rspirv/binary/
decoder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
use crate::spirv;

use super::DecodeError as Error;
use std::convert::TryInto;
use std::result;
use std::str;

pub type Result<T> = result::Result<T, Error>;

const WORD_NUM_BYTES: usize = 4;

/// The SPIR-V binary decoder.
///
/// Takes in a vector of bytes, and serves requests for raw SPIR-V words
/// or values of a specific SPIR-V enum type. Successful decoding will
/// surely consume the number of words decoded, while unsuccessful decoding
/// may consume any number of bytes.
///
/// TODO: The decoder should not consume words if an error occurs.
///
/// Different from the [`Parser`](struct.Parser.html),
/// this decoder is low-level; it has no knowledge of the SPIR-V grammar.
/// Given a vector of bytes, it solely responds to word decoding requests
/// via method calls: both raw words requests and decoding the raw words
/// into a value of a specific SPIR-V enum type.
///
/// It also provides a limit mechanism. Users can set a limit, and then
/// requesting words. If that limit is reached before the end of the
/// stream, [`State::LimitReached`](enum.ParseState.html) will be
/// returned.
///
/// # Errors
///
/// For its methods, there can be the following errors:
///
/// * `DecodeError::LimitReached(offset)` if the most recent limit has reached.
/// * `DecodeError::StreamExpected(offset)` if more bytes are needed to decode
///    the next word.
/// * `DecodeError::<spirv-enum>Unknown(offset, value)` if failed to decode the
///    next word as the given `<spirv-enum>`.
///
/// All errors contain the byte offset of the word failed decoding.
///
/// # Examples
///
/// ```
/// use rspirv::binary::{Decoder, DecodeError};
/// use spirv::SourceLanguage;
///
/// let v = vec![0x12, 0x34, 0x56, 0x78,
///              0x90, 0xab, 0xcd, 0xef,
///              0x02, 0x00, 0x00, 0x00];
/// let mut d = Decoder::new(&v);
///
/// assert_eq!(Ok(0x78563412), d.word());
/// assert_eq!(Ok(0xefcdab90), d.word());
/// assert_eq!(Ok(SourceLanguage::GLSL), d.source_language());
///
/// assert_eq!(Err(DecodeError::StreamExpected(12)), d.word());
/// ```
pub struct Decoder<'a> {
    /// Raw bytes to decode
    bytes: &'a [u8],
    /// Offset for next byte to decode
    offset: usize,
    /// Remaining limit of number of words before error
    limit: Option<usize>,
}

impl<'a> Decoder<'a> {
    /// Creates a new `Decoder` instance.
    pub fn new(bytes: &'a [u8]) -> Decoder<'a> {
        Decoder {
            bytes,
            offset: 0,
            limit: None,
        }
    }

    /// Returns the offset of the byte to decode next.
    pub fn offset(&self) -> usize {
        self.offset
    }

    /// Decodes and returns the next raw SPIR-V word.
    pub fn word(&mut self) -> Result<spirv::Word> {
        if self.has_limit() {
            if self.limit_reached() {
                return Err(Error::LimitReached(self.offset));
            } else {
                *self.limit.as_mut().unwrap() -= 1
            }
        }

        if self.offset >= self.bytes.len() || self.offset + WORD_NUM_BYTES > self.bytes.len() {
            Err(Error::StreamExpected(self.offset))
        } else {
            self.offset += WORD_NUM_BYTES;
            Ok(spirv::Word::from_le_bytes(
                self.bytes[self.offset - 4..self.offset].try_into().unwrap(),
            ))
        }
    }

    /// Decodes and returns the next `n` raw SPIR-V words.
    pub fn words(&mut self, n: usize) -> Result<Vec<spirv::Word>> {
        let mut words = Vec::new();
        for _ in 0..n {
            words.push(self.word()?);
        }
        Ok(words)
    }
}

impl<'a> Decoder<'a> {
    /// Sets the limit to `num_words` words.
    ///
    /// The decoder will return [`State::LimitReached`](enum.ParseState.html)
    /// after `num_words` words have been requested, if having not consumed
    /// the whole stream.
    pub fn set_limit(&mut self, num_words: usize) {
        self.limit = Some(num_words)
    }

    /// Clear the previously set limit (if any).
    pub fn clear_limit(&mut self) {
        self.limit = None
    }

    /// Returns true if a limit has been set on this decoder.
    pub fn has_limit(&self) -> bool {
        self.limit.is_some()
    }

    /// Returns true if the previously set limit has been reached.
    ///
    /// This will always return false if no limit has been ever set.
    pub fn limit_reached(&self) -> bool {
        if let Some(left) = self.limit {
            left == 0
        } else {
            false
        }
    }
}

impl<'a> Decoder<'a> {
    /// Decodes and returns the next SPIR-V word as an id.
    pub fn id(&mut self) -> Result<spirv::Word> {
        self.word()
    }

    /// Decodes and returns a literal string.
    ///
    /// This method will consume as many words as necessary until finding a
    /// null character (`\0`), or reaching the limit or end of the stream
    /// and erroring out.
    pub fn string(&mut self) -> Result<String> {
        // If we have a limit, then don't search further than we need to.
        let slice = match self.limit {
            Some(limit) => &self.bytes[self.offset..(self.offset + limit * WORD_NUM_BYTES)],
            None => &self.bytes[self.offset..],
        };
        // Find the null terminator.
        let first_null_byte = slice.iter().position(|&c| c == 0).ok_or(match self.limit {
            Some(_) => Error::LimitReached(self.offset + slice.len()),
            None => Error::StreamExpected(self.offset),
        })?;
        // Validate the string is utf8.
        let result = str::from_utf8(&slice[..first_null_byte])
            .map_err(|e| Error::DecodeStringFailed(self.offset, format!("{}", e)))?;
        // Round up consumed words to include null byte(s).
        let consumed_words = (first_null_byte / WORD_NUM_BYTES) + 1;
        self.offset += consumed_words * WORD_NUM_BYTES;
        if let Some(ref mut limit) = self.limit {
            // This is guaranteed to be enough due to the slice limit above.
            *limit -= consumed_words;
        }
        Ok(result.to_string())
    }

    /// Decodes and returns the next SPIR-V word as a 32-bit
    /// literal bit pattern.
    pub fn bit32(&mut self) -> Result<u32> {
        self.word()
    }

    /// Decodes and returns the next two SPIR-V words as a 64-bit
    /// literal bit pattern.
    pub fn bit64(&mut self) -> Result<u64> {
        let low = u64::from(self.word()?);
        let high = u64::from(self.word()?);
        Ok((high << 32) | low)
    }

    /// Decodes and returns the next SPIR-V word as a 32-bit
    /// extended-instruction-set number.
    pub fn ext_inst_integer(&mut self) -> Result<u32> {
        self.word()
    }
}

include!("autogen_decode_operand.rs");

#[cfg(test)]
mod tests {
    use crate::spirv;

    use super::Decoder;
    use crate::binary::DecodeError as Error;

    #[test]
    fn test_decoding_word_from_one_bytes() {
        let b = vec![1];
        let mut d = Decoder::new(&b);
        assert_eq!(Err(Error::StreamExpected(0)), d.word());
    }

    #[test]
    fn test_decoding_word_from_two_bytes() {
        let b = vec![1, 2];
        let mut d = Decoder::new(&b);
        assert_eq!(Err(Error::StreamExpected(0)), d.word());
    }

    #[test]
    fn test_decoding_word_from_three_bytes() {
        let b = vec![1, 2, 3];
        let mut d = Decoder::new(&b);
        assert_eq!(Err(Error::StreamExpected(0)), d.word());
    }

    #[test]
    fn test_decoding_word_from_four_bytes() {
        let b = vec![0x12, 0x34, 0x56, 0x78];
        let mut d = Decoder::new(&b);
        assert_eq!(Ok(0x78563412), d.word());
    }

    #[test]
    #[rustfmt::skip]
    fn test_decoding_words() {
        let b = vec![0x12, 0x34, 0x56, 0x78,
                     0x90, 0xab, 0xcd, 0xef,
                     0x01, 0x23, 0x45, 0x67,
                     0x89, 0xfe, 0xdc, 0xba];
        let mut d = Decoder::new(&b);
        assert_eq!(Ok(vec![0x78563412, 0xefcdab90]), d.words(2));
        assert_eq!(Ok(vec![0x67452301]), d.words(1));
        assert_eq!(Ok(vec![0xbadcfe89]), d.words(1));
    }

    #[test]
    fn test_decoding_string() {
        {
            let b = vec![0x00, 0x00, 0x00, 0x00];
            let mut d = Decoder::new(&b);
            assert_eq!(Ok(String::new()), d.string());
        }
        {
            let b = b"ok".to_vec();
            let mut d = Decoder::new(&b);
            assert_eq!(Err(Error::StreamExpected(0)), d.string());
        }
        {
            let b = b"ok\0\0".to_vec();
            let mut d = Decoder::new(&b);
            assert_eq!(Ok("ok".to_string()), d.string());
        }
        {
            let b = b"ok\0\0rust\0\0\0\0rocks\0\0\0".to_vec();
            let mut d = Decoder::new(&b);
            assert_eq!(Ok("ok".to_string()), d.string());
            assert_eq!(Ok("rust".to_string()), d.string());
            assert_eq!(Ok("rocks".to_string()), d.string());
        }
        {
            let b = b"I..don't know..\0".to_vec();
            let mut d = Decoder::new(&b);
            assert_eq!(Ok("I..don't know..".to_string()), d.string());
        }
    }

    #[test]
    fn test_decoding_source_language() {
        let b = vec![0x02, 0x00, 0x00, 0x00];
        let mut d = Decoder::new(&b);
        assert_eq!(Ok(spirv::SourceLanguage::GLSL), d.source_language());
    }

    #[test]
    fn test_decoding_unknown_execution_model() {
        let b = vec![0xef, 0xbe, 0xad, 0xde];
        let mut d = Decoder::new(&b);
        assert_eq!(
            Err(Error::ExecutionModelUnknown(0, 0xdeadbeef)),
            d.execution_model()
        );
    }

    #[test]
    #[rustfmt::skip]
    fn test_offset() {
        let b = vec![0x12, 0x34, 0x56, 0x78,
                     0x90, 0xab, 0xcd, 0xef,
                     0x01, 0x23, 0x45, 0x67,
                     0x89, 0xfe, 0xdc, 0xba,
                     0x01, 0x00, 0x00, 0x00,
                     0xff, 0xff, 0xff, 0xff];
        let mut d = Decoder::new(&b);

        assert_eq!(0, d.offset());
        assert!(d.words(1).is_ok());
        assert_eq!(4, d.offset());
        assert!(d.words(2).is_ok());
        assert_eq!(12, d.offset());
        assert!(d.words(1).is_ok());
        assert_eq!(16, d.offset());

        assert!(d.source_language().is_ok());
        assert_eq!(20, d.offset());

        assert!(d.execution_model().is_err());
        assert_eq!(24, d.offset());
    }

    #[test]
    fn test_decoding_after_errors() {
        let b = vec![0x12, 0x34, 0x56, 0x78];
        let mut d = Decoder::new(&b);
        assert_eq!(Ok(0x78563412), d.word());
        assert_eq!(Err(Error::StreamExpected(4)), d.word());
        assert_eq!(Err(Error::StreamExpected(4)), d.word());
        assert_eq!(Err(Error::StreamExpected(4)), d.word());
    }

    #[test]
    fn test_limit() {
        let v = vec![0xff; 12];
        let mut d = Decoder::new(&v);

        assert!(!d.has_limit());
        assert!(!d.limit_reached());

        d.set_limit(4);
        assert!(d.has_limit());
        assert!(!d.limit_reached());

        d.clear_limit();
        assert!(!d.has_limit());
        assert!(!d.limit_reached());

        d.set_limit(2);
        assert!(d.has_limit());
        assert!(!d.limit_reached());
        assert_eq!(Ok(0xffffffff), d.word());
        assert!(d.has_limit());
        assert!(!d.limit_reached());
        assert_eq!(Ok(0xffffffff), d.word());
        assert!(d.has_limit());
        assert!(d.limit_reached());
        assert_eq!(Err(Error::LimitReached(8)), d.word());
        assert!(d.has_limit());
        assert!(d.limit_reached());
        assert_eq!(Err(Error::LimitReached(8)), d.word());
        assert!(d.has_limit());
        assert!(d.limit_reached());

        d.clear_limit();
        assert_eq!(Ok(0xffffffff), d.word());
        assert!(!d.has_limit());
        assert!(!d.limit_reached());

        d.set_limit(0);
        assert_eq!(Err(Error::LimitReached(12)), d.word());
        assert!(d.has_limit());
        assert!(d.limit_reached());

        d.clear_limit();
        assert_eq!(Err(Error::StreamExpected(12)), d.word());
    }

    #[test]
    fn test_decode_bit32() {
        let b = [0x12, 0x34, 0x56, 0x78];
        let mut d = Decoder::new(&b);
        assert_eq!(Ok(0x78563412), d.bit32());

        let b = [0x14, 0xAE, 0x29, 0x42];
        let mut d = Decoder::new(&b);
        assert_eq!(Ok(42.42f32.to_bits()), d.bit32());

        let b = [0xA4, 0x70, 0x45, 0xC1];
        let mut d = Decoder::new(&b);
        assert_eq!(Ok((-12.34f32).to_bits()), d.bit32());
    }

    #[test]
    fn test_decode_bit64() {
        let b = [0x12, 0x34, 0x56, 0x78, 0x90, 0xab, 0xcd, 0xef];
        let mut d = Decoder::new(&b);
        assert_eq!(Ok(0xefcdab9078563412), d.bit64());

        let b = [0xF6, 0x28, 0x5C, 0x8F, 0xC2, 0x35, 0x45, 0x40];
        let mut d = Decoder::new(&b);
        assert_eq!(Ok(42.42f64.to_bits()), d.bit64());

        let b = [0xAE, 0x47, 0xE1, 0x7A, 0x14, 0xAE, 0x28, 0xC0];
        let mut d = Decoder::new(&b);
        assert_eq!(Ok((-12.34f64).to_bits()), d.bit64());
    }
}