internal_iterator/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
#![doc = "Internal iterator equivalent of [`std::iter::Iterator`].
In some cases implementing `Iterator` can be difficult - for tree shaped
structures you would need to store iteration state at every level, which
implies dynamic allocation and nontrivial amounts of state. On the other
hand, internal iteration is roughly equivalent to calling a provided
function on every element you need to yield and is much simpler to
implement.
This library aims to provide `std`-like iteration facilities, but
based on internal iteration. The goal is to be easy to make use of and feel
familiar to users of `Iterator`. There is one core trait, [`InternalIterator`].
By implementing it you can use its provided methods to construct iterator
pipelines similar to those possible by using regular iterators.
# Implementing `InternalIterator`
Whereas the driving method for regular iterators is [`Iterator::next`], the one
used here is [`InternalIterator::try_for_each`].
```rust
use std::ops::ControlFlow;
use internal_iterator::{InternalIterator, IteratorExt};
struct Tree {
value: i32,
children: Vec<Tree>,
}
// We implement InternalIterator on the tree directly. You could also
// introduce a wrapper struct and create it in `.iter()`, `.iter_mut()`, just
// like with usual collections.
impl InternalIterator for Tree {
type Item = i32;
fn try_for_each<T, F>(self, mut f: F) -> ControlFlow<T>
where
F: FnMut(i32) -> ControlFlow<T>,
{
self.iter_helper(&mut f)
}
}
impl Tree {
fn iter_helper<T>(&self, f: &mut impl FnMut(i32) -> ControlFlow<T>) -> ControlFlow<T> {
f(self.value)?;
for child in &self.children {
child.iter_helper(f)?;
}
ControlFlow::Continue(())
}
}
// now we can use InternalIterator facilities to construct iterator pipelines
let tree = Tree {
value: 1,
children: vec![
Tree {
value: 2,
children: Vec::new(),
},
Tree {
value: 3,
children: vec![
Tree {
value: 4,
children: Vec::new(),
},
]
},
]
};
let result = tree
.map(|x| x * 2)
.filter(|&x| x > 3)
.flat_map(|x| [x, x * 10])
.collect::<Vec<_>>();
assert_eq!(result, vec![4, 40, 6, 60, 8, 80]);
```
# Differences from `std::iter::Iterator`
The main difference between `Iterator` and `InternalIterator` traits is that
all methods in `InternalIterator` consume the iterators. While for regular
iterators you can for example call `nth` and then keep using the iterator with
remaining elements being untouched, you cannot do so with `InternalIterator`.
This is a deliberate choice, as the goal of this library allow having a simpler
iterator implementation without losing too much power. Regular iterators must
keep state to be able to implement `next`, but state is not a hard requirement
for internal iteration and requiring it would defeat the purpose of the library.
Because internal iterators drive themselves instead of being driven by an
outside called, some methods from `Iterator` are not possible to implement. The
most prominent example is [`Iterator::zip`].
# `nostd` compatibility
This crate has two optional features:
* `alloc` - includes `FromInternalIterator` and `IntoInternalIterator` impls
for `String`, `Vec`, `BTreeMap`, and `BTreeSet`. Brings in a dependency on
`alloc`.
* `std` - includes `FromInternalIterator` and `IntoInternalIterator` impls for
`HashSet` and `HashMap`. Brings in a dependency on `std`.
Both of these features are enabled by default, but you can disable them if you
are compiling without `std` or even without `alloc`."]
#![cfg_attr(not(feature = "std"), no_std)]
#![forbid(unsafe_code)]
#![deny(missing_docs)]
mod adaptors;
mod from_fn_impl;
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "alloc")]
mod alloc_impls;
#[cfg(feature = "std")]
mod std_impls;
#[cfg(test)]
mod tests;
use core::cmp::Ordering;
use core::ops::ControlFlow;
pub use crate::adaptors::*;
pub use crate::from_fn_impl::{FromFn, BreakValue, from_fn};
/// Internal iterator over a collection.
#[must_use = "internal iterators are lazy and do nothing unless consumed"]
pub trait InternalIterator: Sized {
/// Type of items yielded by the iterator.
type Item;
/// Applies function each elements of the iterator. Stops early if the
/// function returns `ControlFlow::Break`.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// # use std::ops::ControlFlow;
/// let a = [1, 2, 3, 4, 5, 6];
/// let mut collected = Vec::new();
///
/// let result = a.iter().into_internal().try_for_each(|&x| {
/// collected.push(x);
/// if x == 4 {
/// ControlFlow::Break("stopped!")
/// } else {
/// ControlFlow::Continue(())
/// }
/// });
///
/// assert_eq!(collected, [1, 2, 3, 4]);
/// assert_eq!(result, ControlFlow::Break("stopped!"));
/// ```
fn try_for_each<R, F>(self, f: F) -> ControlFlow<R>
where
F: FnMut(Self::Item) -> ControlFlow<R>;
/// Applies function to the elements of iterator and returns the first
/// non-none result.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = ["lol", "two", "NaN", "4", "5"];
///
/// let parsed = a
/// .iter()
/// .into_internal()
/// .find_map(|x| x.parse().ok());
///
/// assert_eq!(parsed, Some(4));
/// ```
fn find_map<R, F>(self, mut f: F) -> Option<R>
where
F: FnMut(Self::Item) -> Option<R>
{
let value = self.try_for_each(|item| {
if let Some(value) = f(item) {
ControlFlow::Break(value)
} else {
ControlFlow::Continue(())
}
});
match value {
ControlFlow::Continue(()) => None,
ControlFlow::Break(value) => Some(value),
}
}
/// Tests if every element of the iterator matches the predicate.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3];
/// assert!(a.iter().into_internal().all(|&x| x > 0));
/// assert!(!a.iter().into_internal().all(|&x| x < 2));
/// ```
fn all<F>(self, mut f: F) -> bool
where
F: FnMut(Self::Item) -> bool,
{
self.find_map(|item| if f(item) { None } else { Some(()) }).is_none()
}
/// Tests if any element of the iterator matches the predicate.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3];
/// assert!(a.iter().into_internal().any(|&x| x == 2));
/// assert!(!a.iter().into_internal().any(|&x| x > 5));
/// ```
fn any<F>(self, mut f: F) -> bool
where
F: FnMut(Self::Item) -> bool,
{
self.find_map(|item| if f(item) { Some(()) } else { None }).is_some()
}
/// Takes two iterators and returns an iterator that first iterates over the
/// elements of the first iterator, and then over the second one.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a1 = [1, 2, 3];
/// let a2 = [4, 5, 6];
///
/// let chained = a1.iter().into_internal()
/// .chain(a2.iter().into_internal())
/// .collect::<Vec<_>>();
///
/// assert_eq!(chained, vec![&1, &2, &3, &4, &5, &6]);
/// ```
fn chain<U>(self, other: U) -> Chain<Self, <U as IntoInternalIterator>::IntoIter>
where
U: IntoInternalIterator<Item = Self::Item>,
{
Chain { first: self, second: other.into_internal_iter() }
}
/// Creates an iterator yields cloned elements of the original iterator.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3];
///
/// let cloned = a.iter().into_internal().cloned().collect::<Vec<_>>();
///
/// assert_eq!(cloned, vec![1, 2, 3]);
/// ```
fn cloned<'a, T: 'a>(self) -> Cloned<Self>
where
Self: InternalIterator<Item = &'a T>,
T: Clone,
{
Cloned { iter: self }
}
/// Transforms the iterator into a collection.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3];
///
/// let doubled = a
/// .iter()
/// .into_internal()
/// .map(|&x| x * 2)
/// .collect::<Vec<_>>();
///
/// assert_eq!(doubled, vec![2, 4, 6]);
/// ```
fn collect<B>(self) -> B
where
B: FromInternalIterator<Self::Item>,
{
B::from_iter(self)
}
/// Creates an iterator yields copied elements of the original iterator.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3];
///
/// let cloned = a.iter().into_internal().copied().collect::<Vec<_>>();
///
/// assert_eq!(cloned, vec![1, 2, 3]);
/// ```
fn copied<'a, T: 'a>(self) -> Copied<Self>
where
Self: InternalIterator<Item = &'a T>,
T: Copy,
{
Copied { iter: self }
}
/// Returns the number of elements yielded by the iterator.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3];
///
/// assert_eq!(a.iter().into_internal().count(), 3);
/// ```
fn count(self) -> usize {
let mut count = 0;
self.for_each(|_| count += 1);
count
}
// TODO: cycle
/// Creates an iterator that adds the index to every value of the original
/// iterator.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = ['a', 'b', 'c'];
///
/// let enumerated = a.iter().into_internal().enumerate().collect::<Vec<_>>();
///
/// assert_eq!(enumerated, vec![(0, &'a'), (1, &'b'), (2, &'c')]);
/// ```
fn enumerate(self) -> Enumerate<Self> {
Enumerate { iter: self }
}
/// Creates an iterator which only yields elements matching the predicate.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [0i32, 1, 2];
///
/// let positive = a.iter().into_internal().filter(|x| x.is_positive()).collect::<Vec<_>>();
///
/// assert_eq!(positive, vec![&1, &2]);
/// ```
fn filter<P>(self, predicate: P) -> Filter<Self, P>
where
P: FnMut(&Self::Item) -> bool,
{
Filter { iter: self, predicate }
}
/// A combination of [`InternalIterator::filter`] and
/// [`InternalIterator::map`].
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = ["1", "two", "NaN", "four", "5"];
///
/// let parsed: Vec<_> = a
/// .iter()
/// .into_internal()
/// .filter_map(|x| x.parse::<i32>().ok())
/// .collect();
///
/// assert_eq!(parsed, vec![1, 5]);
/// ```
fn filter_map<T, F>(self, f: F) -> FilterMap<Self, F>
where
F: FnMut(Self::Item) -> Option<T>,
{
FilterMap { iter: self, f }
}
/// Returns the first element of the iterator that matches the predicate.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3];
///
/// assert_eq!(a.iter().into_internal().find(|&&x| x == 2), Some(&2));
///
/// assert_eq!(a.iter().into_internal().find(|&&x| x == 5), None);
/// ```
fn find<F>(self, mut f: F) -> Option<Self::Item>
where
F: FnMut(&Self::Item) -> bool,
{
self.find_map(|item| {
if f(&item) {
Some(item)
} else {
None
}
})
}
/// Creates and iterator which maps over the elements and flattens the
/// resulting structure.
///
/// The provided closure is expected to return a type implementing
/// [`IntoInternalIterator`]. The usual types that work with
/// [`std::iter::Iterator::flat_map`] don't work here, so you will need to
/// use [`IteratorExt::into_internal`] to use regular iterators with this
/// function.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3];
///
/// let mapped = a.iter()
/// .into_internal()
/// .flat_map(|&x| [x * 10 + 2, x * 10 + 3])
/// .collect::<Vec<_>>();
///
/// assert_eq!(mapped, vec![12, 13, 22, 23, 32, 33]);
/// ```
fn flat_map<U, F>(self, f: F) -> FlatMap<Self, F>
where
F: FnMut(Self::Item) -> U,
U: IntoInternalIterator,
{
FlatMap { iter: self, f }
}
// TODO: flatten
/// Folds every element into an accumulator by applying an operation, returning the final result.
///
/// ```
/// # use internal_iterator::{InternalIterator, IntoInternalIterator};
/// let a = [1, 2, 3];
/// let sum = a.into_internal_iter().fold(0, |acc, x| acc + x);
/// assert_eq!(sum, 6);
/// ```
fn fold<B, F>(self, init: B, mut f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
let mut acc = Some(init);
self.for_each(|item|
acc = acc.take().map(|acc| f(acc, item))
);
acc.unwrap()
}
/// Run the closure on each element.
fn for_each<F>(self, mut f: F)
where
F: FnMut(Self::Item)
{
self.try_for_each::<(), _>(|item| {
f(item);
ControlFlow::Continue(())
});
}
/// Run the closure on each element, while passing that element on.
///
/// This can be used to inspect the values passed through the iterator
/// while not modifying the rest of the iterator pipeline.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 4, 6, 3, 2];
///
/// let v = a.iter()
/// .into_internal()
/// .filter(|&x| x % 2 == 0)
/// .inspect(|x| println!("item: {}", x))
/// .map(|x| x / 2)
/// .collect::<Vec<_>>();
///
/// assert_eq!(v, vec![2, 3, 1]);
/// // also prints to stdout:
/// // item: 4
/// // item: 6
/// // item: 2
/// ```
fn inspect<F>(self, f: F) -> Inspect<Self, F>
where
F: FnMut(&Self::Item)
{
Inspect { iter: self, f }
}
/// Returns the last element.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3];
/// assert_eq!(a.iter().into_internal().last(), Some(&3));
///
/// let a = [1, 2, 3, 4, 5];
/// assert_eq!(a.iter().into_internal().last(), Some(&5));
/// ```
fn last(self) -> Option<Self::Item> {
let mut last = None;
self.for_each(|item| last = Some(item));
last
}
/// Transform each element in the iterator.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3];
///
/// let doubled = a
/// .iter()
/// .into_internal()
/// .map(|&x| x * 2)
/// .collect::<Vec<_>>();
///
/// assert_eq!(doubled, vec![2, 4, 6]);
/// ```
fn map<F, T>(self, f: F) -> Map<Self, F>
where
F: FnMut(Self::Item) -> T,
{
Map { iter: self, f }
}
/// Returns the maximum element of an iterator.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3];
/// let b: Vec<u32> = Vec::new();
///
/// assert_eq!(a.iter().into_internal().max(), Some(&3));
/// assert_eq!(b.iter().into_internal().max(), None);
/// ```
fn max(self) -> Option<Self::Item>
where
Self::Item: Ord,
{
self.max_by(Ord::cmp)
}
/// Returns the maximum element of an iterator using a custom comparer
/// function.
fn max_by<F>(self, mut compare: F) -> Option<Self::Item>
where
F: FnMut(&Self::Item, &Self::Item) -> Ordering,
{
let mut max = None;
self.for_each(|item| {
match max.take() {
None => max = Some(item),
Some(i) => {
max = Some(max_by(item, i, &mut compare));
}
}
});
max
}
/// Returns the element that gives the maximum value from the specified function.
fn max_by_key<B: Ord>(self, mut key: impl FnMut(&Self::Item) -> B) -> Option<Self::Item> {
self.map(|x| (key(&x), x))
.max_by(|(kx, _), (ky, _)| kx.cmp(ky))
.map(|(_, x)| x)
}
/// Returns the minimum element of an iterator.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3];
/// let b: Vec<u32> = Vec::new();
///
/// assert_eq!(a.iter().into_internal().min(), Some(&1));
/// assert_eq!(b.iter().into_internal().min(), None);
/// ```
fn min(self) -> Option<Self::Item>
where
Self::Item: Ord,
{
self.min_by(Ord::cmp)
}
/// Returns the minimum element of an iterator using a custom comparer
/// function.
fn min_by<F>(self, mut compare: F) -> Option<Self::Item>
where
F: FnMut(&Self::Item, &Self::Item) -> Ordering,
{
let mut min = None;
self.for_each(|item| {
match min.take() {
None => min = Some(item),
Some(i) => {
min = Some(min_by(item, i, &mut compare));
}
}
});
min
}
/// Returns the element that gives the minimum value from the specified function.
fn min_by_key<B: Ord>(self, mut key: impl FnMut(&Self::Item) -> B) -> Option<Self::Item> {
self.map(|x| (key(&x), x))
.min_by(|(kx, _), (ky, _)| kx.cmp(ky))
.map(|(_, x)| x)
}
/// Returns the first element of the iterator.
///
/// Note that unlike [`Iterator::next`], this method consumes the iterator.
/// It is really only useful for getting the first element in the iterator,
/// and is called `next` just for api similarity with regular iterators.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3];
/// assert_eq!(a.iter().into_internal().next(), Some(&1));
/// ```
fn next(self) -> Option<Self::Item> {
self.find_map(Some)
}
/// Returns the `n`th element of the iterator.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3];
/// assert_eq!(a.iter().into_internal().nth(1), Some(&2));
/// ```
fn nth(self, mut n: usize) -> Option<Self::Item> {
self.find_map(|item| {
if n == 0 {
Some(item)
} else {
n -= 1;
None
}
})
}
/// Returns the index of the first element matching the predicate.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3];
///
/// assert_eq!(a.iter().into_internal().position(|&x| x == 2), Some(1));
///
/// assert_eq!(a.iter().into_internal().position(|&x| x == 5), None);
/// ```
fn position<F>(self, mut f: F) -> Option<usize>
where
F: FnMut(Self::Item) -> bool,
{
self.enumerate().find_map(|(idx, item)| {
if f(item) {
Some(idx)
} else {
None
}
})
}
// TODO: product
// TODO: scan
/// Skip first `n` elements of the iterator.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3, 4];
///
/// let v = a.iter().into_internal().skip(2).collect::<Vec<_>>();
///
/// assert_eq!(v, vec![&3, &4]);
/// ```
fn skip(self, n: usize) -> Skip<Self> {
Skip { iter: self, n }
}
// TODO: skip_while
// TODO: step_by
// TODO: sum
/// Take first `n` elements of the iterator, disregarding the rest.
///
/// ```
/// # use internal_iterator::{InternalIterator, IteratorExt};
/// let a = [1, 2, 3, 4];
///
/// let v = a.iter().into_internal().take(2).collect::<Vec<_>>();
///
/// assert_eq!(v, vec![&1, &2]);
/// ```
fn take(self, n: usize) -> Take<Self> {
Take { iter: self, n }
}
// TODO: take_while
// TODO: try_find
// TODO: try_fold
// TODO: unzip
}
/// Conversion to an [`InternalIterator`].
///
/// This is internal-iterator equivalent of [`std::iter::IntoIterator`].
pub trait IntoInternalIterator {
/// The type of the elements being iterated over.
type Item;
/// Concrete iterator type returned by the conversion.
type IntoIter: InternalIterator<Item = Self::Item>;
/// Convert this type to an internal iterator.
fn into_internal_iter(self) -> Self::IntoIter;
}
impl<I> IntoInternalIterator for I
where
I: InternalIterator,
{
type Item = I::Item;
type IntoIter = I;
fn into_internal_iter(self) -> Self::IntoIter {
self
}
}
macro_rules! into_internal_impls {
($([$($generics:tt)*] $ty:ty,)*) => {
$(
impl<$($generics)*> IntoInternalIterator for $ty {
type Item = <$ty as IntoIterator>::Item;
type IntoIter = crate::Internal<<$ty as IntoIterator>::IntoIter>;
fn into_internal_iter(self) -> Self::IntoIter {
self.into_iter().into_internal()
}
}
)*
}
}
pub(crate) use into_internal_impls;
into_internal_impls! {
['a, T] &'a [T],
['a, T] &'a mut [T],
['a, T, const N: usize] &'a [T; N],
['a, T, const N: usize] &'a mut [T; N],
[T, const N: usize] [T; N],
['a, T] &'a Option<T>,
['a, T] &'a mut Option<T>,
[T] Option<T>,
['a, T, E] &'a Result<T, E>,
['a, T, E] &'a mut Result<T, E>,
[T, E] Result<T, E>,
}
/// Extension trait to add conversion to [`InternalIterator`] for regular
/// iterators.
pub trait IteratorExt: IntoIterator {
/// Convert an [`std::iter::Iterator`] to an [`InternalIterator`].
///
/// Composing internal iterators together requires all used iterators to be
/// internal iterators. Given that regular iterators are far more prevalent,
/// this function can be used to allow them to be used together with
/// internal iterators.
///
/// ```
/// # use internal_iterator::InternalIterator;use internal_iterator::IteratorExt;
///
/// fn flatten_ranges(
/// ranges: impl InternalIterator<Item = (i32, i32)>,
/// ) -> impl InternalIterator<Item = i32> {
/// ranges.flat_map(|(from, to)| (from..to).into_internal())
/// }
fn into_internal(self) -> Internal<Self::IntoIter>
where
Self: Sized,
{
Internal { iterator: self.into_iter() }
}
}
impl<I: IntoIterator> IteratorExt for I {}
/// Conversion from an [`InternalIterator`].
///
/// This is internal-iterator equivalent of [`std::iter::FromIterator`].
pub trait FromInternalIterator<A> {
/// Convert from an iterator.
fn from_iter<T>(iter: T) -> Self
where
T: IntoInternalIterator<Item = A>;
}
impl<C, R, E> FromInternalIterator<Result<R, E>> for Result<C, E>
where
C: FromInternalIterator<R>,
{
fn from_iter<T>(iter: T) -> Self
where
T: IntoInternalIterator<Item = Result<R, E>>
{
let mut error = None;
let c = C::from_iter(iter
.into_internal_iter()
// FIXME: this could stop on first Err
.filter_map(|r| match r {
Ok(v) => Some(v),
Err(e) => {
error = Some(e);
None
}
}));
match error {
Some(err) => Err(err),
None => Ok(c),
}
}
}
fn max_by<A, C: FnMut(&A, &A) -> Ordering>(x: A, y: A, mut compare: C) -> A {
match compare(&x, &y) {
Ordering::Less => y,
Ordering::Equal |
Ordering::Greater => x,
}
}
fn min_by<A, C: FnMut(&A, &A) -> Ordering>(x: A, y: A, mut compare: C) -> A {
match compare(&x, &y) {
Ordering::Less |
Ordering::Equal => x,
Ordering::Greater => y,
}
}