rustc_codegen_spirv/builder/builder_methods.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
// HACK(eddyb) avoids rewriting all of the imports (see `lib.rs` and `build.rs`).
use crate::maybe_pqp_cg_ssa as rustc_codegen_ssa;
use super::Builder;
use crate::abi::ConvSpirvType;
use crate::builder_spirv::{BuilderCursor, SpirvConst, SpirvValue, SpirvValueExt, SpirvValueKind};
use crate::codegen_cx::CodegenCx;
use crate::custom_insts::{CustomInst, CustomOp};
use crate::spirv_type::SpirvType;
use itertools::Itertools;
use rspirv::dr::{InsertPoint, Instruction, Operand};
use rspirv::spirv::{Capability, MemoryModel, MemorySemantics, Op, Scope, StorageClass, Word};
use rustc_apfloat::{Float, Round, Status, ieee};
use rustc_codegen_ssa::MemFlags;
use rustc_codegen_ssa::common::{
AtomicOrdering, AtomicRmwBinOp, IntPredicate, RealPredicate, SynchronizationScope, TypeKind,
};
use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue};
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::{
BackendTypes, BaseTypeCodegenMethods, BuilderMethods, ConstCodegenMethods,
LayoutTypeCodegenMethods, OverflowOp,
};
use rustc_data_structures::fx::FxHashSet;
use rustc_middle::bug;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
use rustc_middle::ty::layout::LayoutOf;
use rustc_middle::ty::{self, Ty};
use rustc_span::Span;
use rustc_target::abi::call::FnAbi;
use rustc_target::abi::{Align, BackendRepr, Scalar, Size, WrappingRange};
use smallvec::SmallVec;
use std::borrow::Cow;
use std::cell::Cell;
use std::iter::{self, empty};
use std::ops::RangeInclusive;
macro_rules! simple_op {
(
$func_name:ident, $inst_name:ident
$(, fold_const {
$(int($fold_int_lhs:ident, $fold_int_rhs:ident) => $fold_int:expr)?
})?
) => {
fn $func_name(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value {
assert_ty_eq!(self, lhs.ty, rhs.ty);
let result_type = lhs.ty;
$(if let Some(const_lhs) = self.builder.lookup_const(lhs) {
if let Some(const_rhs) = self.builder.lookup_const(rhs) {
match self.lookup_type(result_type) {
$(SpirvType::Integer(bits, signed) => {
let size = Size::from_bits(bits);
let as_u128 = |const_val| {
let x = match const_val {
SpirvConst::Scalar(x) => x,
_ => return None,
};
Some(if signed {
size.sign_extend(x) as u128
} else {
size.truncate(x)
})
};
if let Some($fold_int_lhs) = as_u128(const_lhs) {
if let Some($fold_int_rhs) = as_u128(const_rhs) {
return self.const_uint_big(result_type, $fold_int);
}
}
})?
_ => {}
}
}
})?
self.emit()
.$inst_name(result_type, None, lhs.def(self), rhs.def(self))
.unwrap()
.with_type(result_type)
}
};
}
// shl and shr allow different types as their operands
macro_rules! simple_op_unchecked_type {
($func_name:ident, $inst_name:ident) => {
fn $func_name(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value {
self.emit()
.$inst_name(lhs.ty, None, lhs.def(self), rhs.def(self))
.unwrap()
.with_type(lhs.ty)
}
};
}
macro_rules! simple_uni_op {
($func_name:ident, $inst_name:ident) => {
fn $func_name(&mut self, val: Self::Value) -> Self::Value {
self.emit()
.$inst_name(val.ty, None, val.def(self))
.unwrap()
.with_type(val.ty)
}
};
}
fn memset_fill_u16(b: u8) -> u16 {
b as u16 | ((b as u16) << 8)
}
fn memset_fill_u32(b: u8) -> u32 {
b as u32 | ((b as u32) << 8) | ((b as u32) << 16) | ((b as u32) << 24)
}
fn memset_fill_u64(b: u8) -> u64 {
b as u64
| ((b as u64) << 8)
| ((b as u64) << 16)
| ((b as u64) << 24)
| ((b as u64) << 32)
| ((b as u64) << 40)
| ((b as u64) << 48)
| ((b as u64) << 56)
}
fn memset_dynamic_scalar(
builder: &Builder<'_, '_>,
fill_var: Word,
byte_width: usize,
is_float: bool,
) -> Word {
let composite_type = SpirvType::Vector {
element: SpirvType::Integer(8, false).def(builder.span(), builder),
count: byte_width as u32,
}
.def(builder.span(), builder);
let composite = builder
.emit()
.composite_construct(
composite_type,
None,
iter::repeat(fill_var).take(byte_width),
)
.unwrap();
let result_type = if is_float {
SpirvType::Float(byte_width as u32 * 8)
} else {
SpirvType::Integer(byte_width as u32 * 8, false)
};
builder
.emit()
.bitcast(result_type.def(builder.span(), builder), None, composite)
.unwrap()
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
fn ordering_to_semantics_def(&self, ordering: AtomicOrdering) -> SpirvValue {
let mut invalid_seq_cst = false;
let semantics = match ordering {
AtomicOrdering::Unordered | AtomicOrdering::Relaxed => MemorySemantics::NONE,
// Note: rustc currently has AtomicOrdering::Consume commented out, if it ever becomes
// uncommented, it should be MakeVisible | Acquire.
AtomicOrdering::Acquire => MemorySemantics::MAKE_VISIBLE | MemorySemantics::ACQUIRE,
AtomicOrdering::Release => MemorySemantics::MAKE_AVAILABLE | MemorySemantics::RELEASE,
AtomicOrdering::AcquireRelease => {
MemorySemantics::MAKE_AVAILABLE
| MemorySemantics::MAKE_VISIBLE
| MemorySemantics::ACQUIRE_RELEASE
}
AtomicOrdering::SequentiallyConsistent => {
let emit = self.emit();
let memory_model = emit.module_ref().memory_model.as_ref().unwrap();
if memory_model.operands[1].unwrap_memory_model() == MemoryModel::Vulkan {
invalid_seq_cst = true;
}
MemorySemantics::MAKE_AVAILABLE
| MemorySemantics::MAKE_VISIBLE
| MemorySemantics::SEQUENTIALLY_CONSISTENT
}
};
let semantics = self.constant_u32(self.span(), semantics.bits());
if invalid_seq_cst {
self.zombie(
semantics.def(self),
"cannot use AtomicOrdering=SequentiallyConsistent on Vulkan memory model \
(check if AcquireRelease fits your needs)",
);
}
semantics
}
fn memset_const_pattern(&self, ty: &SpirvType<'tcx>, fill_byte: u8) -> Word {
match *ty {
SpirvType::Void => self.fatal("memset invalid on void pattern"),
SpirvType::Bool => self.fatal("memset invalid on bool pattern"),
SpirvType::Integer(width, _signedness) => match width {
8 => self.constant_u8(self.span(), fill_byte).def(self),
16 => self
.constant_u16(self.span(), memset_fill_u16(fill_byte))
.def(self),
32 => self
.constant_u32(self.span(), memset_fill_u32(fill_byte))
.def(self),
64 => self
.constant_u64(self.span(), memset_fill_u64(fill_byte))
.def(self),
_ => self.fatal(format!(
"memset on integer width {width} not implemented yet"
)),
},
SpirvType::Float(width) => match width {
32 => self
.constant_f32(self.span(), f32::from_bits(memset_fill_u32(fill_byte)))
.def(self),
64 => self
.constant_f64(self.span(), f64::from_bits(memset_fill_u64(fill_byte)))
.def(self),
_ => self.fatal(format!("memset on float width {width} not implemented yet")),
},
SpirvType::Adt { .. } => self.fatal("memset on structs not implemented yet"),
SpirvType::Vector { element, count } | SpirvType::Matrix { element, count } => {
let elem_pat = self.memset_const_pattern(&self.lookup_type(element), fill_byte);
self.constant_composite(
ty.def(self.span(), self),
iter::repeat(elem_pat).take(count as usize),
)
.def(self)
}
SpirvType::Array { element, count } => {
let elem_pat = self.memset_const_pattern(&self.lookup_type(element), fill_byte);
let count = self.builder.lookup_const_scalar(count).unwrap() as usize;
self.constant_composite(
ty.def(self.span(), self),
iter::repeat(elem_pat).take(count),
)
.def(self)
}
SpirvType::RuntimeArray { .. } => {
self.fatal("memset on runtime arrays not implemented yet")
}
SpirvType::Pointer { .. } => self.fatal("memset on pointers not implemented yet"),
SpirvType::Function { .. } => self.fatal("memset on functions not implemented yet"),
SpirvType::Image { .. } => self.fatal("cannot memset image"),
SpirvType::Sampler => self.fatal("cannot memset sampler"),
SpirvType::SampledImage { .. } => self.fatal("cannot memset sampled image"),
SpirvType::InterfaceBlock { .. } => self.fatal("cannot memset interface block"),
SpirvType::AccelerationStructureKhr => {
self.fatal("cannot memset acceleration structure")
}
SpirvType::RayQueryKhr => self.fatal("cannot memset ray query"),
}
}
fn memset_dynamic_pattern(&self, ty: &SpirvType<'tcx>, fill_var: Word) -> Word {
match *ty {
SpirvType::Void => self.fatal("memset invalid on void pattern"),
SpirvType::Bool => self.fatal("memset invalid on bool pattern"),
SpirvType::Integer(width, _signedness) => match width {
8 => fill_var,
16 => memset_dynamic_scalar(self, fill_var, 2, false),
32 => memset_dynamic_scalar(self, fill_var, 4, false),
64 => memset_dynamic_scalar(self, fill_var, 8, false),
_ => self.fatal(format!(
"memset on integer width {width} not implemented yet"
)),
},
SpirvType::Float(width) => match width {
32 => memset_dynamic_scalar(self, fill_var, 4, true),
64 => memset_dynamic_scalar(self, fill_var, 8, true),
_ => self.fatal(format!("memset on float width {width} not implemented yet")),
},
SpirvType::Adt { .. } => self.fatal("memset on structs not implemented yet"),
SpirvType::Array { element, count } => {
let elem_pat = self.memset_dynamic_pattern(&self.lookup_type(element), fill_var);
let count = self.builder.lookup_const_scalar(count).unwrap() as usize;
self.emit()
.composite_construct(
ty.def(self.span(), self),
None,
iter::repeat(elem_pat).take(count),
)
.unwrap()
}
SpirvType::Vector { element, count } | SpirvType::Matrix { element, count } => {
let elem_pat = self.memset_dynamic_pattern(&self.lookup_type(element), fill_var);
self.emit()
.composite_construct(
ty.def(self.span(), self),
None,
iter::repeat(elem_pat).take(count as usize),
)
.unwrap()
}
SpirvType::RuntimeArray { .. } => {
self.fatal("memset on runtime arrays not implemented yet")
}
SpirvType::Pointer { .. } => self.fatal("memset on pointers not implemented yet"),
SpirvType::Function { .. } => self.fatal("memset on functions not implemented yet"),
SpirvType::Image { .. } => self.fatal("cannot memset image"),
SpirvType::Sampler => self.fatal("cannot memset sampler"),
SpirvType::SampledImage { .. } => self.fatal("cannot memset sampled image"),
SpirvType::InterfaceBlock { .. } => self.fatal("cannot memset interface block"),
SpirvType::AccelerationStructureKhr => {
self.fatal("cannot memset acceleration structure")
}
SpirvType::RayQueryKhr => self.fatal("cannot memset ray query"),
}
}
fn memset_constant_size(&mut self, ptr: SpirvValue, pat: SpirvValue, size_bytes: u64) {
let size_elem = self
.lookup_type(pat.ty)
.sizeof(self)
.expect("Memset on unsized values not supported");
let count = size_bytes / size_elem.bytes();
if count == 1 {
self.store(pat, ptr, Align::from_bytes(0).unwrap());
} else {
for index in 0..count {
let const_index = self.constant_u32(self.span(), index as u32);
let gep_ptr = self.gep(pat.ty, ptr, &[const_index]);
self.store(pat, gep_ptr, Align::from_bytes(0).unwrap());
}
}
}
// TODO: Test this is correct
fn memset_dynamic_size(&mut self, ptr: SpirvValue, pat: SpirvValue, size_bytes: SpirvValue) {
let size_elem = self
.lookup_type(pat.ty)
.sizeof(self)
.expect("Unable to memset a dynamic sized object");
let size_elem_const = self.constant_int(size_bytes.ty, size_elem.bytes().into());
let zero = self.constant_int(size_bytes.ty, 0);
let one = self.constant_int(size_bytes.ty, 1);
let zero_align = Align::from_bytes(0).unwrap();
let header_bb = self.append_sibling_block("memset_header");
let body_bb = self.append_sibling_block("memset_body");
let exit_bb = self.append_sibling_block("memset_exit");
let count = self.udiv(size_bytes, size_elem_const);
let index = self.alloca(self.lookup_type(count.ty).sizeof(self).unwrap(), zero_align);
self.store(zero, index, zero_align);
self.br(header_bb);
self.switch_to_block(header_bb);
let current_index = self.load(count.ty, index, zero_align);
let cond = self.icmp(IntPredicate::IntULT, current_index, count);
self.cond_br(cond, body_bb, exit_bb);
self.switch_to_block(body_bb);
let gep_ptr = self.gep(pat.ty, ptr, &[current_index]);
self.store(pat, gep_ptr, zero_align);
let current_index_plus_1 = self.add(current_index, one);
self.store(current_index_plus_1, index, zero_align);
self.br(header_bb);
self.switch_to_block(exit_bb);
}
fn zombie_convert_ptr_to_u(&self, def: Word) {
self.zombie(def, "cannot convert pointers to integers");
}
fn zombie_convert_u_to_ptr(&self, def: Word) {
self.zombie(def, "cannot convert integers to pointers");
}
fn zombie_ptr_equal(&self, def: Word, inst: &str) {
if !self.builder.has_capability(Capability::VariablePointers) {
self.zombie(
def,
&format!("{inst} without OpCapability VariablePointers"),
);
}
}
/// Convenience wrapper for `adjust_pointer_for_sized_access`, falling back
/// on choosing `ty` as the leaf's type (and casting `ptr` to a pointer to it).
//
// HACK(eddyb) temporary workaround for untyped pointers upstream.
// FIXME(eddyb) replace with untyped memory SPIR-V + `qptr` or similar.
fn adjust_pointer_for_typed_access(
&mut self,
ptr: SpirvValue,
ty: <Self as BackendTypes>::Type,
) -> (SpirvValue, <Self as BackendTypes>::Type) {
self.lookup_type(ty)
.sizeof(self)
.and_then(|size| self.adjust_pointer_for_sized_access(ptr, size))
.unwrap_or_else(|| (self.pointercast(ptr, self.type_ptr_to(ty)), ty))
}
/// If `ptr`'s pointee type contains any prefix field/element of size `size`,
/// i.e. some leaf which can be used for all accesses of size `size`, return
/// `ptr` adjusted to point to the innermost such leaf, and the leaf's type.
//
// FIXME(eddyb) technically this duplicates `pointercast`, but the main use
// of `pointercast` is being replaced by this, and this can be more efficient.
//
// HACK(eddyb) temporary workaround for untyped pointers upstream.
// FIXME(eddyb) replace with untyped memory SPIR-V + `qptr` or similar.
fn adjust_pointer_for_sized_access(
&mut self,
ptr: SpirvValue,
size: Size,
) -> Option<(SpirvValue, <Self as BackendTypes>::Type)> {
let ptr = ptr.strip_ptrcasts();
let mut leaf_ty = match self.lookup_type(ptr.ty) {
SpirvType::Pointer { pointee } => pointee,
other => self.fatal(format!("non-pointer type: {other:?}")),
};
// FIXME(eddyb) this isn't efficient, `recover_access_chain_from_offset`
// could instead be doing all the extra digging itself.
let mut indices = SmallVec::<[_; 8]>::new();
while let Some((inner_indices, inner_ty)) = self.recover_access_chain_from_offset(
leaf_ty,
Size::ZERO,
Some(size)..=Some(size),
None,
) {
indices.extend(inner_indices);
leaf_ty = inner_ty;
}
let leaf_ptr_ty = (self.lookup_type(leaf_ty).sizeof(self) == Some(size))
.then(|| self.type_ptr_to(leaf_ty))?;
let leaf_ptr = if indices.is_empty() {
assert_ty_eq!(self, ptr.ty, leaf_ptr_ty);
ptr
} else {
let indices = indices
.into_iter()
.map(|idx| self.constant_u32(self.span(), idx).def(self))
.collect::<Vec<_>>();
self.emit()
.in_bounds_access_chain(leaf_ptr_ty, None, ptr.def(self), indices)
.unwrap()
.with_type(leaf_ptr_ty)
};
Some((leaf_ptr, leaf_ty))
}
/// If possible, return the appropriate `OpAccessChain` indices for going
/// from a pointer to `ty`, to a pointer to some leaf field/element having
/// a size that fits `leaf_size_range` (and, optionally, the type `leaf_ty`),
/// while adding `offset` bytes.
///
/// That is, try to turn `((_: *T) as *u8).add(offset) as *Leaf` into a series
/// of struct field and array/vector element accesses.
fn recover_access_chain_from_offset(
&self,
mut ty: <Self as BackendTypes>::Type,
mut offset: Size,
// FIXME(eddyb) using `None` for "unsized" is a pretty bad design.
leaf_size_or_unsized_range: RangeInclusive<Option<Size>>,
leaf_ty: Option<<Self as BackendTypes>::Type>,
) -> Option<(SmallVec<[u32; 8]>, <Self as BackendTypes>::Type)> {
assert_ne!(Some(ty), leaf_ty);
// HACK(eddyb) this has the correct ordering (`Sized(_) < Unsized`).
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
enum MaybeSized {
Sized(Size),
Unsized,
}
let leaf_size_range = {
let r = leaf_size_or_unsized_range;
let [start, end] =
[r.start(), r.end()].map(|x| x.map_or(MaybeSized::Unsized, MaybeSized::Sized));
start..=end
};
// NOTE(eddyb) `ty` and `ty_kind`/`ty_size` should be kept in sync.
let mut ty_kind = self.lookup_type(ty);
let mut indices = SmallVec::new();
loop {
let ty_size;
match ty_kind {
SpirvType::Adt {
field_types,
field_offsets,
..
} => {
let (i, field_ty, field_ty_kind, field_ty_size, offset_in_field) = field_offsets
.iter()
.enumerate()
.find_map(|(i, &field_offset)| {
if field_offset > offset {
return None;
}
// Grab the actual field type to be able to confirm that
// the leaf is somewhere inside the field.
let field_ty = field_types[i];
let field_ty_kind = self.lookup_type(field_ty);
let field_ty_size = field_ty_kind
.sizeof(self).map_or(MaybeSized::Unsized, MaybeSized::Sized);
let offset_in_field = offset - field_offset;
if MaybeSized::Sized(offset_in_field) < field_ty_size
// If the field is a zero sized type, check the
// expected size and type to get the correct entry
|| offset_in_field == Size::ZERO
&& leaf_size_range.contains(&MaybeSized::Sized(Size::ZERO)) && leaf_ty == Some(field_ty)
{
Some((i, field_ty, field_ty_kind, field_ty_size, offset_in_field))
} else {
None
}
})?;
ty = field_ty;
ty_kind = field_ty_kind;
ty_size = field_ty_size;
indices.push(i as u32);
offset = offset_in_field;
}
SpirvType::Vector { element, .. }
| SpirvType::Array { element, .. }
| SpirvType::RuntimeArray { element }
| SpirvType::Matrix { element, .. } => {
ty = element;
ty_kind = self.lookup_type(ty);
let stride = ty_kind.sizeof(self)?;
ty_size = MaybeSized::Sized(stride);
indices.push((offset.bytes() / stride.bytes()).try_into().ok()?);
offset = Size::from_bytes(offset.bytes() % stride.bytes());
}
_ => return None,
}
// Avoid digging beyond the point the leaf could actually fit.
if ty_size < *leaf_size_range.start() {
return None;
}
if offset == Size::ZERO
&& leaf_size_range.contains(&ty_size)
&& leaf_ty.map_or(true, |leaf_ty| leaf_ty == ty)
{
return Some((indices, ty));
}
}
}
fn maybe_inbounds_gep(
&mut self,
ty: Word,
ptr: SpirvValue,
combined_indices: &[SpirvValue],
is_inbounds: bool,
) -> SpirvValue {
let (&ptr_base_index, indices) = combined_indices.split_first().unwrap();
// The first index is an offset to the pointer, the rest are actual members.
// https://llvm.org/docs/GetElementPtr.html
// "An OpAccessChain instruction is the equivalent of an LLVM getelementptr instruction where the first index element is zero."
// https://github.com/gpuweb/gpuweb/issues/33
let mut result_pointee_type = ty;
let indices: Vec<_> = indices
.iter()
.map(|index| {
result_pointee_type = match self.lookup_type(result_pointee_type) {
SpirvType::Array { element, .. } | SpirvType::RuntimeArray { element } => {
element
}
_ => self.fatal(format!(
"GEP not implemented for type {}",
self.debug_type(result_pointee_type)
)),
};
index.def(self)
})
.collect();
// Special-case field accesses through a `pointercast`, to access the
// right field in the original type, for the `Logical` addressing model.
let ptr = ptr.strip_ptrcasts();
let ptr_id = ptr.def(self);
let original_pointee_ty = match self.lookup_type(ptr.ty) {
SpirvType::Pointer { pointee } => pointee,
other => self.fatal(format!("gep called on non-pointer type: {other:?}")),
};
// HACK(eddyb) `struct_gep` itself is falling out of use, as it's being
// replaced upstream by `ptr_add` (aka `inbounds_gep` with byte offsets).
//
// FIXME(eddyb) get rid of everything other than:
// - constant byte offset (`ptr_add`?)
// - dynamic indexing of a single array
let const_ptr_offset = self
.builder
.lookup_const_scalar(ptr_base_index)
.and_then(|idx| Some(u64::try_from(idx).ok()? * self.lookup_type(ty).sizeof(self)?));
if let Some(const_ptr_offset) = const_ptr_offset {
if let Some((base_indices, base_pointee_ty)) = self.recover_access_chain_from_offset(
original_pointee_ty,
const_ptr_offset,
Some(Size::ZERO)..=None,
None,
) {
// FIXME(eddyb) this condition is pretty limiting, but
// eventually it shouldn't matter if GEPs are going away.
if ty == base_pointee_ty || indices.is_empty() {
let result_pointee_type = if indices.is_empty() {
base_pointee_ty
} else {
result_pointee_type
};
let indices = base_indices
.into_iter()
.map(|idx| self.constant_u32(self.span(), idx).def(self))
.chain(indices)
.collect();
return self.emit_access_chain(
self.type_ptr_to(result_pointee_type),
ptr_id,
None,
indices,
is_inbounds,
);
}
}
}
let result_type = self.type_ptr_to(result_pointee_type);
// Check if `ptr_id` is defined by an `OpAccessChain`, and if it is,
// grab its base pointer and indices.
//
// FIXME(eddyb) this could get ridiculously expensive, at the very least
// it could use `.rev()`, hoping the base pointer was recently defined?
let maybe_original_access_chain = if ty == original_pointee_ty {
let emit = self.emit();
let module = emit.module_ref();
let func = &module.functions[emit.selected_function().unwrap()];
let base_ptr_and_combined_indices = func
.all_inst_iter()
.find(|inst| inst.result_id == Some(ptr_id))
.and_then(|ptr_def_inst| {
if matches!(
ptr_def_inst.class.opcode,
Op::AccessChain | Op::InBoundsAccessChain
) {
let base_ptr = ptr_def_inst.operands[0].unwrap_id_ref();
let indices = ptr_def_inst.operands[1..]
.iter()
.map(|op| op.unwrap_id_ref())
.collect::<Vec<_>>();
Some((base_ptr, indices))
} else {
None
}
});
base_ptr_and_combined_indices
} else {
None
};
if let Some((original_ptr, mut original_indices)) = maybe_original_access_chain {
// Transform the following:
// OpAccessChain original_ptr [a, b, c]
// OpPtrAccessChain ptr base [d, e, f]
// into
// OpAccessChain original_ptr [a, b, c + base, d, e, f]
// to remove the need for OpPtrAccessChain
let last = original_indices.last_mut().unwrap();
*last = self
.add(last.with_type(ptr_base_index.ty), ptr_base_index)
.def(self);
original_indices.extend(indices);
return self.emit_access_chain(
result_type,
original_ptr,
None,
original_indices,
is_inbounds,
);
}
// HACK(eddyb) temporary workaround for untyped pointers upstream.
// FIXME(eddyb) replace with untyped memory SPIR-V + `qptr` or similar.
let ptr = self.pointercast(ptr, self.type_ptr_to(ty));
let ptr_id = ptr.def(self);
self.emit_access_chain(
result_type,
ptr_id,
Some(ptr_base_index),
indices,
is_inbounds,
)
}
fn emit_access_chain(
&self,
result_type: <Self as BackendTypes>::Type,
pointer: Word,
ptr_base_index: Option<SpirvValue>,
indices: Vec<Word>,
is_inbounds: bool,
) -> SpirvValue {
let mut emit = self.emit();
let non_zero_ptr_base_index =
ptr_base_index.filter(|&idx| self.builder.lookup_const_scalar(idx) != Some(0));
if let Some(ptr_base_index) = non_zero_ptr_base_index {
let result = if is_inbounds {
emit.in_bounds_ptr_access_chain(
result_type,
None,
pointer,
ptr_base_index.def(self),
indices,
)
} else {
emit.ptr_access_chain(
result_type,
None,
pointer,
ptr_base_index.def(self),
indices,
)
}
.unwrap();
self.zombie(result, "cannot offset a pointer to an arbitrary element");
result
} else {
if is_inbounds {
emit.in_bounds_access_chain(result_type, None, pointer, indices)
} else {
emit.access_chain(result_type, None, pointer, indices)
}
.unwrap()
}
.with_type(result_type)
}
fn fptoint_sat(
&mut self,
signed: bool,
val: SpirvValue,
dest_ty: <Self as BackendTypes>::Type,
) -> SpirvValue {
// This uses the old llvm emulation to implement saturation
let src_ty = self.cx.val_ty(val);
let (float_ty, int_ty) = if self.cx.type_kind(src_ty) == TypeKind::Vector {
assert_eq!(
self.cx.vector_length(src_ty),
self.cx.vector_length(dest_ty)
);
(self.cx.element_type(src_ty), self.cx.element_type(dest_ty))
} else {
(src_ty, dest_ty)
};
let int_width = self.cx().int_width(int_ty);
let float_width = self.cx().float_width(float_ty);
// LLVM's fpto[su]i returns undef when the input x is infinite, NaN, or does not fit into the
// destination integer type after rounding towards zero. This `undef` value can cause UB in
// safe code (see issue #10184), so we implement a saturating conversion on top of it:
// Semantically, the mathematical value of the input is rounded towards zero to the next
// mathematical integer, and then the result is clamped into the range of the destination
// integer type. Positive and negative infinity are mapped to the maximum and minimum value of
// the destination integer type. NaN is mapped to 0.
//
// Define f_min and f_max as the largest and smallest (finite) floats that are exactly equal to
// a value representable in int_ty.
// They are exactly equal to int_ty::{MIN,MAX} if float_ty has enough significand bits.
// Otherwise, int_ty::MAX must be rounded towards zero, as it is one less than a power of two.
// int_ty::MIN, however, is either zero or a negative power of two and is thus exactly
// representable. Note that this only works if float_ty's exponent range is sufficiently large.
// f16 or 256 bit integers would break this property. Right now the smallest float type is f32
// with exponents ranging up to 127, which is barely enough for i128::MIN = -2^127.
// On the other hand, f_max works even if int_ty::MAX is greater than float_ty::MAX. Because
// we're rounding towards zero, we just get float_ty::MAX (which is always an integer).
// This already happens today with u128::MAX = 2^128 - 1 > f32::MAX.
let int_max = |signed: bool, int_width: u64| -> u128 {
let shift_amount = 128 - int_width;
if signed {
i128::MAX as u128 >> shift_amount
} else {
u128::MAX >> shift_amount
}
};
let int_min = |signed: bool, int_width: u64| -> i128 {
if signed {
i128::MIN >> (128 - int_width)
} else {
0
}
};
let compute_clamp_bounds_single = |signed: bool, int_width: u64| -> (u128, u128) {
let rounded_min =
ieee::Single::from_i128_r(int_min(signed, int_width), Round::TowardZero);
assert_eq!(rounded_min.status, Status::OK);
let rounded_max =
ieee::Single::from_u128_r(int_max(signed, int_width), Round::TowardZero);
assert!(rounded_max.value.is_finite());
(rounded_min.value.to_bits(), rounded_max.value.to_bits())
};
let compute_clamp_bounds_double = |signed: bool, int_width: u64| -> (u128, u128) {
let rounded_min =
ieee::Double::from_i128_r(int_min(signed, int_width), Round::TowardZero);
assert_eq!(rounded_min.status, Status::OK);
let rounded_max =
ieee::Double::from_u128_r(int_max(signed, int_width), Round::TowardZero);
assert!(rounded_max.value.is_finite());
(rounded_min.value.to_bits(), rounded_max.value.to_bits())
};
// To implement saturation, we perform the following steps:
//
// 1. Cast x to an integer with fpto[su]i. This may result in undef.
// 2. Compare x to f_min and f_max, and use the comparison results to select:
// a) int_ty::MIN if x < f_min or x is NaN
// b) int_ty::MAX if x > f_max
// c) the result of fpto[su]i otherwise
// 3. If x is NaN, return 0.0, otherwise return the result of step 2.
//
// This avoids resulting undef because values in range [f_min, f_max] by definition fit into the
// destination type. It creates an undef temporary, but *producing* undef is not UB. Our use of
// undef does not introduce any non-determinism either.
// More importantly, the above procedure correctly implements saturating conversion.
// Proof (sketch):
// If x is NaN, 0 is returned by definition.
// Otherwise, x is finite or infinite and thus can be compared with f_min and f_max.
// This yields three cases to consider:
// (1) if x in [f_min, f_max], the result of fpto[su]i is returned, which agrees with
// saturating conversion for inputs in that range.
// (2) if x > f_max, then x is larger than int_ty::MAX. This holds even if f_max is rounded
// (i.e., if f_max < int_ty::MAX) because in those cases, nextUp(f_max) is already larger
// than int_ty::MAX. Because x is larger than int_ty::MAX, the return value of int_ty::MAX
// is correct.
// (3) if x < f_min, then x is smaller than int_ty::MIN. As shown earlier, f_min exactly equals
// int_ty::MIN and therefore the return value of int_ty::MIN is correct.
// QED.
let float_bits_to_llval = |bx: &mut Self, bits| {
let bits_llval = match float_width {
32 => bx.cx().const_u32(bits as u32),
64 => bx.cx().const_u64(bits as u64),
n => bug!("unsupported float width {}", n),
};
bx.bitcast(bits_llval, float_ty)
};
let (f_min, f_max) = match float_width {
32 => compute_clamp_bounds_single(signed, int_width),
64 => compute_clamp_bounds_double(signed, int_width),
n => bug!("unsupported float width {}", n),
};
let f_min = float_bits_to_llval(self, f_min);
let f_max = float_bits_to_llval(self, f_max);
let int_max = self.cx().const_uint_big(int_ty, int_max(signed, int_width));
let int_min = self
.cx()
.const_uint_big(int_ty, int_min(signed, int_width) as u128);
let zero = self.cx().const_uint(int_ty, 0);
// If we're working with vectors, constants must be "splatted": the constant is duplicated
// into each lane of the vector. The algorithm stays the same, we are just using the
// same constant across all lanes.
let maybe_splat = |bx: &mut Self, val| {
if bx.cx().type_kind(dest_ty) == TypeKind::Vector {
bx.vector_splat(bx.vector_length(dest_ty), val)
} else {
val
}
};
let f_min = maybe_splat(self, f_min);
let f_max = maybe_splat(self, f_max);
let int_max = maybe_splat(self, int_max);
let int_min = maybe_splat(self, int_min);
let zero = maybe_splat(self, zero);
// Step 1 ...
let fptosui_result = if signed {
self.fptosi(val, dest_ty)
} else {
self.fptoui(val, dest_ty)
};
let less_or_nan = self.fcmp(RealPredicate::RealULT, val, f_min);
let greater = self.fcmp(RealPredicate::RealOGT, val, f_max);
// Step 2: We use two comparisons and two selects, with %s1 being the
// result:
// %less_or_nan = fcmp ult %x, %f_min
// %greater = fcmp olt %x, %f_max
// %s0 = select %less_or_nan, int_ty::MIN, %fptosi_result
// %s1 = select %greater, int_ty::MAX, %s0
// Note that %less_or_nan uses an *unordered* comparison. This
// comparison is true if the operands are not comparable (i.e., if x is
// NaN). The unordered comparison ensures that s1 becomes int_ty::MIN if
// x is NaN.
//
// Performance note: Unordered comparison can be lowered to a "flipped"
// comparison and a negation, and the negation can be merged into the
// select. Therefore, it not necessarily any more expensive than an
// ordered ("normal") comparison. Whether these optimizations will be
// performed is ultimately up to the backend, but at least x86 does
// perform them.
let s0 = self.select(less_or_nan, int_min, fptosui_result);
let s1 = self.select(greater, int_max, s0);
// Step 3: NaN replacement.
// For unsigned types, the above step already yielded int_ty::MIN == 0 if x is NaN.
// Therefore we only need to execute this step for signed integer types.
if signed {
// LLVM has no isNaN predicate, so we use (x == x) instead
let cmp = self.fcmp(RealPredicate::RealOEQ, val, val);
self.select(cmp, s1, zero)
} else {
s1
}
}
// HACK(eddyb) helper shared by `typed_alloca` and `alloca`.
fn declare_func_local_var(
&mut self,
ty: <Self as BackendTypes>::Type,
_align: Align,
) -> SpirvValue {
let ptr_ty = self.type_ptr_to(ty);
// "All OpVariable instructions in a function must be the first instructions in the first block."
let mut builder = self.emit();
builder.select_block(Some(0)).unwrap();
let index = {
let block = &builder.module_ref().functions[builder.selected_function().unwrap()]
.blocks[builder.selected_block().unwrap()];
block
.instructions
.iter()
.enumerate()
.find_map(|(index, inst)| {
if inst.class.opcode != Op::Variable {
Some(InsertPoint::FromBegin(index))
} else {
None
}
})
.unwrap_or(InsertPoint::End)
};
// TODO: rspirv doesn't have insert_variable function
let result_id = builder.id();
let inst = Instruction::new(Op::Variable, Some(ptr_ty), Some(result_id), vec![
Operand::StorageClass(StorageClass::Function),
]);
builder.insert_into_block(index, inst).unwrap();
result_id.with_type(ptr_ty)
}
}
impl<'a, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'tcx> {
type CodegenCx = CodegenCx<'tcx>;
fn build(cx: &'a Self::CodegenCx, llbb: Self::BasicBlock) -> Self {
let cursor = cx.builder.select_block_by_id(llbb);
// FIXME(eddyb) change `Self::Function` to be more like a function index.
let current_fn = {
let emit = cx.emit_with_cursor(cursor);
let selected_function = emit.selected_function().unwrap();
let selected_function = &emit.module_ref().functions[selected_function];
let def_inst = selected_function.def.as_ref().unwrap();
let def = def_inst.result_id.unwrap();
let ty = def_inst.operands[1].unwrap_id_ref();
def.with_type(ty)
};
Self {
cx,
cursor,
current_fn,
current_span: Default::default(),
}
}
fn cx(&self) -> &Self::CodegenCx {
self.cx
}
fn llbb(&self) -> Self::BasicBlock {
// FIXME(eddyb) `llbb` should be removed from `rustc_codegen_ssa::traits`.
unreachable!("dead code within `rustc_codegen_ssa`")
}
fn set_span(&mut self, span: Span) {
// HACK(eddyb) this is what `#[track_caller]` does, and we need it to be
// able to point at e.g. a use of `panic!`, instead of its implementation,
// but it should be more fine-grained and/or include macro backtraces in
// debuginfo (so the decision to use them can be deferred).
let span = span.ctxt().outer_expn().expansion_cause().unwrap_or(span);
let old_span = self.current_span.replace(span);
// FIXME(eddyb) enable this once cross-block interactions are figured out
// (in particular, every block starts off with no debuginfo active).
if false {
// Avoid redundant debuginfo.
if old_span == Some(span) {
return;
}
}
// HACK(eddyb) this is only to aid testing (and to not remove the old code).
let use_custom_insts = true;
if use_custom_insts {
// FIXME(eddyb) this should be cached more efficiently.
let void_ty = SpirvType::Void.def(rustc_span::DUMMY_SP, self);
// We may not always have valid spans.
// FIXME(eddyb) reduce the sources of this as much as possible.
if span.is_dummy() {
self.custom_inst(void_ty, CustomInst::ClearDebugSrcLoc);
} else {
let (file, line_col_range) = self.builder.file_line_col_range_for_debuginfo(span);
let ((line_start, col_start), (line_end, col_end)) =
(line_col_range.start, line_col_range.end);
self.custom_inst(void_ty, CustomInst::SetDebugSrcLoc {
file: Operand::IdRef(file.file_name_op_string_id),
line_start: Operand::IdRef(self.const_u32(line_start).def(self)),
line_end: Operand::IdRef(self.const_u32(line_end).def(self)),
col_start: Operand::IdRef(self.const_u32(col_start).def(self)),
col_end: Operand::IdRef(self.const_u32(col_end).def(self)),
});
}
// HACK(eddyb) remove the previous instruction if made irrelevant.
let mut builder = self.emit();
if let (Some(func_idx), Some(block_idx)) =
(builder.selected_function(), builder.selected_block())
{
let block = &mut builder.module_mut().functions[func_idx].blocks[block_idx];
match &block.instructions[..] {
[.., a, b]
if a.class.opcode == b.class.opcode
&& a.operands[..2] == b.operands[..2] =>
{
block.instructions.remove(block.instructions.len() - 2);
}
_ => {}
}
}
} else {
// We may not always have valid spans.
// FIXME(eddyb) reduce the sources of this as much as possible.
if span.is_dummy() {
self.emit().no_line();
} else {
let (file, line_col_range) = self.builder.file_line_col_range_for_debuginfo(span);
let (line, col) = line_col_range.start;
self.emit().line(file.file_name_op_string_id, line, col);
}
}
}
// FIXME(eddyb) change `Self::Function` to be more like a function index.
fn append_block(
cx: &'a Self::CodegenCx,
llfn: Self::Function,
_name: &str,
) -> Self::BasicBlock {
let cursor_fn = cx.builder.select_function_by_id(llfn.def_cx(cx));
cx.emit_with_cursor(cursor_fn).begin_block(None).unwrap()
}
fn append_sibling_block(&mut self, _name: &str) -> Self::BasicBlock {
self.emit_with_cursor(BuilderCursor {
function: self.cursor.function,
block: None,
})
.begin_block(None)
.unwrap()
}
fn switch_to_block(&mut self, llbb: Self::BasicBlock) {
// FIXME(eddyb) this could be more efficient by having an index in
// `Self::BasicBlock`, not just a SPIR-V ID.
*self = Self::build(self.cx, llbb);
}
fn ret_void(&mut self) {
self.emit().ret().unwrap();
}
fn ret(&mut self, value: Self::Value) {
let func_ret_ty = {
let builder = self.emit();
let func = &builder.module_ref().functions[builder.selected_function().unwrap()];
func.def.as_ref().unwrap().result_type.unwrap()
};
// HACK(eddyb) temporary workaround for untyped pointers upstream.
// FIXME(eddyb) replace with untyped memory SPIR-V + `qptr` or similar.
let value = self.bitcast(value, func_ret_ty);
self.emit().ret_value(value.def(self)).unwrap();
}
fn br(&mut self, dest: Self::BasicBlock) {
self.emit().branch(dest).unwrap();
}
fn cond_br(
&mut self,
cond: Self::Value,
then_llbb: Self::BasicBlock,
else_llbb: Self::BasicBlock,
) {
let cond = cond.def(self);
// HACK(eddyb) constant-fold branches early on, as the `core` library is
// starting to get a lot of `if cfg!(debug_assertions)` added to it.
match self.builder.lookup_const_by_id(cond) {
Some(SpirvConst::Scalar(1)) => self.br(then_llbb),
Some(SpirvConst::Scalar(0)) => self.br(else_llbb),
_ => {
self.emit()
.branch_conditional(cond, then_llbb, else_llbb, empty())
.unwrap();
}
}
}
fn switch(
&mut self,
v: Self::Value,
else_llbb: Self::BasicBlock,
cases: impl ExactSizeIterator<Item = (u128, Self::BasicBlock)>,
) {
fn construct_8(self_: &Builder<'_, '_>, signed: bool, v: u128) -> Operand {
if v > u8::MAX as u128 {
self_.fatal(format!(
"Switches to values above u8::MAX not supported: {v:?}"
))
} else if signed {
// this cast chain can probably be collapsed, but, whatever, be safe
Operand::LiteralBit32(v as u8 as i8 as i32 as u32)
} else {
Operand::LiteralBit32(v as u8 as u32)
}
}
fn construct_16(self_: &Builder<'_, '_>, signed: bool, v: u128) -> Operand {
if v > u16::MAX as u128 {
self_.fatal(format!(
"Switches to values above u16::MAX not supported: {v:?}"
))
} else if signed {
Operand::LiteralBit32(v as u16 as i16 as i32 as u32)
} else {
Operand::LiteralBit32(v as u16 as u32)
}
}
fn construct_32(self_: &Builder<'_, '_>, _signed: bool, v: u128) -> Operand {
if v > u32::MAX as u128 {
self_.fatal(format!(
"Switches to values above u32::MAX not supported: {v:?}"
))
} else {
Operand::LiteralBit32(v as u32)
}
}
fn construct_64(self_: &Builder<'_, '_>, _signed: bool, v: u128) -> Operand {
if v > u64::MAX as u128 {
self_.fatal(format!(
"Switches to values above u64::MAX not supported: {v:?}"
))
} else {
Operand::LiteralBit64(v as u64)
}
}
// pass in signed into the closure to be able to unify closure types
let (signed, construct_case) = match self.lookup_type(v.ty) {
SpirvType::Integer(width, signed) => {
let construct_case = match width {
8 => construct_8,
16 => construct_16,
32 => construct_32,
64 => construct_64,
other => self.fatal(format!(
"switch selector cannot have width {other} (only 8, 16, 32, and 64 bits allowed)"
)),
};
(signed, construct_case)
}
other => self.fatal(format!(
"switch selector cannot have non-integer type {}",
other.debug(v.ty, self)
)),
};
let cases = cases
.map(|(i, b)| (construct_case(self, signed, i), b))
.collect::<Vec<_>>();
self.emit().switch(v.def(self), else_llbb, cases).unwrap();
}
fn invoke(
&mut self,
llty: Self::Type,
fn_attrs: Option<&CodegenFnAttrs>,
fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
llfn: Self::Value,
args: &[Self::Value],
then: Self::BasicBlock,
_catch: Self::BasicBlock,
funclet: Option<&Self::Funclet>,
instance: Option<ty::Instance<'tcx>>,
) -> Self::Value {
// Exceptions don't exist, jump directly to then block
let result = self.call(llty, fn_attrs, fn_abi, llfn, args, funclet, instance);
self.emit().branch(then).unwrap();
result
}
fn unreachable(&mut self) {
self.emit().unreachable().unwrap();
}
simple_op! {
add, i_add,
fold_const {
int(a, b) => a.wrapping_add(b)
}
}
// FIXME(eddyb) try to annotate the SPIR-V for `fast` and `algebraic`.
simple_op! {fadd, f_add}
simple_op! {fadd_fast, f_add} // fast=normal
simple_op! {fadd_algebraic, f_add} // algebraic=normal
simple_op! {sub, i_sub}
simple_op! {fsub, f_sub}
simple_op! {fsub_fast, f_sub} // fast=normal
simple_op! {fsub_algebraic, f_sub} // algebraic=normal
simple_op! {
mul, i_mul,
// HACK(eddyb) `rustc_codegen_ssa` relies on `Builder` methods doing
// on-the-fly constant-folding, for e.g. intrinsics that copy memory.
fold_const {
int(a, b) => a.wrapping_mul(b)
}
}
simple_op! {fmul, f_mul}
simple_op! {fmul_fast, f_mul} // fast=normal
simple_op! {fmul_algebraic, f_mul} // algebraic=normal
simple_op! {udiv, u_div}
// Note: exactudiv is UB when there's a remainder, so it's valid to implement as a normal div.
// TODO: Can we take advantage of the UB and emit something else?
simple_op! {exactudiv, u_div}
simple_op! {sdiv, s_div}
// Same note and TODO as exactudiv
simple_op! {exactsdiv, s_div}
simple_op! {fdiv, f_div}
simple_op! {fdiv_fast, f_div} // fast=normal
simple_op! {fdiv_algebraic, f_div} // algebraic=normal
simple_op! {urem, u_mod}
simple_op! {srem, s_rem}
simple_op! {frem, f_rem}
simple_op! {frem_fast, f_rem} // fast=normal
simple_op! {frem_algebraic, f_rem} // algebraic=normal
simple_op_unchecked_type! {shl, shift_left_logical}
simple_op_unchecked_type! {lshr, shift_right_logical}
simple_op_unchecked_type! {ashr, shift_right_arithmetic}
simple_op! {unchecked_sadd, i_add} // already unchecked by default
simple_op! {unchecked_uadd, i_add} // already unchecked by default
simple_op! {unchecked_ssub, i_sub} // already unchecked by default
simple_op! {unchecked_usub, i_sub} // already unchecked by default
simple_op! {unchecked_smul, i_mul} // already unchecked by default
simple_op! {unchecked_umul, i_mul} // already unchecked by default
simple_uni_op! {neg, s_negate}
simple_uni_op! {fneg, f_negate}
fn and(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value {
assert_ty_eq!(self, lhs.ty, rhs.ty);
let ty = lhs.ty;
match self.lookup_type(ty) {
SpirvType::Integer(_, _) => {
self.emit()
.bitwise_and(ty, None, lhs.def(self), rhs.def(self))
}
SpirvType::Bool => self
.emit()
.logical_and(ty, None, lhs.def(self), rhs.def(self)),
o => self.fatal(format!(
"and() not implemented for type {}",
o.debug(ty, self)
)),
}
.unwrap()
.with_type(ty)
}
fn or(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value {
assert_ty_eq!(self, lhs.ty, rhs.ty);
let ty = lhs.ty;
match self.lookup_type(ty) {
SpirvType::Integer(_, _) => {
self.emit()
.bitwise_or(ty, None, lhs.def(self), rhs.def(self))
}
SpirvType::Bool => self
.emit()
.logical_or(ty, None, lhs.def(self), rhs.def(self)),
o => self.fatal(format!(
"or() not implemented for type {}",
o.debug(ty, self)
)),
}
.unwrap()
.with_type(ty)
}
fn xor(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value {
assert_ty_eq!(self, lhs.ty, rhs.ty);
let ty = lhs.ty;
match self.lookup_type(ty) {
SpirvType::Integer(_, _) => {
self.emit()
.bitwise_xor(ty, None, lhs.def(self), rhs.def(self))
}
SpirvType::Bool => {
self.emit()
.logical_not_equal(ty, None, lhs.def(self), rhs.def(self))
}
o => self.fatal(format!(
"xor() not implemented for type {}",
o.debug(ty, self)
)),
}
.unwrap()
.with_type(ty)
}
fn not(&mut self, val: Self::Value) -> Self::Value {
match self.lookup_type(val.ty) {
SpirvType::Integer(_, _) => self.emit().not(val.ty, None, val.def(self)),
SpirvType::Bool => {
let true_ = self.constant_bool(self.span(), true);
// intel-compute-runtime doesn't like OpLogicalNot
self.emit()
.logical_not_equal(val.ty, None, val.def(self), true_.def(self))
}
o => self.fatal(format!(
"not() not implemented for type {}",
o.debug(val.ty, self)
)),
}
.unwrap()
.with_type(val.ty)
}
fn checked_binop(
&mut self,
oop: OverflowOp,
ty: Ty<'_>,
lhs: Self::Value,
rhs: Self::Value,
) -> (Self::Value, Self::Value) {
// adopted partially from https://github.com/ziglang/zig/blob/master/src/codegen/spirv.zig
let is_add = match oop {
OverflowOp::Add => true,
OverflowOp::Sub => false,
OverflowOp::Mul => {
// NOTE(eddyb) this needs to be `undef`, not `false`/`true`, because
// we don't want the user's boolean constants to keep the zombie alive.
let bool = SpirvType::Bool.def(self.span(), self);
let overflowed = self.undef(bool);
let result = (self.mul(lhs, rhs), overflowed);
self.zombie(result.1.def(self), "checked mul is not supported yet");
return result;
}
};
let signed = match ty.kind() {
ty::Int(_) => true,
ty::Uint(_) => false,
other => self.fatal(format!("Unexpected {} type: {other:#?}", match oop {
OverflowOp::Add => "checked add",
OverflowOp::Sub => "checked sub",
OverflowOp::Mul => "checked mul",
})),
};
let result = if is_add {
self.add(lhs, rhs)
} else {
self.sub(lhs, rhs)
};
let overflowed = if signed {
// when adding, overflow could happen if
// - rhs is positive and result < lhs; or
// - rhs is negative and result > lhs
// this is equivalent to (rhs < 0) == (result > lhs)
//
// when subtracting, overflow happens if
// - rhs is positive and result > lhs; or
// - rhs is negative and result < lhs
// this is equivalent to (rhs < 0) == (result < lhs)
let rhs_lt_zero = self.icmp(IntPredicate::IntSLT, rhs, self.constant_int(rhs.ty, 0));
let result_gt_lhs = self.icmp(
if is_add {
IntPredicate::IntSGT
} else {
IntPredicate::IntSLT
},
result,
lhs,
);
self.icmp(IntPredicate::IntEQ, rhs_lt_zero, result_gt_lhs)
} else {
// for unsigned addition, overflow occurred if the result is less than any of the operands.
// for subtraction, overflow occurred if the result is greater.
self.icmp(
if is_add {
IntPredicate::IntULT
} else {
IntPredicate::IntUGT
},
result,
lhs,
)
};
(result, overflowed)
}
// rustc has the concept of an immediate vs. memory type - bools are compiled to LLVM bools as
// immediates, but if they're behind a pointer, they're compiled to u8. The reason for this is
// because LLVM is bad at bools behind pointers (something something u1 bitmasking on load).
//
// SPIR-V allows bools behind *some* pointers, and disallows others - specifically, it allows
// bools behind the storage classes Workgroup, CrossWorkgroup, Private, Function, Input, and
// Output. In other words, "For stuff the CPU can't see, bools are OK. For stuff the CPU *can*
// see, no bools allowed". So, we always compile rust bools to SPIR-V bools instead of u8 as
// rustc does, even if they're behind a pointer, and error if bools are in an interface (the
// user should choose u8, u32, or something else instead). That means that immediate types and
// memory types are the same, and no conversion needs to happen here.
fn from_immediate(&mut self, val: Self::Value) -> Self::Value {
val
}
fn to_immediate_scalar(&mut self, val: Self::Value, _scalar: Scalar) -> Self::Value {
val
}
// HACK(eddyb) new method patched into `pqp_cg_ssa` (see `build.rs`).
#[cfg(not(rustc_codegen_spirv_disable_pqp_cg_ssa))]
fn typed_alloca(&mut self, ty: Self::Type, align: Align) -> Self::Value {
self.declare_func_local_var(ty, align)
}
fn alloca(&mut self, size: Size, align: Align) -> Self::Value {
self.declare_func_local_var(self.type_array(self.type_i8(), size.bytes()), align)
}
fn dynamic_alloca(&mut self, _len: Self::Value, _align: Align) -> Self::Value {
self.fatal("dynamic alloca not supported yet")
}
fn load(&mut self, ty: Self::Type, ptr: Self::Value, _align: Align) -> Self::Value {
let (ptr, access_ty) = self.adjust_pointer_for_typed_access(ptr, ty);
let loaded_val = ptr.const_fold_load(self).unwrap_or_else(|| {
self.emit()
.load(access_ty, None, ptr.def(self), None, empty())
.unwrap()
.with_type(access_ty)
});
self.bitcast(loaded_val, ty)
}
fn volatile_load(&mut self, ty: Self::Type, ptr: Self::Value) -> Self::Value {
// TODO: Implement this
let result = self.load(ty, ptr, Align::from_bytes(0).unwrap());
self.zombie(result.def(self), "volatile load is not supported yet");
result
}
fn atomic_load(
&mut self,
ty: Self::Type,
ptr: Self::Value,
order: AtomicOrdering,
_size: Size,
) -> Self::Value {
let (ptr, access_ty) = self.adjust_pointer_for_typed_access(ptr, ty);
// TODO: Default to device scope
let memory = self.constant_u32(self.span(), Scope::Device as u32);
let semantics = self.ordering_to_semantics_def(order);
let result = self
.emit()
.atomic_load(
access_ty,
None,
ptr.def(self),
memory.def(self),
semantics.def(self),
)
.unwrap()
.with_type(access_ty);
self.validate_atomic(access_ty, result.def(self));
self.bitcast(result, ty)
}
fn load_operand(
&mut self,
place: PlaceRef<'tcx, Self::Value>,
) -> OperandRef<'tcx, Self::Value> {
if place.layout.is_zst() {
return OperandRef::zero_sized(place.layout);
}
let val = if place.val.llextra.is_some() {
OperandValue::Ref(place.val)
} else if self.cx.is_backend_immediate(place.layout) {
let llval = self.load(
place.layout.spirv_type(self.span(), self),
place.val.llval,
place.val.align,
);
OperandValue::Immediate(self.to_immediate(llval, place.layout))
} else if let BackendRepr::ScalarPair(a, b) = place.layout.backend_repr {
let b_offset = a
.primitive()
.size(self)
.align_to(b.primitive().align(self).abi);
let mut load = |i, scalar: Scalar, align| {
let llptr = if i == 0 {
place.val.llval
} else {
self.inbounds_ptradd(place.val.llval, self.const_usize(b_offset.bytes()))
};
let load = self.load(
self.scalar_pair_element_backend_type(place.layout, i, false),
llptr,
align,
);
self.to_immediate_scalar(load, scalar)
};
OperandValue::Pair(
load(0, a, place.val.align),
load(1, b, place.val.align.restrict_for_offset(b_offset)),
)
} else {
OperandValue::Ref(place.val)
};
OperandRef {
val,
layout: place.layout,
}
}
/// Called for `Rvalue::Repeat` when the elem is neither a ZST nor optimizable using memset.
fn write_operand_repeatedly(
&mut self,
cg_elem: OperandRef<'tcx, Self::Value>,
count: u64,
dest: PlaceRef<'tcx, Self::Value>,
) {
let zero = self.const_usize(0);
let start = dest.project_index(self, zero).val.llval;
let elem_layout = dest.layout.field(self.cx(), 0);
let elem_ty = elem_layout.spirv_type(self.span(), self);
let align = dest.val.align.restrict_for_offset(elem_layout.size);
for i in 0..count {
let current = self.inbounds_gep(elem_ty, start, &[self.const_usize(i)]);
cg_elem.val.store(
self,
PlaceRef::new_sized_aligned(current, cg_elem.layout, align),
);
}
}
fn range_metadata(&mut self, _load: Self::Value, _range: WrappingRange) {
// ignore
}
fn nonnull_metadata(&mut self, _load: Self::Value) {
// ignore
}
fn store(&mut self, val: Self::Value, ptr: Self::Value, _align: Align) -> Self::Value {
let (ptr, access_ty) = self.adjust_pointer_for_typed_access(ptr, val.ty);
let val = self.bitcast(val, access_ty);
self.emit()
.store(ptr.def(self), val.def(self), None, empty())
.unwrap();
// FIXME(eddyb) this is meant to be a handle the store instruction itself.
val
}
fn store_with_flags(
&mut self,
val: Self::Value,
ptr: Self::Value,
align: Align,
flags: MemFlags,
) -> Self::Value {
if flags != MemFlags::empty() {
self.err(format!("store_with_flags is not supported yet: {flags:?}"));
}
self.store(val, ptr, align)
}
fn atomic_store(
&mut self,
val: Self::Value,
ptr: Self::Value,
order: AtomicOrdering,
_size: Size,
) {
let (ptr, access_ty) = self.adjust_pointer_for_typed_access(ptr, val.ty);
let val = self.bitcast(val, access_ty);
// TODO: Default to device scope
let memory = self.constant_u32(self.span(), Scope::Device as u32);
let semantics = self.ordering_to_semantics_def(order);
self.validate_atomic(val.ty, ptr.def(self));
self.emit()
.atomic_store(
ptr.def(self),
memory.def(self),
semantics.def(self),
val.def(self),
)
.unwrap();
}
fn gep(&mut self, ty: Self::Type, ptr: Self::Value, indices: &[Self::Value]) -> Self::Value {
self.maybe_inbounds_gep(ty, ptr, indices, false)
}
fn inbounds_gep(
&mut self,
ty: Self::Type,
ptr: Self::Value,
indices: &[Self::Value],
) -> Self::Value {
self.maybe_inbounds_gep(ty, ptr, indices, true)
}
// intcast has the logic for dealing with bools, so use that
fn trunc(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
self.intcast(val, dest_ty, false)
}
fn sext(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
self.intcast(val, dest_ty, true)
}
fn fptoui_sat(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
self.fptoint_sat(false, val, dest_ty)
}
fn fptosi_sat(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
self.fptoint_sat(true, val, dest_ty)
}
fn fptoui(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
if val.ty == dest_ty {
val
} else {
self.emit()
.convert_f_to_u(dest_ty, None, val.def(self))
.unwrap()
.with_type(dest_ty)
}
}
fn fptosi(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
if val.ty == dest_ty {
val
} else {
self.emit()
.convert_f_to_s(dest_ty, None, val.def(self))
.unwrap()
.with_type(dest_ty)
}
}
fn uitofp(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
if val.ty == dest_ty {
val
} else {
self.emit()
.convert_u_to_f(dest_ty, None, val.def(self))
.unwrap()
.with_type(dest_ty)
}
}
fn sitofp(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
if val.ty == dest_ty {
val
} else {
self.emit()
.convert_s_to_f(dest_ty, None, val.def(self))
.unwrap()
.with_type(dest_ty)
}
}
fn fptrunc(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
if val.ty == dest_ty {
val
} else {
self.emit()
.f_convert(dest_ty, None, val.def(self))
.unwrap()
.with_type(dest_ty)
}
}
fn fpext(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
if val.ty == dest_ty {
val
} else {
self.emit()
.f_convert(dest_ty, None, val.def(self))
.unwrap()
.with_type(dest_ty)
}
}
fn ptrtoint(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
match self.lookup_type(val.ty) {
SpirvType::Pointer { .. } => (),
other => self.fatal(format!(
"ptrtoint called on non-pointer source type: {other:?}"
)),
}
if val.ty == dest_ty {
val
} else {
let result = self
.emit()
.convert_ptr_to_u(dest_ty, None, val.def(self))
.unwrap()
.with_type(dest_ty);
self.zombie_convert_ptr_to_u(result.def(self));
result
}
}
fn inttoptr(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
match self.lookup_type(dest_ty) {
SpirvType::Pointer { .. } => (),
other => self.fatal(format!(
"inttoptr called on non-pointer dest type: {other:?}"
)),
}
if val.ty == dest_ty {
val
} else {
let result = self
.emit()
.convert_u_to_ptr(dest_ty, None, val.def(self))
.unwrap()
.with_type(dest_ty);
self.zombie_convert_u_to_ptr(result.def(self));
result
}
}
fn bitcast(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
if val.ty == dest_ty {
val
} else {
let val_ty_kind = self.lookup_type(val.ty);
let dest_ty_kind = self.lookup_type(dest_ty);
// HACK(eddyb) account for bitcasts from/to aggregates not being legal
// in SPIR-V, but still being used to paper over untyped pointers,
// by unpacking/repacking newtype-shaped aggregates as-needed.
let unpack_newtype = |ty, kind| {
if !matches!(kind, SpirvType::Adt { .. } | SpirvType::Array { .. }) {
return None;
}
let size = kind.sizeof(self)?;
let mut leaf_ty = ty;
// FIXME(eddyb) this isn't efficient, `recover_access_chain_from_offset`
// could instead be doing all the extra digging itself.
let mut indices = SmallVec::<[_; 8]>::new();
while let Some((inner_indices, inner_ty)) = self.recover_access_chain_from_offset(
leaf_ty,
Size::ZERO,
Some(size)..=Some(size),
None,
) {
indices.extend(inner_indices);
leaf_ty = inner_ty;
}
(!indices.is_empty()).then_some((indices, leaf_ty))
};
// Unpack input newtypes, and bitcast the leaf inside, instead.
if let Some((indices, in_leaf_ty)) = unpack_newtype(val.ty, val_ty_kind) {
let in_leaf = self
.emit()
.composite_extract(in_leaf_ty, None, val.def(self), indices)
.unwrap()
.with_type(in_leaf_ty);
return self.bitcast(in_leaf, dest_ty);
}
// Repack output newtypes, after bitcasting the leaf inside, instead.
if let Some((indices, out_leaf_ty)) = unpack_newtype(dest_ty, dest_ty_kind) {
let out_leaf = self.bitcast(val, out_leaf_ty);
let out_agg_undef = self.undef(dest_ty);
return self
.emit()
.composite_insert(
dest_ty,
None,
out_leaf.def(self),
out_agg_undef.def(self),
indices,
)
.unwrap()
.with_type(dest_ty);
}
let val_is_ptr = matches!(val_ty_kind, SpirvType::Pointer { .. });
let dest_is_ptr = matches!(dest_ty_kind, SpirvType::Pointer { .. });
// Reuse the pointer-specific logic in `pointercast` for `*T -> *U`.
if val_is_ptr && dest_is_ptr {
return self.pointercast(val, dest_ty);
}
let result = self
.emit()
.bitcast(dest_ty, None, val.def(self))
.unwrap()
.with_type(dest_ty);
if val_is_ptr || dest_is_ptr {
self.zombie(
result.def(self),
&format!(
"cannot cast between pointer and non-pointer types\
\nfrom `{}`\
\n to `{}`",
self.debug_type(val.ty),
self.debug_type(dest_ty)
),
);
}
result
}
}
fn intcast(&mut self, val: Self::Value, dest_ty: Self::Type, is_signed: bool) -> Self::Value {
if val.ty == dest_ty {
// I guess?
return val;
}
match (self.lookup_type(val.ty), self.lookup_type(dest_ty)) {
// sign change
(
SpirvType::Integer(val_width, val_signedness),
SpirvType::Integer(dest_width, dest_signedness),
) if val_width == dest_width && val_signedness != dest_signedness => self
.emit()
.bitcast(dest_ty, None, val.def(self))
.unwrap()
.with_type(dest_ty),
// width change, and optional sign change
(SpirvType::Integer(_, _), SpirvType::Integer(_, dest_signedness)) => {
// spir-v spec doesn't seem to say that signedness needs to match the operands, only that the signedness
// of the destination type must match the instruction's signedness.
if dest_signedness {
self.emit().s_convert(dest_ty, None, val.def(self))
} else {
self.emit().u_convert(dest_ty, None, val.def(self))
}
.unwrap()
.with_type(dest_ty)
}
// bools are ints in llvm, so we have to implement this here
(SpirvType::Bool, SpirvType::Integer(_, _)) => {
// spir-v doesn't have a direct conversion instruction
let if_true = self.constant_int(dest_ty, 1);
let if_false = self.constant_int(dest_ty, 0);
self.emit()
.select(
dest_ty,
None,
val.def(self),
if_true.def(self),
if_false.def(self),
)
.unwrap()
.with_type(dest_ty)
}
(SpirvType::Integer(_, _), SpirvType::Bool) => {
// spir-v doesn't have a direct conversion instruction, glslang emits OpINotEqual
let zero = self.constant_int(val.ty, 0);
self.emit()
.i_not_equal(dest_ty, None, val.def(self), zero.def(self))
.unwrap()
.with_type(dest_ty)
}
(val_ty, dest_ty_spv) => self.fatal(format!(
"TODO: intcast not implemented yet: val={val:?} val.ty={val_ty:?} dest_ty={dest_ty_spv:?} is_signed={is_signed}"
)),
}
}
fn pointercast(&mut self, ptr: Self::Value, dest_ty: Self::Type) -> Self::Value {
// HACK(eddyb) reuse the special-casing in `const_bitcast`, which relies
// on adding a pointer type to an untyped pointer (to some const data).
if let SpirvValueKind::IllegalConst(_) = ptr.kind {
return self.const_bitcast(ptr, dest_ty);
}
if ptr.ty == dest_ty {
return ptr;
}
// Strip a previous `pointercast`, to reveal the original pointer type.
let ptr = ptr.strip_ptrcasts();
if ptr.ty == dest_ty {
return ptr;
}
let ptr_pointee = match self.lookup_type(ptr.ty) {
SpirvType::Pointer { pointee } => pointee,
other => self.fatal(format!(
"pointercast called on non-pointer source type: {other:?}"
)),
};
let dest_pointee = match self.lookup_type(dest_ty) {
SpirvType::Pointer { pointee } => pointee,
other => self.fatal(format!(
"pointercast called on non-pointer dest type: {other:?}"
)),
};
let dest_pointee_size = self.lookup_type(dest_pointee).sizeof(self);
if let Some((indices, _)) = self.recover_access_chain_from_offset(
ptr_pointee,
Size::ZERO,
dest_pointee_size..=dest_pointee_size,
Some(dest_pointee),
) {
let indices = indices
.into_iter()
.map(|idx| self.constant_u32(self.span(), idx).def(self))
.collect::<Vec<_>>();
self.emit()
.in_bounds_access_chain(dest_ty, None, ptr.def(self), indices)
.unwrap()
.with_type(dest_ty)
} else {
// Defer the cast so that it has a chance to be avoided.
let original_ptr = ptr.def(self);
SpirvValue {
kind: SpirvValueKind::LogicalPtrCast {
original_ptr,
original_ptr_ty: ptr.ty,
bitcast_result_id: self.emit().bitcast(dest_ty, None, original_ptr).unwrap(),
},
ty: dest_ty,
}
}
}
fn icmp(&mut self, op: IntPredicate, lhs: Self::Value, rhs: Self::Value) -> Self::Value {
// Note: the signedness of the opcode doesn't have to match the signedness of the operands.
use IntPredicate::*;
assert_ty_eq!(self, lhs.ty, rhs.ty);
let b = SpirvType::Bool.def(self.span(), self);
match self.lookup_type(lhs.ty) {
SpirvType::Integer(_, _) => match op {
IntEQ => self.emit().i_equal(b, None, lhs.def(self), rhs.def(self)),
IntNE => self
.emit()
.i_not_equal(b, None, lhs.def(self), rhs.def(self)),
IntUGT => self
.emit()
.u_greater_than(b, None, lhs.def(self), rhs.def(self)),
IntUGE => self
.emit()
.u_greater_than_equal(b, None, lhs.def(self), rhs.def(self)),
IntULT => self
.emit()
.u_less_than(b, None, lhs.def(self), rhs.def(self)),
IntULE => self
.emit()
.u_less_than_equal(b, None, lhs.def(self), rhs.def(self)),
IntSGT => self
.emit()
.s_greater_than(b, None, lhs.def(self), rhs.def(self)),
IntSGE => self
.emit()
.s_greater_than_equal(b, None, lhs.def(self), rhs.def(self)),
IntSLT => self
.emit()
.s_less_than(b, None, lhs.def(self), rhs.def(self)),
IntSLE => self
.emit()
.s_less_than_equal(b, None, lhs.def(self), rhs.def(self)),
},
SpirvType::Pointer { .. } => match op {
IntEQ => {
if self.emit().version().unwrap() > (1, 3) {
self.emit()
.ptr_equal(b, None, lhs.def(self), rhs.def(self))
.inspect(|&result| {
self.zombie_ptr_equal(result, "OpPtrEqual");
})
} else {
let int_ty = self.type_usize();
let lhs = self
.emit()
.convert_ptr_to_u(int_ty, None, lhs.def(self))
.unwrap();
self.zombie_convert_ptr_to_u(lhs);
let rhs = self
.emit()
.convert_ptr_to_u(int_ty, None, rhs.def(self))
.unwrap();
self.zombie_convert_ptr_to_u(rhs);
self.emit().i_equal(b, None, lhs, rhs)
}
}
IntNE => {
if self.emit().version().unwrap() > (1, 3) {
self.emit()
.ptr_not_equal(b, None, lhs.def(self), rhs.def(self))
.inspect(|&result| {
self.zombie_ptr_equal(result, "OpPtrNotEqual");
})
} else {
let int_ty = self.type_usize();
let lhs = self
.emit()
.convert_ptr_to_u(int_ty, None, lhs.def(self))
.unwrap();
self.zombie_convert_ptr_to_u(lhs);
let rhs = self
.emit()
.convert_ptr_to_u(int_ty, None, rhs.def(self))
.unwrap();
self.zombie_convert_ptr_to_u(rhs);
self.emit().i_not_equal(b, None, lhs, rhs)
}
}
IntUGT => {
let int_ty = self.type_usize();
let lhs = self
.emit()
.convert_ptr_to_u(int_ty, None, lhs.def(self))
.unwrap();
self.zombie_convert_ptr_to_u(lhs);
let rhs = self
.emit()
.convert_ptr_to_u(int_ty, None, rhs.def(self))
.unwrap();
self.zombie_convert_ptr_to_u(rhs);
self.emit().u_greater_than(b, None, lhs, rhs)
}
IntUGE => {
let int_ty = self.type_usize();
let lhs = self
.emit()
.convert_ptr_to_u(int_ty, None, lhs.def(self))
.unwrap();
self.zombie_convert_ptr_to_u(lhs);
let rhs = self
.emit()
.convert_ptr_to_u(int_ty, None, rhs.def(self))
.unwrap();
self.zombie_convert_ptr_to_u(rhs);
self.emit().u_greater_than_equal(b, None, lhs, rhs)
}
IntULT => {
let int_ty = self.type_usize();
let lhs = self
.emit()
.convert_ptr_to_u(int_ty, None, lhs.def(self))
.unwrap();
self.zombie_convert_ptr_to_u(lhs);
let rhs = self
.emit()
.convert_ptr_to_u(int_ty, None, rhs.def(self))
.unwrap();
self.zombie_convert_ptr_to_u(rhs);
self.emit().u_less_than(b, None, lhs, rhs)
}
IntULE => {
let int_ty = self.type_usize();
let lhs = self
.emit()
.convert_ptr_to_u(int_ty, None, lhs.def(self))
.unwrap();
self.zombie_convert_ptr_to_u(lhs);
let rhs = self
.emit()
.convert_ptr_to_u(int_ty, None, rhs.def(self))
.unwrap();
self.zombie_convert_ptr_to_u(rhs);
self.emit().u_less_than_equal(b, None, lhs, rhs)
}
IntSGT => self.fatal("TODO: pointer operator IntSGT not implemented yet"),
IntSGE => self.fatal("TODO: pointer operator IntSGE not implemented yet"),
IntSLT => self.fatal("TODO: pointer operator IntSLT not implemented yet"),
IntSLE => self.fatal("TODO: pointer operator IntSLE not implemented yet"),
},
SpirvType::Bool => match op {
IntEQ => self
.emit()
.logical_equal(b, None, lhs.def(self), rhs.def(self)),
IntNE => self
.emit()
.logical_not_equal(b, None, lhs.def(self), rhs.def(self)),
// x > y => x && !y
IntUGT => {
// intel-compute-runtime doesn't like OpLogicalNot
let true_ = self.constant_bool(self.span(), true);
let rhs = self
.emit()
.logical_not_equal(b, None, rhs.def(self), true_.def(self))
.unwrap();
self.emit().logical_and(b, None, lhs.def(self), rhs)
}
// x >= y => x || !y
IntUGE => {
let true_ = self.constant_bool(self.span(), true);
let rhs = self
.emit()
.logical_not_equal(b, None, rhs.def(self), true_.def(self))
.unwrap();
self.emit().logical_or(b, None, lhs.def(self), rhs)
}
// x < y => !x && y
IntULE => {
let true_ = self.constant_bool(self.span(), true);
let lhs = self
.emit()
.logical_not_equal(b, None, lhs.def(self), true_.def(self))
.unwrap();
self.emit().logical_and(b, None, lhs, rhs.def(self))
}
// x <= y => !x || y
IntULT => {
let true_ = self.constant_bool(self.span(), true);
let lhs = self
.emit()
.logical_not_equal(b, None, lhs.def(self), true_.def(self))
.unwrap();
self.emit().logical_or(b, None, lhs, rhs.def(self))
}
IntSGT => self.fatal("TODO: boolean operator IntSGT not implemented yet"),
IntSGE => self.fatal("TODO: boolean operator IntSGE not implemented yet"),
IntSLT => self.fatal("TODO: boolean operator IntSLT not implemented yet"),
IntSLE => self.fatal("TODO: boolean operator IntSLE not implemented yet"),
},
other => self.fatal(format!(
"Int comparison not implemented on {}",
other.debug(lhs.ty, self)
)),
}
.unwrap()
.with_type(b)
}
fn fcmp(&mut self, op: RealPredicate, lhs: Self::Value, rhs: Self::Value) -> Self::Value {
use RealPredicate::*;
assert_ty_eq!(self, lhs.ty, rhs.ty);
let b = SpirvType::Bool.def(self.span(), self);
match op {
RealPredicateFalse => return self.cx.constant_bool(self.span(), false),
RealPredicateTrue => return self.cx.constant_bool(self.span(), true),
RealOEQ => self
.emit()
.f_ord_equal(b, None, lhs.def(self), rhs.def(self)),
RealOGT => self
.emit()
.f_ord_greater_than(b, None, lhs.def(self), rhs.def(self)),
RealOGE => self
.emit()
.f_ord_greater_than_equal(b, None, lhs.def(self), rhs.def(self)),
RealOLT => self
.emit()
.f_ord_less_than(b, None, lhs.def(self), rhs.def(self)),
RealOLE => self
.emit()
.f_ord_less_than_equal(b, None, lhs.def(self), rhs.def(self)),
RealONE => self
.emit()
.f_ord_not_equal(b, None, lhs.def(self), rhs.def(self)),
RealORD => self.emit().ordered(b, None, lhs.def(self), rhs.def(self)),
RealUNO => self.emit().unordered(b, None, lhs.def(self), rhs.def(self)),
RealUEQ => self
.emit()
.f_unord_equal(b, None, lhs.def(self), rhs.def(self)),
RealUGT => self
.emit()
.f_unord_greater_than(b, None, lhs.def(self), rhs.def(self)),
RealUGE => {
self.emit()
.f_unord_greater_than_equal(b, None, lhs.def(self), rhs.def(self))
}
RealULT => self
.emit()
.f_unord_less_than(b, None, lhs.def(self), rhs.def(self)),
RealULE => self
.emit()
.f_unord_less_than_equal(b, None, lhs.def(self), rhs.def(self)),
RealUNE => self
.emit()
.f_unord_not_equal(b, None, lhs.def(self), rhs.def(self)),
}
.unwrap()
.with_type(b)
}
fn memcpy(
&mut self,
dst: Self::Value,
_dst_align: Align,
src: Self::Value,
_src_align: Align,
size: Self::Value,
flags: MemFlags,
) {
if flags != MemFlags::empty() {
self.err(format!(
"memcpy with mem flags is not supported yet: {flags:?}"
));
}
let const_size = self
.builder
.lookup_const_scalar(size)
.and_then(|size| Some(Size::from_bytes(u64::try_from(size).ok()?)));
if const_size == Some(Size::ZERO) {
// Nothing to do!
return;
}
let typed_copy_dst_src = const_size.and_then(|const_size| {
let dst_adj = self.adjust_pointer_for_sized_access(dst, const_size);
let src_adj = self.adjust_pointer_for_sized_access(src, const_size);
match (dst_adj, src_adj) {
// HACK(eddyb) fill in missing `dst`/`src` with the other side.
(Some((dst, access_ty)), None) => {
Some((dst, self.pointercast(src, self.type_ptr_to(access_ty))))
}
(None, Some((src, access_ty))) => {
Some((self.pointercast(dst, self.type_ptr_to(access_ty)), src))
}
(Some((dst, dst_access_ty)), Some((src, src_access_ty)))
if dst_access_ty == src_access_ty =>
{
Some((dst, src))
}
(None, None) | (Some(_), Some(_)) => None,
}
});
if let Some((dst, src)) = typed_copy_dst_src {
if let Some(const_value) = src.const_fold_load(self) {
self.store(const_value, dst, Align::from_bytes(0).unwrap());
} else {
self.emit()
.copy_memory(dst.def(self), src.def(self), None, None, empty())
.unwrap();
}
} else {
self.emit()
.copy_memory_sized(
dst.def(self),
src.def(self),
size.def(self),
None,
None,
empty(),
)
.unwrap();
self.zombie(dst.def(self), "cannot memcpy dynamically sized data");
}
}
fn memmove(
&mut self,
dst: Self::Value,
dst_align: Align,
src: Self::Value,
src_align: Align,
size: Self::Value,
flags: MemFlags,
) {
self.memcpy(dst, dst_align, src, src_align, size, flags);
}
fn memset(
&mut self,
ptr: Self::Value,
fill_byte: Self::Value,
size: Self::Value,
_align: Align,
flags: MemFlags,
) {
if flags != MemFlags::empty() {
self.err(format!(
"memset with mem flags is not supported yet: {flags:?}"
));
}
let const_size = self
.builder
.lookup_const_scalar(size)
.and_then(|size| Some(Size::from_bytes(u64::try_from(size).ok()?)));
let elem_ty = match self.lookup_type(ptr.ty) {
SpirvType::Pointer { pointee } => pointee,
_ => self.fatal(format!(
"memset called on non-pointer type: {}",
self.debug_type(ptr.ty)
)),
};
let elem_ty_spv = self.lookup_type(elem_ty);
let pat = match self.builder.lookup_const_scalar(fill_byte) {
Some(fill_byte) => self.memset_const_pattern(&elem_ty_spv, fill_byte as u8),
None => self.memset_dynamic_pattern(&elem_ty_spv, fill_byte.def(self)),
}
.with_type(elem_ty);
match const_size {
Some(size) => self.memset_constant_size(ptr, pat, size.bytes()),
None => self.memset_dynamic_size(ptr, pat, size),
}
}
fn select(
&mut self,
cond: Self::Value,
then_val: Self::Value,
else_val: Self::Value,
) -> Self::Value {
assert_ty_eq!(self, then_val.ty, else_val.ty);
let result_type = then_val.ty;
self.emit()
.select(
result_type,
None,
cond.def(self),
then_val.def(self),
else_val.def(self),
)
.unwrap()
.with_type(result_type)
}
fn va_arg(&mut self, _list: Self::Value, _ty: Self::Type) -> Self::Value {
todo!()
}
fn extract_element(&mut self, vec: Self::Value, idx: Self::Value) -> Self::Value {
let result_type = match self.lookup_type(vec.ty) {
SpirvType::Vector { element, .. } => element,
other => self.fatal(format!("extract_element not implemented on type {other:?}")),
};
match self.builder.lookup_const_scalar(idx) {
Some(const_index) => self.emit().composite_extract(
result_type,
None,
vec.def(self),
[const_index as u32].iter().cloned(),
),
None => {
self.emit()
.vector_extract_dynamic(result_type, None, vec.def(self), idx.def(self))
}
}
.unwrap()
.with_type(result_type)
}
fn vector_splat(&mut self, num_elts: usize, elt: Self::Value) -> Self::Value {
let result_type = SpirvType::Vector {
element: elt.ty,
count: num_elts as u32,
}
.def(self.span(), self);
if self.builder.lookup_const(elt).is_some() {
self.constant_composite(result_type, iter::repeat(elt.def(self)).take(num_elts))
} else {
self.emit()
.composite_construct(
result_type,
None,
iter::repeat(elt.def(self)).take(num_elts),
)
.unwrap()
.with_type(result_type)
}
}
fn extract_value(&mut self, agg_val: Self::Value, idx: u64) -> Self::Value {
let result_type = match self.lookup_type(agg_val.ty) {
SpirvType::Adt { field_types, .. } => field_types[idx as usize],
SpirvType::Array { element, .. }
| SpirvType::Vector { element, .. }
| SpirvType::Matrix { element, .. } => element,
other => self.fatal(format!(
"extract_value not implemented on type {}",
other.debug(agg_val.ty, self)
)),
};
self.emit()
.composite_extract(
result_type,
None,
agg_val.def(self),
[idx as u32].iter().cloned(),
)
.unwrap()
.with_type(result_type)
}
fn insert_value(&mut self, agg_val: Self::Value, elt: Self::Value, idx: u64) -> Self::Value {
let field_type = match self.lookup_type(agg_val.ty) {
SpirvType::Adt { field_types, .. } => field_types[idx as usize],
other => self.fatal(format!("insert_value not implemented on type {other:?}")),
};
// HACK(eddyb) temporary workaround for untyped pointers upstream.
// FIXME(eddyb) replace with untyped memory SPIR-V + `qptr` or similar.
let elt = self.bitcast(elt, field_type);
self.emit()
.composite_insert(
agg_val.ty,
None,
elt.def(self),
agg_val.def(self),
[idx as u32].iter().cloned(),
)
.unwrap()
.with_type(agg_val.ty)
}
fn set_personality_fn(&mut self, _personality: Self::Value) {
todo!()
}
// These are used by everyone except msvc
fn cleanup_landing_pad(&mut self, _pers_fn: Self::Value) -> (Self::Value, Self::Value) {
todo!()
}
fn filter_landing_pad(&mut self, _pers_fn: Self::Value) -> (Self::Value, Self::Value) {
todo!()
}
fn resume(&mut self, _exn0: Self::Value, _exn1: Self::Value) {
todo!()
}
// These are used only by msvc
fn cleanup_pad(
&mut self,
_parent: Option<Self::Value>,
_args: &[Self::Value],
) -> Self::Funclet {
todo!()
}
fn cleanup_ret(&mut self, _funclet: &Self::Funclet, _unwind: Option<Self::BasicBlock>) {
todo!()
}
fn catch_pad(&mut self, _parent: Self::Value, _args: &[Self::Value]) -> Self::Funclet {
todo!()
}
fn catch_switch(
&mut self,
_parent: Option<Self::Value>,
_unwind: Option<Self::BasicBlock>,
_handlers: &[Self::BasicBlock],
) -> Self::Value {
todo!()
}
fn atomic_cmpxchg(
&mut self,
dst: Self::Value,
cmp: Self::Value,
src: Self::Value,
order: AtomicOrdering,
failure_order: AtomicOrdering,
_weak: bool,
) -> (Self::Value, Self::Value) {
assert_ty_eq!(self, cmp.ty, src.ty);
let ty = src.ty;
let (dst, access_ty) = self.adjust_pointer_for_typed_access(dst, ty);
let cmp = self.bitcast(cmp, access_ty);
let src = self.bitcast(src, access_ty);
self.validate_atomic(access_ty, dst.def(self));
// TODO: Default to device scope
let memory = self.constant_u32(self.span(), Scope::Device as u32);
let semantics_equal = self.ordering_to_semantics_def(order);
let semantics_unequal = self.ordering_to_semantics_def(failure_order);
// Note: OpAtomicCompareExchangeWeak is deprecated, and has the same semantics
let result = self
.emit()
.atomic_compare_exchange(
access_ty,
None,
dst.def(self),
memory.def(self),
semantics_equal.def(self),
semantics_unequal.def(self),
src.def(self),
cmp.def(self),
)
.unwrap()
.with_type(access_ty);
let val = self.bitcast(result, ty);
let success = self.icmp(IntPredicate::IntEQ, val, cmp);
(val, success)
}
fn atomic_rmw(
&mut self,
op: AtomicRmwBinOp,
dst: Self::Value,
src: Self::Value,
order: AtomicOrdering,
) -> Self::Value {
let ty = src.ty;
let (dst, access_ty) = self.adjust_pointer_for_typed_access(dst, ty);
let src = self.bitcast(src, access_ty);
self.validate_atomic(access_ty, dst.def(self));
// TODO: Default to device scope
let memory = self
.constant_u32(self.span(), Scope::Device as u32)
.def(self);
let semantics = self.ordering_to_semantics_def(order).def(self);
use AtomicRmwBinOp::*;
let result = match op {
AtomicXchg => self.emit().atomic_exchange(
access_ty,
None,
dst.def(self),
memory,
semantics,
src.def(self),
),
AtomicAdd => self.emit().atomic_i_add(
access_ty,
None,
dst.def(self),
memory,
semantics,
src.def(self),
),
AtomicSub => self.emit().atomic_i_sub(
access_ty,
None,
dst.def(self),
memory,
semantics,
src.def(self),
),
AtomicAnd => self.emit().atomic_and(
access_ty,
None,
dst.def(self),
memory,
semantics,
src.def(self),
),
AtomicNand => self.fatal("atomic nand is not supported"),
AtomicOr => self.emit().atomic_or(
access_ty,
None,
dst.def(self),
memory,
semantics,
src.def(self),
),
AtomicXor => self.emit().atomic_xor(
access_ty,
None,
dst.def(self),
memory,
semantics,
src.def(self),
),
AtomicMax => self.emit().atomic_s_max(
access_ty,
None,
dst.def(self),
memory,
semantics,
src.def(self),
),
AtomicMin => self.emit().atomic_s_min(
access_ty,
None,
dst.def(self),
memory,
semantics,
src.def(self),
),
AtomicUMax => self.emit().atomic_u_max(
access_ty,
None,
dst.def(self),
memory,
semantics,
src.def(self),
),
AtomicUMin => self.emit().atomic_u_min(
access_ty,
None,
dst.def(self),
memory,
semantics,
src.def(self),
),
}
.unwrap()
.with_type(access_ty);
self.bitcast(result, ty)
}
fn atomic_fence(&mut self, order: AtomicOrdering, _scope: SynchronizationScope) {
// Ignore sync scope (it only has "single thread" and "cross thread")
// TODO: Default to device scope
let memory = self
.constant_u32(self.span(), Scope::Device as u32)
.def(self);
let semantics = self.ordering_to_semantics_def(order).def(self);
self.emit().memory_barrier(memory, semantics).unwrap();
}
fn set_invariant_load(&mut self, _load: Self::Value) {
// ignore
}
/// Called for `StorageLive`
fn lifetime_start(&mut self, _ptr: Self::Value, _size: Size) {
// ignore
}
/// Called for `StorageDead`
fn lifetime_end(&mut self, _ptr: Self::Value, _size: Size) {
// ignore
}
fn call(
&mut self,
callee_ty: Self::Type,
_fn_attrs: Option<&CodegenFnAttrs>,
_fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
callee: Self::Value,
args: &[Self::Value],
funclet: Option<&Self::Funclet>,
instance: Option<ty::Instance<'tcx>>,
) -> Self::Value {
if funclet.is_some() {
self.fatal("TODO: Funclets are not supported");
}
// NOTE(eddyb) see the comment on `SpirvValueKind::FnAddr`, this should
// be fixed upstream, so we never see any "function pointer" values being
// created just to perform direct calls.
let (callee_val, result_type, argument_types) = match self.lookup_type(callee.ty) {
// HACK(eddyb) this seems to be needed, but it's not what `get_fn_addr`
// produces, are these coming from inside `rustc_codegen_spirv`?
SpirvType::Function {
return_type,
arguments,
} => {
assert_ty_eq!(self, callee_ty, callee.ty);
(callee.def(self), return_type, arguments)
}
SpirvType::Pointer { pointee } => match self.lookup_type(pointee) {
SpirvType::Function {
return_type,
arguments,
} => (
if let SpirvValueKind::FnAddr { function } = callee.kind {
assert_ty_eq!(self, callee_ty, pointee);
function
}
// Truly indirect call.
else {
let fn_ptr_val = callee.def(self);
self.zombie(fn_ptr_val, "indirect calls are not supported in SPIR-V");
fn_ptr_val
},
return_type,
arguments,
),
_ => bug!(
"call expected `fn` pointer to point to function type, got `{}`",
self.debug_type(pointee)
),
},
_ => bug!(
"call expected function or `fn` pointer type, got `{}`",
self.debug_type(callee.ty)
),
};
// HACK(eddyb) temporary workaround for untyped pointers upstream.
// FIXME(eddyb) replace with untyped memory SPIR-V + `qptr` or similar.
let args: SmallVec<[_; 8]> = args
.iter()
.zip_eq(argument_types)
.map(|(&arg, &expected_type)| self.bitcast(arg, expected_type))
.collect();
let args = &args[..];
// FIXME(eddyb) should the maps exist at all, now that the `DefId` is known
// at `call` time, and presumably its high-level details can be looked up?
let instance_def_id = instance.map(|instance| instance.def_id());
let libm_intrinsic =
instance_def_id.and_then(|def_id| self.libm_intrinsics.borrow().get(&def_id).copied());
let buffer_load_intrinsic = instance_def_id
.and_then(|def_id| self.buffer_load_intrinsics.borrow().get(&def_id).copied());
let buffer_store_intrinsic = instance_def_id
.and_then(|def_id| self.buffer_store_intrinsics.borrow().get(&def_id).copied());
let is_panic_entry_point = instance_def_id
.is_some_and(|def_id| self.panic_entry_points.borrow().contains(&def_id));
if let Some(libm_intrinsic) = libm_intrinsic {
let result = self.call_libm_intrinsic(libm_intrinsic, result_type, args);
if result_type != result.ty {
bug!(
"Mismatched libm result type for {:?}: expected {}, got {}",
libm_intrinsic,
self.debug_type(result_type),
self.debug_type(result.ty),
);
}
result
} else if is_panic_entry_point {
// HACK(eddyb) Rust 2021 `panic!` always uses `format_args!`, even
// in the simple case that used to pass a `&str` constant, which
// would not remain reachable in the SPIR-V - but `format_args!` is
// more complex and neither immediate (`fmt::Arguments` is too big)
// nor simplified in MIR (e.g. promoted to a constant) in any way,
// so we have to try and remove the `fmt::Arguments::new` call here.
#[derive(Default)]
struct DecodedFormatArgs<'tcx> {
/// If fully constant, the `pieces: &'a [&'static str]` input
/// of `fmt::Arguments<'a>` (i.e. the strings between args).
const_pieces: Option<SmallVec<[String; 2]>>,
/// Original references for `fmt::Arguments<'a>` dynamic arguments,
/// i.e. the `&'a T` passed to `fmt::rt::Argument::<'a>::new_*`,
/// tracking the type `T` and `char` formatting specifier.
///
/// E.g. for `format_args!("{a} {b:x}")` they'll be:
/// * `&a` with `typeof a` and ' ',
/// * `&b` with `typeof b` and 'x'
ref_arg_ids_with_ty_and_spec: SmallVec<[(Word, Ty<'tcx>, char); 2]>,
}
struct FormatArgsNotRecognized(String);
// HACK(eddyb) this is basically a `try` block.
let try_decode_and_remove_format_args = || {
let mut decoded_format_args = DecodedFormatArgs::default();
let const_u32_as_usize = |ct_id| match self.builder.lookup_const_by_id(ct_id)? {
SpirvConst::Scalar(x) => Some(u32::try_from(x).ok()? as usize),
_ => None,
};
let const_slice_as_elem_ids = |ptr_id: Word, len: usize| {
if let SpirvConst::PtrTo { pointee } =
self.builder.lookup_const_by_id(ptr_id)?
{
if let SpirvConst::Composite(elems) =
self.builder.lookup_const_by_id(pointee)?
{
if elems.len() == len {
return Some(elems);
}
}
}
None
};
let const_str_as_utf8 = |&[str_ptr_id, str_len_id]: &[Word; 2]| {
let str_len = const_u32_as_usize(str_len_id)?;
let piece_str_bytes = const_slice_as_elem_ids(str_ptr_id, str_len)?
.iter()
.map(|&id| u8::try_from(const_u32_as_usize(id)?).ok())
.collect::<Option<Vec<u8>>>()?;
String::from_utf8(piece_str_bytes).ok()
};
// HACK(eddyb) some entry-points only take a `&str`, not `fmt::Arguments`.
if let [
SpirvValue {
kind: SpirvValueKind::Def(a_id),
..
},
SpirvValue {
kind: SpirvValueKind::Def(b_id),
..
},
ref other_args @ ..,
] = args[..]
{
// Optional `&'static panic::Location<'static>`.
if other_args.len() <= 1 {
if let Some(const_msg) = const_str_as_utf8(&[a_id, b_id]) {
decoded_format_args.const_pieces =
Some([const_msg].into_iter().collect());
return Ok(decoded_format_args);
}
}
}
let format_args_id = match *args {
// HACK(eddyb) `panic_nounwind_fmt` takes an extra argument.
[
SpirvValue {
kind: SpirvValueKind::Def(format_args_id),
..
},
_, // `&'static panic::Location<'static>`
]
| [
SpirvValue {
kind: SpirvValueKind::Def(format_args_id),
..
},
_, // `force_no_backtrace: bool`
_, // `&'static panic::Location<'static>`
] => format_args_id,
_ => {
return Err(FormatArgsNotRecognized(
"panic entry-point call args".into(),
));
}
};
let custom_ext_inst_set_import = self.ext_inst.borrow_mut().import_custom(self);
// HACK(eddyb) we can remove SSA instructions even when they have
// side-effects, *as long as* they are "local" enough and cannot
// be observed from outside this current invocation - because the
// the abort, any SSA definitions or local variable writes can't
// be actually used anywhere else (other than *before* the abort).
let mut builder = self.emit();
let func_idx = builder.selected_function().unwrap();
let block_idx = builder.selected_block().unwrap();
let func = &mut builder.module_mut().functions[func_idx];
// HACK(eddyb) this is used to check that all `Op{Store,Load}`s
// that may get removed, operate on local `OpVariable`s,
// i.e. are not externally observable.
let local_var_ids: FxHashSet<_> = func.blocks[0]
.instructions
.iter()
.take_while(|inst| inst.class.opcode == Op::Variable)
.map(|inst| inst.result_id.unwrap())
.collect();
let require_local_var = |ptr_id, var| {
Some(())
.filter(|()| local_var_ids.contains(&ptr_id))
.ok_or_else(|| FormatArgsNotRecognized(format!("{var} storage not local")))
};
let mut non_debug_insts = func.blocks[block_idx]
.instructions
.iter()
.enumerate()
.filter(|(_, inst)| {
let is_standard_debug = [Op::Line, Op::NoLine].contains(&inst.class.opcode);
let is_custom_debug = inst.class.opcode == Op::ExtInst
&& inst.operands[0].unwrap_id_ref() == custom_ext_inst_set_import
&& CustomOp::decode_from_ext_inst(inst).is_debuginfo();
!(is_standard_debug || is_custom_debug)
});
// HACK(eddyb) to aid in pattern-matching, relevant instructions
// are decoded to values of this `enum`. For instructions that
// produce results, the result ID is the first `ID` value.
#[derive(Debug)]
enum Inst<ID> {
Bitcast(ID, ID),
CompositeExtract(ID, ID, u32),
InBoundsAccessChain(ID, ID, u32),
Store(ID, ID),
Load(ID, ID),
CopyMemory(ID, ID),
Call(ID, ID, SmallVec<[ID; 4]>),
// HACK(eddyb) this only exists for better error reporting,
// as `Result<Inst<...>, Op>` would only report one `Op`.
Unsupported(
// HACK(eddyb) only exists for `fmt::Debug` in case of error.
#[allow(dead_code)] Op,
),
}
let taken_inst_idx_range = Cell::new(func.blocks[block_idx].instructions.len())..;
// Take `count` instructions, advancing backwards, but returning
// instructions in their original order (and decoded to `Inst`s).
let mut try_rev_take = |count| {
let maybe_rev_insts = (0..count).map(|_| {
let (i, inst) = non_debug_insts.next_back()?;
taken_inst_idx_range.start.set(i);
// HACK(eddyb) avoid the logic below that assumes only ID operands
if inst.class.opcode == Op::CompositeExtract {
if let (Some(r), &[Operand::IdRef(x), Operand::LiteralBit32(i)]) =
(inst.result_id, &inst.operands[..])
{
return Some(Inst::CompositeExtract(r, x, i));
}
}
// HACK(eddyb) all instructions accepted below
// are expected to take no more than 4 operands,
// and this is easier to use than an iterator.
let id_operands = inst
.operands
.iter()
.map(|operand| operand.id_ref_any())
.collect::<Option<SmallVec<[_; 4]>>>()?;
// Decode the instruction into one of our `Inst`s.
Some(
match (inst.class.opcode, inst.result_id, &id_operands[..]) {
(Op::Bitcast, Some(r), &[x]) => Inst::Bitcast(r, x),
(Op::InBoundsAccessChain, Some(r), &[p, i]) => {
if let Some(SpirvConst::Scalar(i)) =
self.builder.lookup_const_by_id(i)
{
Inst::InBoundsAccessChain(r, p, i as u32)
} else {
Inst::Unsupported(inst.class.opcode)
}
}
(Op::Store, None, &[p, v]) => Inst::Store(p, v),
(Op::Load, Some(r), &[p]) => Inst::Load(r, p),
(Op::CopyMemory, None, &[a, b]) => Inst::CopyMemory(a, b),
(Op::FunctionCall, Some(r), [f, args @ ..]) => {
Inst::Call(r, *f, args.iter().copied().collect())
}
_ => Inst::Unsupported(inst.class.opcode),
},
)
});
let mut insts = maybe_rev_insts.collect::<Option<SmallVec<[_; 4]>>>()?;
insts.reverse();
Some(insts)
};
let fmt_args_new_call_insts = try_rev_take(3).ok_or_else(|| {
FormatArgsNotRecognized(
"fmt::Arguments::new call: ran out of instructions".into(),
)
})?;
let ((pieces_slice_ptr_id, pieces_len), (rt_args_slice_ptr_id, rt_args_count)) =
match fmt_args_new_call_insts[..] {
[
Inst::Call(call_ret_id, callee_id, ref call_args),
Inst::Store(st_dst_id, st_val_id),
Inst::Load(ld_val_id, ld_src_id),
] if call_ret_id == st_val_id
&& st_dst_id == ld_src_id
&& ld_val_id == format_args_id =>
{
require_local_var(st_dst_id, "fmt::Arguments::new destination")?;
let Some(&(pieces_len, rt_args_count)) =
self.fmt_args_new_fn_ids.borrow().get(&callee_id)
else {
return Err(FormatArgsNotRecognized(
"fmt::Arguments::new callee not registered".into(),
));
};
match call_args[..] {
// `<core::fmt::Arguments>::new_v1`
[pieces_slice_ptr_id, rt_args_slice_ptr_id] => (
(pieces_slice_ptr_id, pieces_len),
(Some(rt_args_slice_ptr_id), rt_args_count),
),
// `<core::fmt::Arguments>::new_const`
[pieces_slice_ptr_id] if rt_args_count == 0 => {
((pieces_slice_ptr_id, pieces_len), (None, rt_args_count))
}
_ => {
return Err(FormatArgsNotRecognized(
"fmt::Arguments::new call args".into(),
));
}
}
}
_ => {
// HACK(eddyb) this gathers more context before reporting.
let mut insts = fmt_args_new_call_insts;
insts.reverse();
while let Some(extra_inst) = try_rev_take(1) {
insts.extend(extra_inst);
if insts.len() >= 32 {
break;
}
}
insts.reverse();
return Err(FormatArgsNotRecognized(format!(
"fmt::Arguments::new call sequence ({insts:?})",
)));
}
};
// HACK(eddyb) this is the worst part: if we do have runtime
// arguments (from e.g. new `assert!`s being added to `core`),
// we have to confirm their many instructions for removal.
if rt_args_count > 0 {
let rt_args_array_ptr_id = rt_args_slice_ptr_id.unwrap();
// Each runtime argument has 4 instructions to call one of
// the `fmt::rt::Argument::new_*` functions (and temporarily
// store its result), and 4 instructions to copy it into
// the appropriate slot in the array. The groups of 4 and 4
// instructions, for all runtime args, are each separate.
let copies_to_rt_args_array =
try_rev_take(rt_args_count * 4).ok_or_else(|| {
FormatArgsNotRecognized(
"[fmt::rt::Argument; N] copies: ran out of instructions".into(),
)
})?;
let copies_to_rt_args_array = copies_to_rt_args_array.chunks(4);
let rt_arg_new_calls = try_rev_take(rt_args_count * 4).ok_or_else(|| {
FormatArgsNotRecognized(
"fmt::rt::Argument::new calls: ran out of instructions".into(),
)
})?;
let rt_arg_new_calls = rt_arg_new_calls.chunks(4);
for (rt_arg_idx, (rt_arg_new_call_insts, copy_to_rt_args_array_insts)) in
rt_arg_new_calls.zip(copies_to_rt_args_array).enumerate()
{
let call_ret_slot_ptr = match rt_arg_new_call_insts[..] {
[
Inst::Call(call_ret_id, callee_id, ref call_args),
Inst::InBoundsAccessChain(tmp_slot_field_ptr, tmp_slot_ptr, 0),
Inst::CompositeExtract(field, wrapper_newtype, 0),
Inst::Store(st_dst_ptr, st_val),
] if wrapper_newtype == call_ret_id
&& (st_dst_ptr, st_val) == (tmp_slot_field_ptr, field) =>
{
self.fmt_rt_arg_new_fn_ids_to_ty_and_spec
.borrow()
.get(&callee_id)
.and_then(|&(ty, spec)| match call_args[..] {
[x] => {
decoded_format_args
.ref_arg_ids_with_ty_and_spec
.push((x, ty, spec));
Some(tmp_slot_ptr)
}
_ => None,
})
}
_ => None,
}
.ok_or_else(|| {
FormatArgsNotRecognized(format!(
"fmt::rt::Argument::new call sequence ({rt_arg_new_call_insts:?})"
))
})?;
match copy_to_rt_args_array_insts[..] {
[
Inst::InBoundsAccessChain(array_slot, array_base, array_idx),
Inst::InBoundsAccessChain(dst_field_ptr, dst_base_ptr, 0),
Inst::InBoundsAccessChain(src_field_ptr, src_base_ptr, 0),
Inst::CopyMemory(copy_dst, copy_src),
] if array_base == rt_args_array_ptr_id
&& array_idx as usize == rt_arg_idx
&& dst_base_ptr == array_slot
&& src_base_ptr == call_ret_slot_ptr
&& (copy_dst, copy_src) == (dst_field_ptr, src_field_ptr) => {}
_ => {
return Err(FormatArgsNotRecognized(format!(
"[fmt::rt::Argument; N] copies sequence ({copy_to_rt_args_array_insts:?})"
)));
}
}
}
}
// If the `pieces: &[&str]` slice needs a bitcast, it'll be here.
let pieces_slice_ptr_id = match try_rev_take(1).as_deref() {
Some(&[Inst::Bitcast(out_id, in_id)]) if out_id == pieces_slice_ptr_id => in_id,
_ => pieces_slice_ptr_id,
};
decoded_format_args.const_pieces =
const_slice_as_elem_ids(pieces_slice_ptr_id, pieces_len).and_then(
|piece_ids| {
piece_ids
.iter()
.map(|&piece_id| {
match self.builder.lookup_const_by_id(piece_id)? {
SpirvConst::Composite(piece) => {
const_str_as_utf8(piece.try_into().ok()?)
}
_ => None,
}
})
.collect::<Option<_>>()
},
);
// Keep all instructions up to (but not including) the last one
// confirmed above to be the first instruction of `format_args!`.
func.blocks[block_idx]
.instructions
.truncate(taken_inst_idx_range.start.get());
Ok(decoded_format_args)
};
let mut debug_printf_args = SmallVec::<[_; 2]>::new();
let message = match try_decode_and_remove_format_args() {
Ok(DecodedFormatArgs {
const_pieces,
ref_arg_ids_with_ty_and_spec,
}) => {
match const_pieces {
Some(const_pieces) => {
const_pieces
.into_iter()
.map(|s| Cow::Owned(s.replace('%', "%%")))
.interleave(ref_arg_ids_with_ty_and_spec.iter().map(
|&(ref_id, ty, spec)| {
use rustc_target::abi::{
Float::*, Integer::*, Primitive::*,
};
let layout = self.layout_of(ty);
let scalar = match layout.backend_repr {
BackendRepr::Scalar(scalar) => Some(scalar.primitive()),
_ => None,
};
let debug_printf_fmt = match (spec, scalar) {
// FIXME(eddyb) support more of these,
// potentially recursing to print ADTs.
(' ' | '?', Some(Int(I32, false))) => "%u",
('x', Some(Int(I32, false))) => "%x",
(' ' | '?', Some(Int(I32, true))) => "%i",
(' ' | '?', Some(Float(F32))) => "%f",
_ => "",
};
if debug_printf_fmt.is_empty() {
return Cow::Owned(
format!("{{/* unprintable {ty} */:{spec}}}")
.replace('%', "%%"),
);
}
let spirv_type = layout.spirv_type(self.span(), self);
debug_printf_args.push(
self.emit()
.load(spirv_type, None, ref_id, None, [])
.unwrap()
.with_type(spirv_type),
);
Cow::Borrowed(debug_printf_fmt)
},
))
.collect::<String>()
}
None => "<unknown message>".into(),
}
}
Err(FormatArgsNotRecognized(step)) => {
if let Some(current_span) = self.current_span {
let mut warn = self.tcx.dcx().struct_span_warn(
current_span,
"failed to find and remove `format_args!` construction for this `panic!`",
);
warn.note(
"compilation may later fail due to leftover `format_args!` internals",
);
if self.tcx.sess.opts.unstable_opts.inline_mir != Some(false) {
warn.note("missing `-Zinline-mir=off` flag (should've been set by `spirv-builder`)")
.help("check `.cargo` and environment variables for potential overrides")
.help("(or, if not using `spirv-builder` at all, add the flag manually)");
} else {
warn.note(format!("[RUST-GPU BUG] bailed from {step}"));
}
warn.emit();
}
"<unknown message> (failed to find/decode `format_args!` expansion)".into()
}
};
// HACK(eddyb) redirect any possible panic call to an abort, to avoid
// needing to materialize `&core::panic::Location` or `format_args!`.
self.abort_with_kind_and_message_debug_printf("panic", message, debug_printf_args);
self.undef(result_type)
} else if let Some(mode) = buffer_load_intrinsic {
self.codegen_buffer_load_intrinsic(result_type, args, mode)
} else if let Some(mode) = buffer_store_intrinsic {
self.codegen_buffer_store_intrinsic(args, mode);
let void_ty = SpirvType::Void.def(rustc_span::DUMMY_SP, self);
SpirvValue {
kind: SpirvValueKind::IllegalTypeUsed(void_ty),
ty: void_ty,
}
} else {
let args = args.iter().map(|arg| arg.def(self)).collect::<Vec<_>>();
self.emit()
.function_call(result_type, None, callee_val, args)
.unwrap()
.with_type(result_type)
}
}
fn zext(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
self.intcast(val, dest_ty, false)
}
fn apply_attrs_to_cleanup_callsite(&mut self, _llret: Self::Value) {
// Ignore
}
}