longest_increasing_subsequence/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/*!
[![](https://docs.rs/longest-increasing-subsequence/badge.svg)](https://docs.rs/longest-increasing-subsequence/)
[![](https://img.shields.io/crates/v/longest-increasing-subsequence.svg)](https://crates.io/crates/longest-increasing-subsequence)
[![](https://img.shields.io/crates/d/longest-increasing-subsequence.svg)](https://crates.io/crates/longest-increasing-subsequence)
[![Build Status](https://dev.azure.com/fitzgen/longest-increasing-subsequence/_apis/build/status/fitzgen.longest-increasing-subsequence?branchName=master)](https://dev.azure.com/fitzgen/longest-increasing-subsequence/_build/latest?definitionId=1&branchName=master)
## Longest Increasing Subsequence
> The longest increasing subsequence problem is to find a subsequence of a given
> sequence in which the subsequence's elements are in sorted order, lowest to
> highest, and in which the subsequence is as long as possible. This subsequence
> is not necessarily contiguous, or unique.
— [Wikipedia](https://en.wikipedia.org/wiki/Longest_increasing_subsequence)
For example, consider this sequence of integers:
> 2, 9, 4, 7, 3, 4, 5
The longest increasing subsequence (LIS) for this sequence is *2, 3, 4, 5*.
Note that there is not always a *singular* LIS. Consider this sequence:
> 2, 6, 5
In this sequence, both *2, 5* and *2, 6* are LISs.
## API
This crate exposes two functions for finding a longest increasing subsequence
within a slice:
1. The high-level, easy-to-use `lis` function takes any slice of `T: Ord` and
returns the LIS as a vector of indices into that slice.
2. The low-level `lis_with` function takes a custom comparator and lets you
bring your own allocations (which lets you choose to reuse allocations or use a
custom allocator).
Both functions use the same underlying algorithm. They execute in *O(n log n)*
time and use *O(n)* memory.
## Example
```
use longest_increasing_subsequence::lis;
let xs = vec![9, 2, 8, 3, 5];
for i in lis(&xs) {
println!("{} at index {}", xs[i], i);
}
// Prints:
// 2 at index 1
// 3 at index 3
// 5 at index 4
```
*/
/// The high-level, easy-to-use function for finding a longest increasing
/// subsequence.
///
/// Takes any slice `&[T]` and uses the `T: Ord` implementation to determine the
/// LIS.
///
/// The LIS is returned as a vector of indices into the input items slice.
///
/// # Example
///
/// ```
/// use longest_increasing_subsequence::lis;
///
/// let xs = vec![9, 2, 8, 3, 5];
/// for i in lis(&xs) {
/// println!("{} at index {}", xs[i], i);
/// }
///
/// // Prints:
/// // 2 at index 1
/// // 3 at index 3
/// // 5 at index 4
/// ```
pub fn lis<T>(items: &[T]) -> Vec<usize>
where
T: Ord,
{
let mut seq = Vec::new();
let p = &mut vec![0; items.len()];
let m = &mut vec![0; items.len()];
lis_with(items, &mut seq, |a, b| a < b, p, m);
seq.reverse();
seq
}
/// The low-level function for finding a longest increasing subsequence.
///
/// This low-level function allows you to:
///
/// * customize the comparator function to something other than `T: Ord`,
///
/// * bring your own allocations for the algorithm's temporary scratch space (so
/// you can reuse the same allocations across multiple `lis_with` calls, or use
/// a custom allocator, etc...),
///
/// * and collect the resulting LIS into a custom collection data structure.
///
/// Note that the `out_seq` is given the indices of the LIS in **reverse order**
/// from the end of the LIS first to the start of the LIS last.
///
/// ## Panics
///
/// Panics if `items`, `predecessors`, and `starts` do not all have the same
/// length.
///
/// ## Example
///
/// ```
/// use longest_increasing_subsequence::lis_with;
/// use std::collections::HashSet;
///
/// // Create allocations for the algorithm's scratch space.
/// let mut predecessors = Vec::new();
/// let mut starts = Vec::new();
///
/// // And a collection to contain the results.
/// let mut results = HashSet::new();
///
/// // A slice whose LIS we would like to find.
/// let xs = vec![9, 2, 8, 3, 5];
///
/// // Ensure our allocations have enough space.
/// predecessors.resize_with(xs.len(), Default::default);
/// starts.resize_with(xs.len(), Default::default);
///
/// lis_with(
/// &xs,
/// &mut results,
/// |a, b| a < b,
/// &mut predecessors,
/// &mut starts,
/// );
///
/// assert_eq!(results, vec![1, 3, 4].into_iter().collect());
///
/// // Another slice whose LIS we would like to find.
/// let ys = vec![9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
///
/// // We are going to reuse our previous scratch space. Again, ensure we
/// // have enough space.
/// predecessors.resize_with(ys.len(), Default::default);
/// starts.resize_with(ys.len(), Default::default);
///
/// results.clear();
/// lis_with(
/// &ys,
/// &mut results,
/// |a, b| a < b,
/// &mut predecessors,
/// &mut starts,
/// );
///
/// assert_eq!(results, vec![9, 10, 11, 12, 13, 14, 15, 16, 17, 18].into_iter().collect());
/// ```
pub fn lis_with<T, S, F>(
items: &[T],
out_seq: &mut S,
mut less_than: F,
predecessors: &mut [usize],
starts: &mut [usize],
) where
S: Extend<usize>,
F: FnMut(&T, &T) -> bool,
{
assert_eq!(items.len(), predecessors.len());
assert_eq!(predecessors.len(), starts.len());
if items.is_empty() {
return;
}
unsafe {
let mut k = 0;
let len = items.len();
for i in 0..len {
let j = *get_unchecked(starts, k);
if less_than(get_unchecked(items, j), get_unchecked(items, i)) {
set_unchecked(predecessors, i, j);
k += 1;
set_unchecked(starts, k, i);
continue;
}
let mut lo = 0;
let mut hi = k;
while lo < hi {
// Get the mid point while handling overflow.
let mid = (lo >> 1) + (hi >> 1) + (lo & hi & 1);
if less_than(
get_unchecked(items, *get_unchecked(starts, mid)),
get_unchecked(items, i),
) {
lo = mid + 1;
} else {
hi = mid;
}
}
if less_than(
get_unchecked(items, i),
get_unchecked(items, *get_unchecked(starts, lo)),
) {
if lo > 0 {
set_unchecked(predecessors, i, *get_unchecked(starts, lo - 1));
}
set_unchecked(starts, lo, i);
}
}
let u = k + 1;
let mut v = *get_unchecked(starts, k);
out_seq.extend((0..u).rev().map(|_| {
let w = v;
v = *get_unchecked(predecessors, v);
w
}));
}
}
#[inline(always)]
unsafe fn get_unchecked<T>(slice: &[T], index: usize) -> &T {
debug_assert!(index < slice.len());
slice.get_unchecked(index)
}
#[inline(always)]
unsafe fn set_unchecked<T>(slice: &mut [T], index: usize, value: T) {
debug_assert!(index < slice.len());
*slice.get_unchecked_mut(index) = value;
}