    ///     .inspect(|x| println!("item: {}", x))
    ///     .map(|x| x / 2)
    ///     .collect::<Vec<_>>();
    ///
    /// assert_eq!(v, vec![2, 3, 1]);
    /// // also prints to stdout:
    /// // item: 4
    /// // item: 6
    /// // item: 2
    /// ```
    fn inspect<F>(self, f: F) -> Inspect<Self, F>
    where
        F: FnMut(&Self::Item)
    {
        Inspect { iter: self, f }
    }

    /// Returns the last element.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3];
    /// assert_eq!(a.iter().into_internal().last(), Some(&3));
    ///
    /// let a = [1, 2, 3, 4, 5];
    /// assert_eq!(a.iter().into_internal().last(), Some(&5));
    /// ```
    fn last(self) -> Option<Self::Item> {
        let mut last = None;
        self.for_each(|item| last = Some(item));
        last
    }

    /// Transform each element in the iterator.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3];
    ///
    /// let doubled = a
    ///     .iter()
    ///     .into_internal()
    ///     .map(|&x| x * 2)
    ///     .collect::<Vec<_>>();
    ///
    /// assert_eq!(doubled, vec![2, 4, 6]);
    /// ```
    fn map<F, T>(self, f: F) -> Map<Self, F>
    where
        F: FnMut(Self::Item) -> T,
    {
        Map { iter: self, f }
    }

    /// Returns the maximum element of an iterator.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3];
    /// let b: Vec<u32> = Vec::new();
    ///
    /// assert_eq!(a.iter().into_internal().max(), Some(&3));
    /// assert_eq!(b.iter().into_internal().max(), None);
    /// ```
    fn max(self) -> Option<Self::Item>
    where
        Self::Item: Ord,
    {
        self.max_by(Ord::cmp)
    }

    /// Returns the maximum element of an iterator using a custom comparer
    /// function.
    fn max_by<F>(self, mut compare: F) -> Option<Self::Item>
    where
        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
    {
        let mut max = None;
        self.for_each(|item| {
            match max.take() {
                None => max = Some(item),
                Some(i) => {
                    max = Some(max_by(item, i, &mut compare));
                }
            }
        });
        max
    }

    /// Returns the element that gives the maximum value from the specified function.
    fn max_by_key<B: Ord>(self, mut key: impl FnMut(&Self::Item) -> B) -> Option<Self::Item> {
        self.map(|x| (key(&x), x))
            .max_by(|(kx, _), (ky, _)| kx.cmp(ky))
            .map(|(_, x)| x)
    }

    /// Returns the minimum element of an iterator.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3];
    /// let b: Vec<u32> = Vec::new();
    ///
    /// assert_eq!(a.iter().into_internal().min(), Some(&1));
    /// assert_eq!(b.iter().into_internal().min(), None);
    /// ```
    fn min(self) -> Option<Self::Item>
    where
        Self::Item: Ord,
    {
        self.min_by(Ord::cmp)
    }

    /// Returns the minimum element of an iterator using a custom comparer
    /// function.
    fn min_by<F>(self, mut compare: F) -> Option<Self::Item>
    where
        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
    {
        let mut min = None;
        self.for_each(|item| {
            match min.take() {
                None => min = Some(item),
                Some(i) => {
                    min = Some(min_by(item, i, &mut compare));
                }
            }
        });
        min
    }

    /// Returns the element that gives the minimum value from the specified function.
    fn min_by_key<B: Ord>(self, mut key: impl FnMut(&Self::Item) -> B) -> Option<Self::Item> {
        self.map(|x| (key(&x), x))
            .min_by(|(kx, _), (ky, _)| kx.cmp(ky))
            .map(|(_, x)| x)
    }

    /// Returns the first element of the iterator.
    ///
    /// Note that unlike [`Iterator::next`], this method consumes the iterator.
    /// It is really only useful for getting the first element in the iterator,
    /// and is called `next` just for api similarity with regular iterators.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3];
    /// assert_eq!(a.iter().into_internal().next(), Some(&1));
    /// ```
    fn next(self) -> Option<Self::Item> {
        self.find_map(Some)
    }

    /// Returns the `n`th element of the iterator.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3];
    /// assert_eq!(a.iter().into_internal().nth(1), Some(&2));
    /// ```
    fn nth(self, mut n: usize) -> Option<Self::Item> {
        self.find_map(|item| {
            if n == 0 {
                Some(item)
            } else {
                n -= 1;
                None
            }
        })
    }

    /// Returns the index of the first element matching the predicate.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3];
    ///
    /// assert_eq!(a.iter().into_internal().position(|&x| x == 2), Some(1));
    ///
    /// assert_eq!(a.iter().into_internal().position(|&x| x == 5), None);
    /// ```
    fn position<F>(self, mut f: F) -> Option<usize>
    where
        F: FnMut(Self::Item) -> bool,
    {
        self.enumerate().find_map(|(idx, item)| {
            if f(item) {
                Some(idx)
            } else {
                None
            }
        })
    }

    // TODO: product

    // TODO: scan

    /// Skip first `n` elements of the iterator.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3, 4];
    ///
    /// let v = a.iter().into_internal().skip(2).collect::<Vec<_>>();
    ///
    /// assert_eq!(v, vec![&3, &4]);
    /// ```
    fn skip(self, n: usize) -> Skip<Self> {
        Skip { iter: self, n }
    }

    // TODO: skip_while

    // TODO: step_by

    // TODO: sum

    /// Take first `n` elements of the iterator, disregarding the rest.
    ///
    /// ```
    /// # use internal_iterator::{InternalIterator, IteratorExt};
    /// let a = [1, 2, 3, 4];
    ///
    /// let v = a.iter().into_internal().take(2).collect::<Vec<_>>();
    ///
    /// assert_eq!(v, vec![&1, &2]);
    /// ```
    fn take(self, n: usize) -> Take<Self> {
        Take { iter: self, n }
    }

    // TODO: take_while

    // TODO: try_find

    // TODO: try_fold

    // TODO: unzip
}

/// Conversion to an [`InternalIterator`].
///
/// This is internal-iterator equivalent of [`std::iter::IntoIterator`].
pub trait IntoInternalIterator {
    /// The type of the elements being iterated over.
    type Item;
    /// Concrete iterator type returned by the conversion.
    type IntoIter: InternalIterator<Item = Self::Item>;

    /// Convert this type to an internal iterator.
    fn into_internal_iter(self) -> Self::IntoIter;
}

impl<I> IntoInternalIterator for I
where
    I: InternalIterator,
{
    type Item = I::Item;

    type IntoIter = I;

    fn into_internal_iter(self) -> Self::IntoIter {
        self
    }
}

macro_rules! into_internal_impls {
    ($([$($generics:tt)*] $ty:ty,)*) => {
        $(
            impl<$($generics)*> IntoInternalIterator for $ty {
                type Item = <$ty as IntoIterator>::Item;
                type IntoIter = crate::Internal<<$ty as IntoIterator>::IntoIter>;
                fn into_internal_iter(self) -> Self::IntoIter {
                    self.into_iter().into_internal()
                }
            }
        )*
    }
}

pub(crate) use into_internal_impls;

into_internal_impls! {
    ['a, T] &'a [T],
    ['a, T] &'a mut [T],
    ['a, T, const N: usize] &'a [T; N],
    ['a, T, const N: usize] &'a mut [T; N],
    [T, const N: usize] [T; N],
    ['a, T] &'a Option<T>,
    ['a, T] &'a mut Option<T>,
    [T] Option<T>,
    ['a, T, E] &'a Result<T, E>,
    ['a, T, E] &'a mut Result<T, E>,
    [T, E] Result<T, E>,
}

/// Extension trait to add conversion to [`InternalIterator`] for regular
/// iterators.
pub trait IteratorExt: IntoIterator {
    /// Convert an [`std::iter::Iterator`] to an [`InternalIterator`].
    ///
    /// Composing internal iterators together requires all used iterators to be
    /// internal iterators. Given that regular iterators are far more prevalent,
    /// this function can be used to allow them to be used together with
    /// internal iterators.
    ///
    /// ```
    /// # use internal_iterator::InternalIterator;use internal_iterator::IteratorExt;
    ///
    /// fn flatten_ranges(
    ///     ranges: impl InternalIterator<Item = (i32, i32)>,
    /// ) -> impl InternalIterator<Item = i32> {
    ///     ranges.flat_map(|(from, to)| (from..to).into_internal())
    /// }
    fn into_internal(self) -> Internal<Self::IntoIter>
    where
        Self: Sized,
    {
        Internal { iterator: self.into_iter() }
    }
}

impl<I: IntoIterator> IteratorExt for I {}

/// Conversion from an [`InternalIterator`].
///
/// This is internal-iterator equivalent of [`std::iter::FromIterator`].
pub trait FromInternalIterator<A> {
    /// Convert from an iterator.
    fn from_iter<T>(iter: T) -> Self
    where
        T: IntoInternalIterator<Item = A>;
}

impl<C, R, E> FromInternalIterator<Result<R, E>> for Result<C, E>
where
    C: FromInternalIterator<R>,
{
    fn from_iter<T>(iter: T) -> Self
    where
        T: IntoInternalIterator<Item = Result<R, E>>
    {
        let mut error = None;
        let c = C::from_iter(iter
            .into_internal_iter()
            // FIXME: this could stop on first Err
            .filter_map(|r| match r {
                Ok(v) => Some(v),
                Err(e) => {
                    error = Some(e);
                    None
                }
            }));
        match error {
            Some(err) => Err(err),
            None => Ok(c),
        }
    }
}

fn max_by<A, C: FnMut(&A, &A) -> Ordering>(x: A, y: A, mut compare: C) -> A {
    match compare(&x, &y) {
        Ordering::Less => y,
        Ordering::Equal |
        Ordering::Greater => x,
    }
}

fn min_by<A, C: FnMut(&A, &A) -> Ordering>(x: A, y: A, mut compare: C) -> A {
    match compare(&x, &y) {
        Ordering::Less |
        Ordering::Equal => x,
        Ordering::Greater => y,
    }
}