rspirv/binary/
parser.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
use crate::dr;
use crate::grammar;
use crate::spirv;

use super::{
    decoder,
    tracker::{Type, TypeTracker},
    DecodeError,
};
use std::{error, fmt, result, slice};

use crate::grammar::CoreInstructionTable as GInstTable;
use crate::grammar::OperandKind as GOpKind;
use crate::grammar::OperandQuantifier as GOpCount;

use crate::utils::version;

type GInstRef = &'static grammar::Instruction<'static>;

const WORD_NUM_BYTES: usize = 4;

/// Parser State.
///
/// Most of the error variants will retain the error location for both byte
/// offset (starting from 0) and instruction number (starting from 1).
#[derive(Debug)]
pub enum State {
    /// Parsing completed
    Complete,
    /// Consumer requested to stop parse
    ConsumerStopRequested,
    /// Consumer errored out with the given error
    ConsumerError(Box<dyn error::Error + Send + Sync>),
    /// Incomplete module header
    HeaderIncomplete(DecodeError),
    /// Incorrect module header
    HeaderIncorrect,
    /// Unsupported endianness
    EndiannessUnsupported,
    /// Zero instruction word count at (byte offset, inst number)
    WordCountZero(usize, usize),
    /// Unknown opcode at (byte offset, inst number, opcode)
    OpcodeUnknown(usize, usize, u16),
    /// Expected more operands (byte offset, inst number)
    OperandExpected(usize, usize),
    /// found redundant operands (byte offset, inst number)
    OperandExceeded(usize, usize),
    /// Errored out when decoding operand with the given error
    OperandError(DecodeError),
    /// Unsupported type (byte offset, inst number)
    TypeUnsupported(usize, usize),
    /// Incorrect SpecConstantOp Integer (byte offset, inst number)
    SpecConstantOpIntegerIncorrect(usize, usize),
}

impl From<DecodeError> for State {
    fn from(err: DecodeError) -> Self {
        State::OperandError(err)
    }
}

impl error::Error for State {}

impl fmt::Display for State {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            State::Complete => write!(f, "completed parsing"),
            State::ConsumerStopRequested => write!(f, "stop parsing requested by consumer"),
            State::ConsumerError(ref err) => write!(f, "consumer error: {}", err),
            State::HeaderIncomplete(ref err) => write!(f, "incomplete module header: {}", err),
            State::HeaderIncorrect => write!(f, "incorrect module header"),
            State::EndiannessUnsupported => write!(f, "unsupported endianness"),
            State::WordCountZero(offset, index) => write!(
                f,
                "zero word count found for instruction #{} at offset {}",
                index, offset
            ),
            State::OpcodeUnknown(offset, index, opcode) => write!(
                f,
                "unknown opcode ({}) for instruction #{} at offset {}",
                opcode, index, offset
            ),
            State::OperandExpected(offset, index) => write!(
                f,
                "expected more operands for instruction #{} at offset {}",
                index, offset
            ),
            State::OperandExceeded(offset, index) => write!(
                f,
                "found extra operands for instruction #{} at offset {}",
                index, offset
            ),
            State::OperandError(ref err) => write!(f, "operand decoding error: {}", err),
            State::TypeUnsupported(offset, index) => write!(
                f,
                "unsupported type for instruction #{} at offset {}",
                index, offset
            ),
            State::SpecConstantOpIntegerIncorrect(offset, index) => write!(
                f,
                "incorrect SpecConstantOp number for instruction #{} at offset {}",
                index, offset
            ),
        }
    }
}

pub type Result<T> = result::Result<T, State>;

const HEADER_NUM_WORDS: usize = 5;

/// Orders consumer sent to the parser after each consuming call.
#[derive(Debug)]
pub enum Action {
    /// Continue the parsing
    Continue,
    /// Normally stop the parsing
    Stop,
    /// Error out with the given error
    Error(Box<dyn error::Error + Send + Sync>),
}

impl Action {
    fn consume(self) -> Result<()> {
        match self {
            Action::Continue => Ok(()),
            Action::Stop => Err(State::ConsumerStopRequested),
            Action::Error(err) => Err(State::ConsumerError(err)),
        }
    }
}

/// The binary consumer trait.
///
/// The parser will call `initialize` before parsing the SPIR-V binary and
/// `finalize` after successfully parsing the whle binary.
///
/// After successfully parsing the module header, `consume_header` will be
/// called. After successfully parsing an instruction, `consume_instruction`
/// will be called.
///
/// The consumer can use [`Action`](enum.ParseAction.html) to control the
/// parsing process.
pub trait Consumer {
    /// Intialize the consumer.
    fn initialize(&mut self) -> Action;
    /// Finalize the consumer.
    fn finalize(&mut self) -> Action;

    /// Consume the module header.
    fn consume_header(&mut self, module: dr::ModuleHeader) -> Action;
    /// Consume the given instruction.
    fn consume_instruction(&mut self, inst: dr::Instruction) -> Action;
}

/// Parses the given `binary` and consumes the module using the given
/// `consumer`.
pub fn parse_bytes(binary: impl AsRef<[u8]>, consumer: &mut dyn Consumer) -> Result<()> {
    Parser::new(binary.as_ref(), consumer).parse()
}

/// Parses the given `binary` and consumes the module using the given
/// `consumer`.
pub fn parse_words(binary: impl AsRef<[u32]>, consumer: &mut dyn Consumer) -> Result<()> {
    let len = binary.as_ref().len() * 4;
    let buf = unsafe { slice::from_raw_parts(binary.as_ref().as_ptr() as *const u8, len) };
    Parser::new(buf, consumer).parse()
}

/// The SPIR-V binary parser.
///
/// Takes in a vector of bytes and a consumer, this parser will invoke the
/// consume methods on the consumer for the module header and each
/// instruction parsed.
///
/// Different from the [`Decoder`](struct.Decoder.html),
/// this parser is high-level; it has knowlege of the SPIR-V grammar.
/// It will parse instructions according to SPIR-V grammar.
///
/// # Examples
///
/// ```
/// use spirv::{AddressingModel, MemoryModel};
/// use rspirv::binary::Parser;
/// use rspirv::dr::{Loader, Operand};
///
/// let bin = vec![
///     // Magic number.           Version number: 1.0.
///     0x03, 0x02, 0x23, 0x07,    0x00, 0x00, 0x01, 0x00,
///     // Generator number: 0.    Bound: 0.
///     0x00, 0x00, 0x00, 0x00,    0x00, 0x00, 0x00, 0x00,
///     // Reserved word: 0.
///     0x00, 0x00, 0x00, 0x00,
///     // OpMemoryModel.          Logical.
///     0x0e, 0x00, 0x03, 0x00,    0x00, 0x00, 0x00, 0x00,
///     // GLSL450.
///     0x01, 0x00, 0x00, 0x00];
/// let mut loader = Loader::new();  // You can use your own consumer here.
/// {
///     let p = Parser::new(&bin, &mut loader);
///     p.parse().unwrap();
/// }
/// let module = loader.module();
///
/// assert_eq!((1, 0), module.header.unwrap().version());
/// let m = module.memory_model.as_ref().unwrap();
/// assert_eq!(Operand::AddressingModel(AddressingModel::Logical),
///            m.operands[0]);
/// assert_eq!(Operand::MemoryModel(MemoryModel::GLSL450),
///            m.operands[1]);
/// ```
pub struct Parser<'c, 'd> {
    decoder: decoder::Decoder<'d>,
    consumer: &'c mut dyn Consumer,
    type_tracker: TypeTracker,
    /// The index of the current instructions
    ///
    /// Starting from 1, 0 means invalid
    inst_index: usize,
}

impl<'c, 'd> Parser<'c, 'd> {
    /// Creates a new parser to parse the given `binary` and send the module
    /// header and instructions to the given `consumer`.
    pub fn new(binary: &'d [u8], consumer: &'c mut dyn Consumer) -> Self {
        Parser {
            decoder: decoder::Decoder::new(binary),
            consumer,
            type_tracker: TypeTracker::new(),
            inst_index: 0,
        }
    }

    /// Does the parsing.
    pub fn parse(mut self) -> Result<()> {
        self.consumer.initialize().consume()?;
        let header = self.parse_header()?;
        self.consumer.consume_header(header).consume()?;

        loop {
            let result = self.parse_inst();
            match result {
                Ok(inst) => {
                    self.type_tracker.track(&inst);
                    self.consumer.consume_instruction(inst).consume()?;
                }
                Err(State::Complete) => break,
                Err(error) => return Err(error),
            };
        }
        self.consumer.finalize().consume()
    }

    fn split_into_word_count_and_opcode(word: spirv::Word) -> (u16, u16) {
        ((word >> 16) as u16, (word & 0xffff) as u16)
    }

    fn parse_header(&mut self) -> Result<dr::ModuleHeader> {
        match self.decoder.words(HEADER_NUM_WORDS) {
            Ok(words) => {
                if words[0] != spirv::MAGIC_NUMBER {
                    if words[0] == spirv::MAGIC_NUMBER.swap_bytes() {
                        return Err(State::EndiannessUnsupported);
                    } else {
                        return Err(State::HeaderIncorrect);
                    }
                }

                let mut header = dr::ModuleHeader::new(words[3]);
                let (major, minor) = version::create_version_from_word(words[1]);
                header.set_version(major, minor);

                Ok(header)
            }
            Err(err) => Err(State::HeaderIncomplete(err)),
        }
    }

    fn parse_inst(&mut self) -> Result<dr::Instruction> {
        self.inst_index += 1;
        if let Ok(word) = self.decoder.word() {
            let (wc, opcode) = Parser::split_into_word_count_and_opcode(word);
            if wc == 0 {
                return Err(State::WordCountZero(
                    self.decoder.offset() - WORD_NUM_BYTES,
                    self.inst_index,
                ));
            }
            if let Some(grammar) = GInstTable::lookup_opcode(opcode) {
                self.decoder.set_limit((wc - 1) as usize);
                let result = self.parse_operands(grammar)?;
                if !self.decoder.limit_reached() {
                    return Err(State::OperandExceeded(
                        self.decoder.offset(),
                        self.inst_index,
                    ));
                }
                self.decoder.clear_limit();
                Ok(result)
            } else {
                Err(State::OpcodeUnknown(
                    self.decoder.offset() - WORD_NUM_BYTES,
                    self.inst_index,
                    opcode,
                ))
            }
        } else {
            Err(State::Complete)
        }
    }

    fn parse_literal(&mut self, type_id: spirv::Word) -> Result<dr::Operand> {
        let tracked_type = self.type_tracker.resolve(type_id);
        match tracked_type {
            Some(t) => match t {
                Type::Integer(size, _) => match size {
                    // "Value is the bit pattern for the constant. Types 32 bits wide or smaller take one word."
                    8 => Ok(dr::Operand::LiteralBit32(self.decoder.bit32()?)),
                    16 => Ok(dr::Operand::LiteralBit32(self.decoder.bit32()?)),
                    32 => Ok(dr::Operand::LiteralBit32(self.decoder.bit32()?)),
                    64 => Ok(dr::Operand::LiteralBit64(self.decoder.bit64()?)),
                    _ => Err(State::TypeUnsupported(
                        self.decoder.offset(),
                        self.inst_index,
                    )),
                },
                Type::Float(size) => match size {
                    16 => Ok(dr::Operand::LiteralBit32(self.decoder.bit32()?)),
                    32 => Ok(dr::Operand::LiteralBit32(self.decoder.bit32()?)),
                    64 => Ok(dr::Operand::LiteralBit64(self.decoder.bit64()?)),
                    _ => Err(State::TypeUnsupported(
                        self.decoder.offset(),
                        self.inst_index,
                    )),
                },
            },
            // Treat as a normal SPIR-V word if we don't know the type.
            // TODO: find a better way to handle this.
            None => Ok(dr::Operand::LiteralBit32(self.decoder.bit32()?)),
        }
    }

    fn parse_spec_constant_op(&mut self) -> Result<Vec<dr::Operand>> {
        let mut operands = vec![];

        let number = self.decoder.bit32()?;
        if let Some(g) = GInstTable::lookup_opcode(number as u16) {
            // TODO: check whether this opcode is allowed here.
            operands.push(dr::Operand::LiteralSpecConstantOpInteger(g.opcode));

            // We need all parameters to this SpecConstantOp.
            for loperand in g.operands {
                if loperand.kind != GOpKind::IdResultType && loperand.kind != GOpKind::IdResult {
                    operands.append(&mut self.parse_operand(loperand.kind)?);
                }
            }
            Ok(operands)
        } else {
            Err(State::SpecConstantOpIntegerIncorrect(
                self.decoder.offset(),
                self.inst_index,
            ))
        }
    }

    fn parse_operands(&mut self, grammar: GInstRef) -> Result<dr::Instruction> {
        let mut rtype = None;
        let mut rid = None;
        let mut coperands = vec![]; // concrete operands

        let mut loperand_index: usize = 0; // logical operand index
        while loperand_index < grammar.operands.len() {
            let loperand = &grammar.operands[loperand_index];
            let has_more_coperands = !self.decoder.limit_reached();
            if has_more_coperands {
                match loperand.kind {
                    GOpKind::IdResultType => rtype = Some(self.decoder.id()?),
                    GOpKind::IdResult => rid = Some(self.decoder.id()?),
                    GOpKind::LiteralContextDependentNumber => {
                        // Only constant defining instructions use this kind.
                        // If it is not true, that means the grammar is wrong
                        // or has changed.
                        assert!(
                            grammar.opcode == spirv::Op::Constant
                                || grammar.opcode == spirv::Op::SpecConstant
                        );
                        let id = rtype.expect(
                            "internal error: \
                            should already decoded result type id before context dependent number",
                        );
                        coperands.push(self.parse_literal(id)?)
                    }
                    GOpKind::PairLiteralIntegerIdRef => {
                        assert_eq!(grammar.opcode, spirv::Op::Switch);
                        let selector = match coperands[0] {
                            dr::Operand::IdRef(id) => id,
                            _ => panic!("internal error: OpSwitch selector should be IdRef"),
                        };
                        coperands.push(self.parse_literal(selector)?);
                        coperands.push(dr::Operand::IdRef(self.decoder.id()?));
                    }
                    GOpKind::LiteralSpecConstantOpInteger => {
                        coperands.append(&mut self.parse_spec_constant_op()?)
                    }
                    _ => coperands.append(&mut self.parse_operand(loperand.kind)?),
                }
                match loperand.quantifier {
                    GOpCount::One | GOpCount::ZeroOrOne => loperand_index += 1,
                    GOpCount::ZeroOrMore => continue,
                }
            } else {
                // We still have logical operands to match but no no more words.
                match loperand.quantifier {
                    GOpCount::One => {
                        return Err(State::OperandExpected(
                            self.decoder.offset(),
                            self.inst_index,
                        ))
                    }
                    GOpCount::ZeroOrOne | GOpCount::ZeroOrMore => break,
                }
            }
        }
        Ok(dr::Instruction::new(grammar.opcode, rtype, rid, coperands))
    }
}

include!("autogen_parse_operand.rs");

#[cfg(test)]
mod tests {
    use assert_matches::assert_matches;

    use crate::dr;
    use crate::spirv;

    use super::{parse_words, Action, Consumer, Parser, State, WORD_NUM_BYTES};
    use crate::binary::DecodeError;
    use std::{error, fmt};

    // TODO: It's unfortunate that we have these numbers directly coded here
    // and repeat them in the following tests. Should have a better way.
    #[rustfmt::skip]
    static ZERO_BOUND_HEADER: &[u8] = &[
        // Magic number.           Version number: 1.0.
        0x03, 0x02, 0x23, 0x07,    0x00, 0x00, 0x01, 0x00,
        // Generator number: 0.    Bound: 0.
        0x00, 0x00, 0x00, 0x00,    0x00, 0x00, 0x00, 0x00,
        // Reserved word: 0.
        0x00, 0x00, 0x00, 0x00];

    struct RetainingConsumer {
        pub header: Option<dr::ModuleHeader>,
        pub insts: Vec<dr::Instruction>,
    }
    impl RetainingConsumer {
        fn new() -> RetainingConsumer {
            RetainingConsumer {
                header: None,
                insts: vec![],
            }
        }
    }
    impl Consumer for RetainingConsumer {
        fn initialize(&mut self) -> Action {
            Action::Continue
        }
        fn finalize(&mut self) -> Action {
            Action::Continue
        }

        fn consume_header(&mut self, header: dr::ModuleHeader) -> Action {
            self.header = Some(header);
            Action::Continue
        }
        fn consume_instruction(&mut self, inst: dr::Instruction) -> Action {
            self.insts.push(inst);
            Action::Continue
        }
    }

    // TODO: Should put this function and its duplicate in the decoder in
    // a utility module.
    fn w2b(word: spirv::Word) -> Vec<u8> {
        (0..WORD_NUM_BYTES)
            .map(|i| ((word >> (8 * i)) & 0xff) as u8)
            .collect()
    }

    /// A simple module builder for testing purpose.
    struct ModuleBuilder {
        insts: Vec<u8>,
    }
    impl ModuleBuilder {
        fn new() -> ModuleBuilder {
            ModuleBuilder {
                insts: ZERO_BOUND_HEADER.to_vec(),
            }
        }

        /// Appends an instruction with the given `opcode` and `operands` into
        /// the module.
        fn inst(&mut self, opcode: spirv::Op, operands: Vec<u32>) {
            let count: u32 = operands.len() as u32 + 1;
            self.insts.append(&mut w2b((count << 16) | (opcode as u32)));
            for o in operands {
                self.insts.append(&mut w2b(o));
            }
        }

        /// Returns the module being constructed.
        fn get(&self) -> &[u8] {
            &self.insts
        }
    }

    #[test]
    fn test_module_builder() {
        let mut b = ModuleBuilder::new();
        // OpNop
        b.inst(spirv::Op::Nop, vec![]);
        // OpCapability Int16
        b.inst(spirv::Op::Capability, vec![22]);
        // OpMemoryModel Logical GLSL450
        b.inst(spirv::Op::MemoryModel, vec![0, 1]);
        let mut module = ZERO_BOUND_HEADER.to_vec();
        module.append(&mut vec![0x00, 0x00, 0x01, 0x00]); // OpNop
        module.append(&mut vec![0x11, 0x00, 0x02, 0x00]); // OpCapability
        module.append(&mut vec![0x16, 0x00, 0x00, 0x00]); // Int16
        module.append(&mut vec![0x0e, 0x00, 0x03, 0x00]); // OpMemoryModel
        module.append(&mut vec![0x00, 0x00, 0x00, 0x00]); // Logical
        module.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // GLSL450
        assert_eq!(module, b.get());
    }

    #[test]
    fn test_parsing_empty_binary() {
        let v = vec![];
        let mut c = RetainingConsumer::new();
        let p = Parser::new(&v, &mut c);
        assert_matches!(
            p.parse(),
            Err(State::HeaderIncomplete(DecodeError::StreamExpected(0)))
        );
    }

    #[test]
    fn test_parsing_incomplete_header() {
        let v = vec![0x03, 0x02, 0x23, 0x07];
        let mut c = RetainingConsumer::new();
        let p = Parser::new(&v, &mut c);
        assert_matches!(
            p.parse(),
            Err(State::HeaderIncomplete(DecodeError::StreamExpected(4)))
        );
    }

    #[test]
    fn test_parsing_unsupported_endianness() {
        let mut module = ZERO_BOUND_HEADER.to_vec();
        module.as_mut_slice().swap(0, 3);
        module.as_mut_slice().swap(1, 2);
        let mut c = RetainingConsumer::new();
        let p = Parser::new(&module, &mut c);
        assert_matches!(p.parse(), Err(State::EndiannessUnsupported));
    }

    #[test]
    fn test_parsing_wrong_magic_number() {
        let mut module = ZERO_BOUND_HEADER.to_vec();
        module[0] = 0x00;
        let mut c = RetainingConsumer::new();
        let p = Parser::new(&module, &mut c);
        assert_matches!(p.parse(), Err(State::HeaderIncorrect));
    }

    #[test]
    fn test_parsing_complete_header() {
        let mut c = RetainingConsumer::new();
        {
            let p = Parser::new(ZERO_BOUND_HEADER, &mut c);
            assert_matches!(p.parse(), Ok(()));
        }
        let mut header = dr::ModuleHeader::new(0);
        header.set_version(1, 0);
        assert_eq!(Some(header), c.header);
    }

    #[test]
    fn test_parsing_one_inst() {
        let mut c = RetainingConsumer::new();
        {
            let mut b = ModuleBuilder::new();
            // OpMemoryModel Logical GLSL450
            b.inst(spirv::Op::MemoryModel, vec![0, 1]);
            let p = Parser::new(b.get(), &mut c);
            assert_matches!(p.parse(), Ok(()));
        }
        assert_eq!(1, c.insts.len());
        let inst = &c.insts[0];
        assert_eq!("MemoryModel", inst.class.opname);
        assert_eq!(None, inst.result_type);
        assert_eq!(None, inst.result_id);
        assert_eq!(
            vec![
                dr::Operand::AddressingModel(spirv::AddressingModel::Logical),
                dr::Operand::MemoryModel(spirv::MemoryModel::GLSL450)
            ],
            inst.operands
        );
    }

    #[test]
    fn test_parsing_zero_word_count() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x00, 0x00, 0x00, 0x00]); // OpNop with word count 0
        let mut c = RetainingConsumer::new();
        let p = Parser::new(&v, &mut c);
        // The first instruction starts at byte offset 20.
        assert_matches!(p.parse(), Err(State::WordCountZero(20, 1)));
    }

    #[test]
    fn test_parsing_extra_operand() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x00, 0x00, 0x01, 0x00]); // OpNop with word count 1
        v.append(&mut vec![0x00, 0x00, 0x02, 0x00]); // OpNop with word count 2
        v.append(&mut vec![0x00, 0x00, 0x00, 0x00]); // A bogus operand
        let mut c = RetainingConsumer::new();
        let p = Parser::new(&v, &mut c);
        // The bogus operand to the second OpNop instruction starts at
        // byte offset (20 + 4 + 4).
        assert_matches!(p.parse(), Err(State::OperandExceeded(28, 2)));
    }

    #[test]
    fn test_parsing_missing_operand() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x00, 0x00, 0x01, 0x00]); // OpNop with word count 1
        v.append(&mut vec![0x0e, 0x00, 0x03, 0x00]); // OpMemoryModel
        v.append(&mut vec![0x00, 0x00, 0x00, 0x00]); // Logical
        let mut c = RetainingConsumer::new();
        let p = Parser::new(&v, &mut c);
        // The missing operand to the OpMemoryModel instruction starts at
        // byte offset (20 + 4 + 4 + 4).
        assert_matches!(
            p.parse(),
            Err(State::OperandError(DecodeError::StreamExpected(32)))
        );
    }

    #[test]
    fn test_parsing_operand_parameters() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x47, 0x00, 0x04, 0x00]); // OpDecorate
        v.append(&mut vec![0x05, 0x00, 0x00, 0x00]); // id 5
        v.append(&mut vec![0x0b, 0x00, 0x00, 0x00]); // BuiltIn
        v.append(&mut vec![0x06, 0x00, 0x00, 0x00]); // InstanceId
        let mut c = RetainingConsumer::new();
        {
            let p = Parser::new(&v, &mut c);
            assert_matches!(p.parse(), Ok(()));
        }
        assert_eq!(1, c.insts.len());
        let inst = &c.insts[0];
        assert_eq!("Decorate", inst.class.opname);
        assert_eq!(None, inst.result_type);
        assert_eq!(None, inst.result_id);
        assert_eq!(
            vec![
                dr::Operand::IdRef(5),
                dr::Operand::Decoration(spirv::Decoration::BuiltIn),
                dr::Operand::BuiltIn(spirv::BuiltIn::InstanceId)
            ],
            inst.operands
        );
    }

    #[test]
    fn test_parsing_missing_operand_parameters() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x47, 0x00, 0x03, 0x00]); // OpDecorate
        v.append(&mut vec![0x05, 0x00, 0x00, 0x00]); // id 5
        v.append(&mut vec![0x0b, 0x00, 0x00, 0x00]); // BuiltIn
        let mut c = RetainingConsumer::new();
        let p = Parser::new(&v, &mut c);
        assert_matches!(
            p.parse(),
            Err(State::OperandError(DecodeError::StreamExpected(32)))
        );
    }

    #[test]
    fn test_parsing_with_all_optional_operands() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x03, 0x00, 0x05, 0x00]); // OpSource
        v.append(&mut vec![0x02, 0x00, 0x00, 0x00]); // GLSL
        v.append(&mut vec![0xc2, 0x01, 0x00, 0x00]); // 450 (0x1c2)
        v.append(&mut vec![0x06, 0x00, 0x00, 0x00]); // File id
        v.append(&mut b"wow".to_vec()); // Source
        v.push(0x00); // EOS
        let mut c = RetainingConsumer::new();
        {
            let p = Parser::new(&v, &mut c);
            assert_matches!(p.parse(), Ok(()));
        }
        assert_eq!(1, c.insts.len());
        let inst = &c.insts[0];
        assert_eq!("Source", inst.class.opname);
        assert_eq!(None, inst.result_type);
        assert_eq!(None, inst.result_id);
        assert_eq!(
            vec![
                dr::Operand::SourceLanguage(spirv::SourceLanguage::GLSL),
                dr::Operand::LiteralBit32(450),
                dr::Operand::IdRef(6),
                dr::Operand::from("wow")
            ],
            inst.operands
        );
    }

    #[test]
    fn test_parsing_missing_one_optional_operand() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x03, 0x00, 0x04, 0x00]); // OpSource
        v.append(&mut vec![0x02, 0x00, 0x00, 0x00]); // GLSL
        v.append(&mut vec![0xc2, 0x01, 0x00, 0x00]); // 450 (0x1c2)
        v.append(&mut vec![0x06, 0x00, 0x00, 0x00]); // File id
        let mut c = RetainingConsumer::new();
        {
            let p = Parser::new(&v, &mut c);
            assert_matches!(p.parse(), Ok(()));
        }
        assert_eq!(1, c.insts.len());
        let inst = &c.insts[0];
        assert_eq!("Source", inst.class.opname);
        assert_eq!(None, inst.result_type);
        assert_eq!(None, inst.result_id);
        assert_eq!(
            vec![
                dr::Operand::SourceLanguage(spirv::SourceLanguage::GLSL),
                dr::Operand::LiteralBit32(450),
                dr::Operand::IdRef(6)
            ],
            inst.operands
        );
    }

    #[test]
    fn test_parsing_missing_two_optional_operands() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x03, 0x00, 0x03, 0x00]); // OpSource
        v.append(&mut vec![0x02, 0x00, 0x00, 0x00]); // GLSL
        v.append(&mut vec![0xc2, 0x01, 0x00, 0x00]); // 450 (0x1c2)
        let mut c = RetainingConsumer::new();
        {
            let p = Parser::new(&v, &mut c);
            assert_matches!(p.parse(), Ok(()));
        }
        assert_eq!(1, c.insts.len());
        let inst = &c.insts[0];
        assert_eq!("Source", inst.class.opname);
        assert_eq!(None, inst.result_type);
        assert_eq!(None, inst.result_id);
        assert_eq!(
            vec![
                dr::Operand::SourceLanguage(spirv::SourceLanguage::GLSL),
                dr::Operand::LiteralBit32(450)
            ],
            inst.operands
        );
    }

    #[derive(Debug)]
    struct ErrorString(&'static str);
    impl error::Error for ErrorString {}
    impl fmt::Display for ErrorString {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            let ErrorString(s) = self;
            write!(f, "{}", s)
        }
    }

    struct InitializeErrorConsumer;
    impl Consumer for InitializeErrorConsumer {
        fn initialize(&mut self) -> Action {
            Action::Error(Box::new(ErrorString("init error")))
        }
        fn finalize(&mut self) -> Action {
            Action::Continue
        }
        fn consume_header(&mut self, _: dr::ModuleHeader) -> Action {
            Action::Continue
        }
        fn consume_instruction(&mut self, _: dr::Instruction) -> Action {
            Action::Continue
        }
    }

    #[test]
    fn test_consumer_initialize_error() {
        let v = vec![];
        let mut c = InitializeErrorConsumer {};
        let p = Parser::new(&v, &mut c);
        let ret = p.parse();
        assert_matches!(ret, Err(State::ConsumerError(_)));
        assert_eq!(
            "consumer error: init error",
            format!("{}", ret.unwrap_err())
        );
    }

    struct FinalizeErrorConsumer;
    impl Consumer for FinalizeErrorConsumer {
        fn initialize(&mut self) -> Action {
            Action::Continue
        }
        fn finalize(&mut self) -> Action {
            Action::Error(Box::new(ErrorString("fin error")))
        }
        fn consume_header(&mut self, _: dr::ModuleHeader) -> Action {
            Action::Continue
        }
        fn consume_instruction(&mut self, _: dr::Instruction) -> Action {
            Action::Continue
        }
    }

    #[test]
    fn test_consumer_finalize_error() {
        let mut c = FinalizeErrorConsumer {};
        let p = Parser::new(ZERO_BOUND_HEADER, &mut c);
        let ret = p.parse();
        assert_matches!(ret, Err(State::ConsumerError(_)));
        assert_eq!("consumer error: fin error", format!("{}", ret.unwrap_err()));
    }

    struct ParseHeaderErrorConsumer;
    impl Consumer for ParseHeaderErrorConsumer {
        fn initialize(&mut self) -> Action {
            Action::Continue
        }
        fn finalize(&mut self) -> Action {
            Action::Continue
        }
        fn consume_header(&mut self, _: dr::ModuleHeader) -> Action {
            Action::Error(Box::new(ErrorString("parse header error")))
        }
        fn consume_instruction(&mut self, _: dr::Instruction) -> Action {
            Action::Continue
        }
    }

    #[test]
    fn test_consumer_parse_header_error() {
        let mut c = ParseHeaderErrorConsumer {};
        let p = Parser::new(ZERO_BOUND_HEADER, &mut c);
        let ret = p.parse();
        assert_matches!(ret, Err(State::ConsumerError(_)));
        assert_eq!(
            "consumer error: parse header error",
            format!("{}", ret.unwrap_err())
        );
    }

    struct ParseInstErrorConsumer;
    impl Consumer for ParseInstErrorConsumer {
        fn initialize(&mut self) -> Action {
            Action::Continue
        }
        fn finalize(&mut self) -> Action {
            Action::Continue
        }
        fn consume_header(&mut self, _: dr::ModuleHeader) -> Action {
            Action::Continue
        }
        fn consume_instruction(&mut self, _: dr::Instruction) -> Action {
            Action::Error(Box::new(ErrorString("parse inst error")))
        }
    }

    #[test]
    fn test_consumer_parse_inst_error() {
        let mut b = ModuleBuilder::new();
        b.inst(spirv::Op::Nop, vec![]);
        let mut c = ParseInstErrorConsumer {};
        let p = Parser::new(b.get(), &mut c);
        let ret = p.parse();
        assert_matches!(ret, Err(State::ConsumerError(_)));
        assert_eq!(
            "consumer error: parse inst error",
            format!("{}", ret.unwrap_err())
        );
    }

    #[test]
    fn test_parsing_bit32_int() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x15, 0x00, 0x04, 0x00]); // OpTypeInt
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // result id: 1
        v.append(&mut vec![0x20, 0x00, 0x00, 0x00]); // 32
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // 1 (signed)

        v.append(&mut vec![0x2b, 0x00, 0x04, 0x00]); // OpConstant
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // result type: 1
        v.append(&mut vec![0x02, 0x00, 0x00, 0x00]); // result id: 2
        v.append(&mut vec![0x12, 0x34, 0x56, 0x78]);
        let mut c = RetainingConsumer::new();
        {
            let p = Parser::new(&v, &mut c);
            assert_matches!(p.parse(), Ok(()));
        }
        assert_eq!(2, c.insts.len());
        let inst = &c.insts[1];
        assert_eq!("Constant", inst.class.opname);
        assert_eq!(Some(1), inst.result_type);
        assert_eq!(Some(2), inst.result_id);
        assert_eq!(vec![dr::Operand::LiteralBit32(0x78563412)], inst.operands);
    }

    #[test]
    fn test_parsing_bit64_int() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x15, 0x00, 0x04, 0x00]); // OpTypeInt
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // result id: 1
        v.append(&mut vec![0x40, 0x00, 0x00, 0x00]); // 64
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // 1 (signed)

        v.append(&mut vec![0x2b, 0x00, 0x05, 0x00]); // OpConstant
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // result type: 1
        v.append(&mut vec![0x02, 0x00, 0x00, 0x00]); // result id: 2
        v.append(&mut vec![0x12, 0x34, 0x56, 0x78]);
        v.append(&mut vec![0x90, 0xab, 0xcd, 0xef]);
        let mut c = RetainingConsumer::new();
        {
            let p = Parser::new(&v, &mut c);
            assert_matches!(p.parse(), Ok(()));
        }
        assert_eq!(2, c.insts.len());
        let inst = &c.insts[1];
        assert_eq!("Constant", inst.class.opname);
        assert_eq!(Some(1), inst.result_type);
        assert_eq!(Some(2), inst.result_id);
        assert_eq!(
            vec![dr::Operand::LiteralBit64(0xefcdab9078563412)],
            inst.operands
        );
    }

    #[test]
    fn test_parsing_bit32_float() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x16, 0x00, 0x03, 0x00]); // OpTypeFloat
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // result id: 1
        v.append(&mut vec![0x20, 0x00, 0x00, 0x00]); // 32

        v.append(&mut vec![0x2b, 0x00, 0x04, 0x00]); // OpConstant
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // result type: 1
        v.append(&mut vec![0x02, 0x00, 0x00, 0x00]); // result id: 2
        v.append(&mut vec![0x14, 0xAE, 0x29, 0x42]); // 42.42
        let mut c = RetainingConsumer::new();
        {
            let p = Parser::new(&v, &mut c);
            assert_matches!(p.parse(), Ok(()));
        }
        assert_eq!(2, c.insts.len());
        let inst = &c.insts[1];
        assert_eq!("Constant", inst.class.opname);
        assert_eq!(Some(1), inst.result_type);
        assert_eq!(Some(2), inst.result_id);
        assert_eq!(
            vec![dr::Operand::LiteralBit32(42.42f32.to_bits())],
            inst.operands
        );
    }

    #[test]
    fn test_parsing_bit64_float() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x16, 0x00, 0x03, 0x00]); // OpTypeFloat
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // result id: 1
        v.append(&mut vec![0x40, 0x00, 0x00, 0x00]); // 64

        v.append(&mut vec![0x2b, 0x00, 0x05, 0x00]); // OpConstant
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // result type: 1
        v.append(&mut vec![0x02, 0x00, 0x00, 0x00]); // result id: 2
        v.append(&mut vec![0xAE, 0x47, 0xE1, 0x7A, 0x14, 0xAE, 0x28, 0xC0]); // -12.34
        let mut c = RetainingConsumer::new();
        {
            let p = Parser::new(&v, &mut c);
            assert_matches!(p.parse(), Ok(()));
        }
        assert_eq!(2, c.insts.len());
        let inst = &c.insts[1];
        assert_eq!("Constant", inst.class.opname);
        assert_eq!(Some(1), inst.result_type);
        assert_eq!(Some(2), inst.result_id);
        assert_eq!(
            vec![dr::Operand::LiteralBit64((-12.34f64).to_bits())],
            inst.operands
        );
    }

    #[test]
    fn test_parsing_spec_constant_op() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x34, 0x00, 0x05, 0x00]); // OpTypeFloat
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // result type: 1
        v.append(&mut vec![0x02, 0x00, 0x00, 0x00]); // result id: 2
        v.append(&mut vec![0x7e, 0x00, 0x00, 0x00]); // OpSNegate
        v.append(&mut vec![0x03, 0x00, 0x00, 0x00]); // id ref: 3
        let mut c = RetainingConsumer::new();
        {
            let p = Parser::new(&v, &mut c);
            assert_matches!(p.parse(), Ok(()));
        }
        assert_eq!(1, c.insts.len());
        let inst = &c.insts[0];
        assert_eq!("SpecConstantOp", inst.class.opname);
        assert_eq!(Some(1), inst.result_type);
        assert_eq!(Some(2), inst.result_id);
        assert_eq!(
            vec![
                dr::Operand::LiteralSpecConstantOpInteger(spirv::Op::SNegate),
                dr::Operand::IdRef(3)
            ],
            inst.operands
        );
    }

    #[test]
    fn test_parsing_spec_constant_op_missing_parameter() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x34, 0x00, 0x05, 0x00]); // OpTypeFloat
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // result type: 1
        v.append(&mut vec![0x02, 0x00, 0x00, 0x00]); // result id: 2
        v.append(&mut vec![0x80, 0x00, 0x00, 0x00]); // OpIAdd
        v.append(&mut vec![0x03, 0x00, 0x00, 0x00]); // id ref: 3
        let mut c = RetainingConsumer::new();
        let p = Parser::new(&v, &mut c);
        assert_matches!(
            p.parse(),
            // The header has 5 words, the above instruction has 5 words,
            // so in total 40 bytes.
            Err(State::OperandError(DecodeError::LimitReached(40)))
        );
    }

    #[test]
    fn test_parsing_bitmasks_requiring_params_no_mem_access() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x3e, 0x00, 0x03, 0x00]); // OpStore
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // pointer: 1
        v.append(&mut vec![0x02, 0x00, 0x00, 0x00]); // object: 2
        let mut c = RetainingConsumer::new();
        {
            let p = Parser::new(&v, &mut c);
            assert_matches!(p.parse(), Ok(()));
        }
        assert_eq!(1, c.insts.len());
        let inst = &c.insts[0];
        assert_eq!("Store", inst.class.opname);
        assert_eq!(None, inst.result_type);
        assert_eq!(None, inst.result_id);
        assert_eq!(
            vec![dr::Operand::IdRef(1), dr::Operand::IdRef(2)],
            inst.operands
        );
    }
    #[test]
    fn test_parsing_bitmasks_requiring_params_mem_access_no_param() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x3e, 0x00, 0x04, 0x00]); // OpStore
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // pointer: 1
        v.append(&mut vec![0x02, 0x00, 0x00, 0x00]); // object: 2
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // Volatile
        let mut c = RetainingConsumer::new();
        {
            let p = Parser::new(&v, &mut c);
            assert_matches!(p.parse(), Ok(()));
        }
        assert_eq!(1, c.insts.len());
        let inst = &c.insts[0];
        assert_eq!("Store", inst.class.opname);
        assert_eq!(None, inst.result_type);
        assert_eq!(None, inst.result_id);
        assert_eq!(
            vec![
                dr::Operand::IdRef(1),
                dr::Operand::IdRef(2),
                dr::Operand::MemoryAccess(spirv::MemoryAccess::VOLATILE)
            ],
            inst.operands
        );
    }
    #[test]
    fn test_parsing_bitmasks_requiring_params_mem_access_with_param() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x3e, 0x00, 0x05, 0x00]); // OpStore
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // pointer: 1
        v.append(&mut vec![0x02, 0x00, 0x00, 0x00]); // object: 2
        v.append(&mut vec![0x03, 0x00, 0x00, 0x00]); // Volatile & Aligned
        v.append(&mut vec![0x04, 0x00, 0x00, 0x00]); // alignment
        let mut c = RetainingConsumer::new();
        {
            let p = Parser::new(&v, &mut c);
            assert_matches!(p.parse(), Ok(()));
        }
        assert_eq!(1, c.insts.len());
        let inst = &c.insts[0];
        assert_eq!("Store", inst.class.opname);
        assert_eq!(None, inst.result_type);
        assert_eq!(None, inst.result_id);
        assert_eq!(
            vec![
                dr::Operand::IdRef(1),
                dr::Operand::IdRef(2),
                dr::Operand::MemoryAccess(spirv::MemoryAccess::from_bits(3).unwrap()),
                dr::Operand::LiteralBit32(4)
            ],
            inst.operands
        );
    }
    #[test]
    fn test_parsing_bitmasks_requiring_params_mem_access_missing_param() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x3e, 0x00, 0x04, 0x00]); // OpStore
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // pointer: 1
        v.append(&mut vec![0x02, 0x00, 0x00, 0x00]); // object: 2
        v.append(&mut vec![0x03, 0x00, 0x00, 0x00]); // Volatile & Aligned
        let mut c = RetainingConsumer::new();
        let p = Parser::new(&v, &mut c);
        assert_matches!(
            p.parse(),
            // The header has 5 words, the above instruction has 4 words,
            // so in total 36 bytes.
            Err(State::OperandError(DecodeError::LimitReached(36)))
        );
    }
    #[test]
    fn test_parsing_bitmasks_requiring_params_img_operands_param_order() {
        let mut v = ZERO_BOUND_HEADER.to_vec();
        v.append(&mut vec![0x63, 0x00, 0x08, 0x00]); // OpStore
        v.append(&mut vec![0x01, 0x00, 0x00, 0x00]); // image: 1
        v.append(&mut vec![0x02, 0x00, 0x00, 0x00]); // coordinate: 2
        v.append(&mut vec![0x03, 0x00, 0x00, 0x00]); // texel: 3
        v.append(&mut vec![0x05, 0x00, 0x00, 0x00]); // Bias & GRAD
        v.append(&mut vec![0xaa, 0x00, 0x00, 0x00]); // bias
        v.append(&mut vec![0xbb, 0x00, 0x00, 0x00]); // dx
        v.append(&mut vec![0xcc, 0x00, 0x00, 0x00]); // dy
        let mut c = RetainingConsumer::new();
        {
            let p = Parser::new(&v, &mut c);
            assert_matches!(p.parse(), Ok(()));
        }
        assert_eq!(1, c.insts.len());
        let inst = &c.insts[0];
        assert_eq!("ImageWrite", inst.class.opname);
        assert_eq!(None, inst.result_type);
        assert_eq!(None, inst.result_id);
        assert_eq!(
            vec![
                dr::Operand::IdRef(1),
                dr::Operand::IdRef(2),
                dr::Operand::IdRef(3),
                dr::Operand::ImageOperands(spirv::ImageOperands::from_bits(5).unwrap()),
                dr::Operand::IdRef(0xaa),
                dr::Operand::IdRef(0xbb),
                dr::Operand::IdRef(0xcc)
            ],
            inst.operands
        );
    }

    #[test]
    fn test_parse_words() {
        let words = vec![0x07230203, 0x01000000, 0, 0, 0, 0x00020011, 0x00000016];
        let mut c = RetainingConsumer::new();
        assert_matches!(parse_words(&words, &mut c), Ok(()));
        assert_eq!(1, c.insts.len());
        let inst = &c.insts[0];
        assert_eq!("Capability", inst.class.opname);
        assert_eq!(None, inst.result_type);
        assert_eq!(None, inst.result_id);
        assert_eq!(
            vec![dr::Operand::Capability(spirv::Capability::Int16)],
            inst.operands
        );
    }
}