rustc_codegen_spirv/builder/
intrinsics.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
// HACK(eddyb) avoids rewriting all of the imports (see `lib.rs` and `build.rs`).
use crate::maybe_pqp_cg_ssa as rustc_codegen_ssa;

use super::Builder;
use crate::abi::ConvSpirvType;
use crate::builder_spirv::{SpirvValue, SpirvValueExt};
use crate::codegen_cx::CodegenCx;
use crate::custom_insts::CustomInst;
use crate::spirv_type::SpirvType;
use rspirv::dr::Operand;
use rspirv::spirv::GLOp;
use rustc_codegen_ssa::mir::operand::OperandRef;
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::{BuilderMethods, IntrinsicCallBuilderMethods};
use rustc_middle::ty::layout::LayoutOf;
use rustc_middle::ty::{FnDef, Instance, Ty, TyKind, TypingEnv};
use rustc_middle::{bug, ty};
use rustc_span::Span;
use rustc_span::sym;
use rustc_target::abi::call::{FnAbi, PassMode};
use std::assert_matches::assert_matches;

fn int_type_width_signed(ty: Ty<'_>, cx: &CodegenCx<'_>) -> Option<(u64, bool)> {
    match ty.kind() {
        TyKind::Int(t) => Some((
            t.bit_width()
                .unwrap_or(cx.tcx.sess.target.pointer_width as u64),
            true,
        )),
        TyKind::Uint(t) => Some((
            t.bit_width()
                .unwrap_or(cx.tcx.sess.target.pointer_width as u64),
            false,
        )),
        _ => None,
    }
}

impl Builder<'_, '_> {
    pub fn copysign(&mut self, val: SpirvValue, sign: SpirvValue) -> SpirvValue {
        let width = match self.lookup_type(val.ty) {
            SpirvType::Float(width) => width,
            other => bug!(
                "copysign must have float argument, not {}",
                other.debug(val.ty, self)
            ),
        };
        let int_ty = SpirvType::Integer(width, false).def(self.span(), self);
        let (mask_sign, mask_value) = match width {
            32 => (
                self.constant_u32(self.span(), 1 << 31),
                self.constant_u32(self.span(), u32::MAX >> 1),
            ),
            64 => (
                self.constant_u64(self.span(), 1 << 63),
                self.constant_u64(self.span(), u64::MAX >> 1),
            ),
            _ => bug!("copysign must have width 32 or 64, not {}", width),
        };
        let val_bits = self.bitcast(val, int_ty);
        let sign_bits = self.bitcast(sign, int_ty);
        let val_masked = self.and(val_bits, mask_value);
        let sign_masked = self.and(sign_bits, mask_sign);
        let result_bits = self.or(val_masked, sign_masked);
        self.bitcast(result_bits, val.ty)
    }
}

impl<'a, 'tcx> IntrinsicCallBuilderMethods<'tcx> for Builder<'a, 'tcx> {
    fn codegen_intrinsic_call(
        &mut self,
        instance: Instance<'tcx>,
        fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
        args: &[OperandRef<'tcx, Self::Value>],
        llresult: Self::Value,
        _span: Span,
    ) -> Result<(), ty::Instance<'tcx>> {
        let callee_ty = instance.ty(self.tcx, TypingEnv::fully_monomorphized());

        let (def_id, fn_args) = match *callee_ty.kind() {
            FnDef(def_id, fn_args) => (def_id, fn_args),
            _ => bug!("expected fn item type, found {}", callee_ty),
        };

        let sig = callee_ty.fn_sig(self.tcx);
        let sig = self
            .tcx
            .normalize_erasing_late_bound_regions(TypingEnv::fully_monomorphized(), sig);
        let arg_tys = sig.inputs();
        let name = self.tcx.item_name(def_id);

        let ret_ty = self.layout_of(sig.output()).spirv_type(self.span(), self);
        let result = PlaceRef::new_sized(llresult, fn_abi.ret.layout);

        let value = match name {
            sym::likely | sym::unlikely => {
                // Ignore these for now.
                args[0].immediate()
            }

            sym::breakpoint => {
                self.abort();
                assert!(fn_abi.ret.is_ignore());
                return Ok(());
            }

            sym::volatile_load | sym::unaligned_volatile_load => {
                let ptr = args[0].immediate();
                let layout = self.layout_of(fn_args.type_at(0));
                let load = self.volatile_load(layout.spirv_type(self.span(), self), ptr);
                if !result.layout.is_zst() {
                    self.store(load, result.val.llval, result.val.align);
                }
                return Ok(());
            }

            sym::prefetch_read_data
            | sym::prefetch_write_data
            | sym::prefetch_read_instruction
            | sym::prefetch_write_instruction => {
                // ignore
                assert!(fn_abi.ret.is_ignore());
                return Ok(());
            }

            sym::saturating_add => {
                assert_eq!(arg_tys[0], arg_tys[1]);
                let result = match arg_tys[0].kind() {
                    TyKind::Int(_) | TyKind::Uint(_) => {
                        self.add(args[0].immediate(), args[1].immediate())
                    }
                    TyKind::Float(_) => self.fadd(args[0].immediate(), args[1].immediate()),
                    other => self.fatal(format!(
                        "Unimplemented saturating_add intrinsic type: {other:#?}"
                    )),
                };
                // TODO: Implement this
                self.zombie(result.def(self), "saturating_add is not implemented yet");
                result
            }
            sym::saturating_sub => {
                assert_eq!(arg_tys[0], arg_tys[1]);
                let result = match &arg_tys[0].kind() {
                    TyKind::Int(_) | TyKind::Uint(_) => {
                        self.sub(args[0].immediate(), args[1].immediate())
                    }
                    TyKind::Float(_) => self.fsub(args[0].immediate(), args[1].immediate()),
                    other => self.fatal(format!(
                        "Unimplemented saturating_sub intrinsic type: {other:#?}"
                    )),
                };
                // TODO: Implement this
                self.zombie(result.def(self), "saturating_sub is not implemented yet");
                result
            }

            sym::sqrtf32 | sym::sqrtf64 => self.gl_op(GLOp::Sqrt, ret_ty, [args[0].immediate()]),
            sym::powif32 | sym::powif64 => {
                let float = self.sitofp(args[1].immediate(), args[0].immediate().ty);
                self.gl_op(GLOp::Pow, ret_ty, [args[0].immediate(), float])
            }
            sym::sinf32 | sym::sinf64 => self.gl_op(GLOp::Sin, ret_ty, [args[0].immediate()]),
            sym::cosf32 | sym::cosf64 => self.gl_op(GLOp::Cos, ret_ty, [args[0].immediate()]),
            sym::powf32 | sym::powf64 => self.gl_op(GLOp::Pow, ret_ty, [
                args[0].immediate(),
                args[1].immediate(),
            ]),
            sym::expf32 | sym::expf64 => self.gl_op(GLOp::Exp, ret_ty, [args[0].immediate()]),
            sym::exp2f32 | sym::exp2f64 => self.gl_op(GLOp::Exp2, ret_ty, [args[0].immediate()]),
            sym::logf32 | sym::logf64 => self.gl_op(GLOp::Log, ret_ty, [args[0].immediate()]),
            sym::log2f32 | sym::log2f64 => self.gl_op(GLOp::Log2, ret_ty, [args[0].immediate()]),
            sym::log10f32 | sym::log10f64 => {
                // spir-v glsl doesn't have log10, so,
                // log10(x) == (1 / ln(10)) * ln(x)
                let mul = self.constant_float(args[0].immediate().ty, 1.0 / 10.0f64.ln());
                let ln = self.gl_op(GLOp::Log, ret_ty, [args[0].immediate()]);
                self.mul(mul, ln)
            }
            sym::fmaf32 | sym::fmaf64 => self.gl_op(GLOp::Fma, ret_ty, [
                args[0].immediate(),
                args[1].immediate(),
                args[2].immediate(),
            ]),
            sym::fabsf32 | sym::fabsf64 => self.gl_op(GLOp::FAbs, ret_ty, [args[0].immediate()]),
            sym::minnumf32 | sym::minnumf64 => self.gl_op(GLOp::FMin, ret_ty, [
                args[0].immediate(),
                args[1].immediate(),
            ]),
            sym::maxnumf32 | sym::maxnumf64 => self.gl_op(GLOp::FMax, ret_ty, [
                args[0].immediate(),
                args[1].immediate(),
            ]),
            sym::copysignf32 | sym::copysignf64 => {
                let val = args[0].immediate();
                let sign = args[1].immediate();
                self.copysign(val, sign)
            }
            sym::floorf32 | sym::floorf64 => self.gl_op(GLOp::Floor, ret_ty, [args[0].immediate()]),
            sym::ceilf32 | sym::ceilf64 => self.gl_op(GLOp::Ceil, ret_ty, [args[0].immediate()]),
            sym::truncf32 | sym::truncf64 => self.gl_op(GLOp::Trunc, ret_ty, [args[0].immediate()]),
            // TODO: Correctness of all these rounds
            sym::rintf32 | sym::rintf64 => self.gl_op(GLOp::Round, ret_ty, [args[0].immediate()]),
            sym::nearbyintf32 | sym::nearbyintf64 | sym::roundf32 | sym::roundf64 => {
                self.gl_op(GLOp::Round, ret_ty, [args[0].immediate()])
            }

            sym::rotate_left | sym::rotate_right => {
                let is_left = name == sym::rotate_left;
                let val = args[0].immediate();
                let shift = args[1].immediate();
                self.rotate(val, shift, is_left)
            }

            // TODO: Do we want to manually implement these instead of using intel instructions?
            sym::ctlz | sym::ctlz_nonzero => {
                let result = self
                    .emit()
                    .u_count_leading_zeros_intel(
                        args[0].immediate().ty,
                        None,
                        args[0].immediate().def(self),
                    )
                    .unwrap();
                self.ext_inst
                    .borrow_mut()
                    .require_integer_functions_2_intel(self, result);
                result.with_type(args[0].immediate().ty)
            }
            sym::cttz | sym::cttz_nonzero => {
                let result = self
                    .emit()
                    .u_count_trailing_zeros_intel(
                        args[0].immediate().ty,
                        None,
                        args[0].immediate().def(self),
                    )
                    .unwrap();
                self.ext_inst
                    .borrow_mut()
                    .require_integer_functions_2_intel(self, result);
                result.with_type(args[0].immediate().ty)
            }

            sym::ctpop => self
                .emit()
                .bit_count(args[0].immediate().ty, None, args[0].immediate().def(self))
                .unwrap()
                .with_type(args[0].immediate().ty),
            sym::bitreverse => self
                .emit()
                .bit_reverse(args[0].immediate().ty, None, args[0].immediate().def(self))
                .unwrap()
                .with_type(args[0].immediate().ty),
            sym::bswap => {
                // https://github.com/KhronosGroup/SPIRV-LLVM/pull/221/files
                // TODO: Definitely add tests to make sure this impl is right.
                let arg = args[0].immediate();
                let (width, is_signed) = int_type_width_signed(arg_tys[0], self)
                    .expect("bswap must have an integer argument");

                // Cast to unsigned type for byte-swapping
                let unsigned_ty: u32 =
                    SpirvType::Integer(width.try_into().unwrap(), false).def(self.span(), self);
                let unsigned_arg = if is_signed {
                    self.bitcast(arg, unsigned_ty)
                } else {
                    arg
                };

                let swapped = match width {
                    8 => unsigned_arg,
                    16 => {
                        let offset8 = self.constant_u16(self.span(), 8);
                        let tmp1 = self.shl(unsigned_arg, offset8);
                        let tmp2 = self.lshr(unsigned_arg, offset8);
                        self.or(tmp1, tmp2)
                    }
                    32 => {
                        let offset8 = self.constant_u32(self.span(), 8);
                        let offset24 = self.constant_u32(self.span(), 24);
                        let mask16 = self.constant_u32(self.span(), 0xFF00);
                        let mask24 = self.constant_u32(self.span(), 0xFF0000);
                        let tmp4 = self.shl(unsigned_arg, offset24);
                        let tmp3 = self.shl(unsigned_arg, offset8);
                        let tmp2 = self.lshr(unsigned_arg, offset8);
                        let tmp1 = self.lshr(unsigned_arg, offset24);
                        let tmp3 = self.and(tmp3, mask24);
                        let tmp2 = self.and(tmp2, mask16);
                        let res1 = self.or(tmp1, tmp2);
                        let res2 = self.or(tmp3, tmp4);
                        self.or(res1, res2)
                    }
                    64 => {
                        let offset8 = self.constant_u64(self.span(), 8);
                        let offset24 = self.constant_u64(self.span(), 24);
                        let offset40 = self.constant_u64(self.span(), 40);
                        let offset56 = self.constant_u64(self.span(), 56);
                        let mask16 = self.constant_u64(self.span(), 0xff00);
                        let mask24 = self.constant_u64(self.span(), 0xff0000);
                        let mask32 = self.constant_u64(self.span(), 0xff000000);
                        let mask40 = self.constant_u64(self.span(), 0xff00000000);
                        let mask48 = self.constant_u64(self.span(), 0xff0000000000);
                        let mask56 = self.constant_u64(self.span(), 0xff000000000000);
                        let tmp8 = self.shl(unsigned_arg, offset56);
                        let tmp7 = self.shl(unsigned_arg, offset40);
                        let tmp6 = self.shl(unsigned_arg, offset24);
                        let tmp5 = self.shl(unsigned_arg, offset8);
                        let tmp4 = self.lshr(unsigned_arg, offset8);
                        let tmp3 = self.lshr(unsigned_arg, offset24);
                        let tmp2 = self.lshr(unsigned_arg, offset40);
                        let tmp1 = self.lshr(unsigned_arg, offset56);
                        let tmp7 = self.and(tmp7, mask56);
                        let tmp6 = self.and(tmp6, mask48);
                        let tmp5 = self.and(tmp5, mask40);
                        let tmp4 = self.and(tmp4, mask32);
                        let tmp3 = self.and(tmp3, mask24);
                        let tmp2 = self.and(tmp2, mask16);
                        let res1 = self.or(tmp8, tmp7);
                        let res2 = self.or(tmp6, tmp5);
                        let res3 = self.or(tmp4, tmp3);
                        let res4 = self.or(tmp2, tmp1);
                        let res1 = self.or(res1, res2);
                        let res3 = self.or(res3, res4);
                        self.or(res1, res3)
                    }
                    other => {
                        let undef = self.undef(ret_ty);
                        self.zombie(
                            undef.def(self),
                            &format!("bswap not implemented for int width {other}"),
                        );
                        undef
                    }
                };

                // Cast back to the original signed type if necessary
                if is_signed {
                    self.bitcast(swapped, arg.ty)
                } else {
                    swapped
                }
            }

            sym::compare_bytes => {
                let undef = self.undef(ret_ty);
                self.zombie(undef.def(self), "memcmp not implemented");
                undef
            }

            _ => {
                // Call the fallback body instead of generating the intrinsic code
                return Err(ty::Instance::new(instance.def_id(), instance.args));
            }
        };

        if !fn_abi.ret.is_ignore() {
            assert_matches!(fn_abi.ret.mode, PassMode::Direct(_) | PassMode::Pair(..));
            OperandRef::from_immediate_or_packed_pair(self, value, result.layout)
                .val
                .store(self, result);
        }
        Ok(())
    }

    fn abort(&mut self) {
        self.abort_with_kind_and_message_debug_printf("abort", "intrinsics::abort() called", []);
    }

    fn assume(&mut self, _val: Self::Value) {
        // TODO: llvm.assume
    }

    fn expect(&mut self, cond: Self::Value, _expected: bool) -> Self::Value {
        // TODO: llvm.expect
        cond
    }

    fn type_test(&mut self, _pointer: Self::Value, _typeid: Self::Metadata) -> Self::Value {
        todo!()
    }

    fn type_checked_load(
        &mut self,
        _llvtable: Self::Value,
        _vtable_byte_offset: u64,
        _typeid: Self::Metadata,
    ) -> Self::Value {
        todo!()
    }

    fn va_start(&mut self, _val: Self::Value) -> Self::Value {
        todo!()
    }

    fn va_end(&mut self, _val: Self::Value) -> Self::Value {
        todo!()
    }
}

impl Builder<'_, '_> {
    pub fn abort_with_kind_and_message_debug_printf(
        &mut self,
        kind: &str,
        message_debug_printf_fmt_str: impl Into<String>,
        message_debug_printf_args: impl IntoIterator<Item = SpirvValue>,
    ) {
        // FIXME(eddyb) this should be cached more efficiently.
        let void_ty = SpirvType::Void.def(rustc_span::DUMMY_SP, self);

        // HACK(eddyb) there is no `abort` or `trap` instruction in SPIR-V,
        // so the best thing we can do is use our own custom instruction.
        let kind_id = self.emit().string(kind);
        let message_debug_printf_fmt_str_id = self.emit().string(message_debug_printf_fmt_str);
        self.custom_inst(void_ty, CustomInst::Abort {
            kind: Operand::IdRef(kind_id),
            message_debug_printf: [message_debug_printf_fmt_str_id]
                .into_iter()
                .chain(
                    message_debug_printf_args
                        .into_iter()
                        .map(|arg| arg.def(self)),
                )
                .map(Operand::IdRef)
                .collect(),
        });
        self.unreachable();

        // HACK(eddyb) we still need an active block in case the user of this
        // `Builder` will continue to emit instructions after the `.abort()`.
        let post_abort_dead_bb = self.append_sibling_block("post_abort_dead");
        self.switch_to_block(post_abort_dead_bb);
    }
}