rustc_codegen_spirv/builder_spirv.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
// HACK(eddyb) avoids rewriting all of the imports (see `lib.rs` and `build.rs`).
use crate::maybe_pqp_cg_ssa as rustc_codegen_ssa;
use crate::builder;
use crate::codegen_cx::CodegenCx;
use crate::spirv_type::SpirvType;
use crate::symbols::Symbols;
use crate::target::SpirvTarget;
use crate::target_feature::TargetFeature;
use rspirv::dr::{Block, Builder, Instruction, Module, Operand};
use rspirv::spirv::{
AddressingModel, Capability, MemoryModel, Op, SourceLanguage, StorageClass, Word,
};
use rspirv::{binary::Assemble, binary::Disassemble};
use rustc_arena::DroplessArena;
use rustc_codegen_ssa::traits::ConstCodegenMethods as _;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::sync::Lrc;
use rustc_middle::bug;
use rustc_middle::mir::interpret::ConstAllocation;
use rustc_middle::ty::TyCtxt;
use rustc_span::source_map::SourceMap;
use rustc_span::symbol::Symbol;
use rustc_span::{DUMMY_SP, FileName, FileNameDisplayPreference, SourceFile, Span};
use rustc_target::abi::Size;
use std::assert_matches::assert_matches;
use std::cell::{RefCell, RefMut};
use std::hash::{Hash, Hasher};
use std::iter;
use std::ops::Range;
use std::str;
use std::{fs::File, io::Write, path::Path};
#[derive(Copy, Clone, Debug, Ord, PartialOrd, Eq, PartialEq, Hash)]
pub enum SpirvValueKind {
Def(Word),
/// The ID of a global instruction matching a `SpirvConst`, but which cannot
/// pass validation. Used to error (or attach zombie spans), at the usesites
/// of such constants, instead of where they're generated (and cached).
IllegalConst(Word),
/// This can only happen in one specific case - which is as a result of
/// `codegen_buffer_store_intrinsic`, that function is supposed to return
/// `OpTypeVoid`, however because it gets inline by the compiler it can't.
/// Instead we return this, and trigger an error if we ever end up using the
/// result of this function call (which we can't).
IllegalTypeUsed(Word),
// FIXME(eddyb) this shouldn't be needed, but `rustc_codegen_ssa` still relies
// on converting `Function`s to `Value`s even for direct calls, the `Builder`
// should just have direct and indirect `call` variants (or a `Callee` enum).
FnAddr {
function: Word,
},
/// Deferred pointer cast, for the `Logical` addressing model (which doesn't
/// really support raw pointers in the way Rust expects to be able to use).
///
/// The cast's target pointer type is the `ty` of the `SpirvValue` that has
/// `LogicalPtrCast` as its `kind`, as it would be redundant to have it here.
LogicalPtrCast {
/// Pointer value being cast.
original_ptr: Word,
/// Pointer type of `original_ptr`.
original_ptr_ty: Word,
/// Result ID for the `OpBitcast` instruction representing the cast,
/// to attach zombies to.
//
// HACK(eddyb) having an `OpBitcast` only works by being DCE'd away,
// or by being replaced with a noop in `qptr::lower`.
bitcast_result_id: Word,
},
}
#[derive(Copy, Clone, Debug, Ord, PartialOrd, Eq, PartialEq, Hash)]
pub struct SpirvValue {
pub kind: SpirvValueKind,
pub ty: Word,
}
impl SpirvValue {
pub fn strip_ptrcasts(self) -> Self {
match self.kind {
SpirvValueKind::LogicalPtrCast {
original_ptr,
original_ptr_ty,
bitcast_result_id: _,
} => original_ptr.with_type(original_ptr_ty),
_ => self,
}
}
pub fn const_fold_load(self, cx: &CodegenCx<'_>) -> Option<Self> {
match self.kind {
SpirvValueKind::Def(id) | SpirvValueKind::IllegalConst(id) => {
let &entry = cx.builder.id_to_const.borrow().get(&id)?;
match entry.val {
SpirvConst::PtrTo { pointee } => {
let ty = match cx.lookup_type(self.ty) {
SpirvType::Pointer { pointee } => pointee,
ty => bug!("load called on value that wasn't a pointer: {:?}", ty),
};
// FIXME(eddyb) deduplicate this `if`-`else` and its other copies.
let kind = if entry.legal.is_ok() {
SpirvValueKind::Def(pointee)
} else {
SpirvValueKind::IllegalConst(pointee)
};
Some(SpirvValue { kind, ty })
}
_ => None,
}
}
_ => None,
}
}
// Important: we *cannot* use bx.emit() here, because this is called in
// contexts where the emitter is already locked. Doing so may cause subtle
// rare bugs.
pub fn def(self, bx: &builder::Builder<'_, '_>) -> Word {
self.def_with_span(bx, bx.span())
}
// def and def_cx are separated, because Builder has a span associated with
// what it's currently emitting.
pub fn def_cx(self, cx: &CodegenCx<'_>) -> Word {
self.def_with_span(cx, DUMMY_SP)
}
pub fn def_with_span(self, cx: &CodegenCx<'_>, span: Span) -> Word {
match self.kind {
SpirvValueKind::Def(id) => id,
SpirvValueKind::IllegalConst(id) => {
let entry = &cx.builder.id_to_const.borrow()[&id];
let msg = match entry.legal.unwrap_err() {
IllegalConst::Shallow(cause) => {
if let (
LeafIllegalConst::CompositeContainsPtrTo,
SpirvConst::Composite(_fields),
) = (cause, &entry.val)
{
// FIXME(eddyb) materialize this at runtime, using
// `OpCompositeConstruct` (transitively, i.e. after
// putting every field through `SpirvValue::def`),
// if we have a `Builder` to do that in.
// FIXME(eddyb) this isn't possible right now, as
// the builder would be dynamically "locked" anyway
// (i.e. attempting to do `bx.emit()` would panic).
}
cause.message()
}
IllegalConst::Indirect(cause) => cause.message(),
};
cx.zombie_with_span(id, span, msg);
id
}
SpirvValueKind::IllegalTypeUsed(id) => {
cx.tcx
.dcx()
.struct_span_err(span, "Can't use type as a value")
.with_note(format!("Type: *{}", cx.debug_type(id)))
.emit();
id
}
SpirvValueKind::FnAddr { .. } => {
cx.builder
.const_to_id
.borrow()
.get(&WithType {
ty: self.ty,
val: SpirvConst::ZombieUndefForFnAddr,
})
.expect("FnAddr didn't go through proper undef registration")
.val
}
SpirvValueKind::LogicalPtrCast {
original_ptr: _,
original_ptr_ty,
bitcast_result_id,
} => {
cx.zombie_with_span(
bitcast_result_id,
span,
&format!(
"cannot cast between pointer types\
\nfrom `{}`\
\n to `{}`",
cx.debug_type(original_ptr_ty),
cx.debug_type(self.ty)
),
);
bitcast_result_id
}
}
}
}
pub trait SpirvValueExt {
fn with_type(self, ty: Word) -> SpirvValue;
}
impl SpirvValueExt for Word {
fn with_type(self, ty: Word) -> SpirvValue {
SpirvValue {
kind: SpirvValueKind::Def(self),
ty,
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum SpirvConst<'a, 'tcx> {
/// Constants of boolean, integer or floating-point type (up to 128-bit).
Scalar(u128),
Null,
Undef,
/// Like `Undef`, but cached separately to avoid `FnAddr` zombies accidentally
/// applying to non-zombie `Undef`s of the same types.
// FIXME(eddyb) include the function ID so that multiple `fn` pointers to
// different functions, but of the same type, don't overlap their zombies.
ZombieUndefForFnAddr,
Composite(&'a [Word]),
/// Pointer to constant data, i.e. `&pointee`, represented as an `OpVariable`
/// in the `Private` storage class, and with `pointee` as its initializer.
PtrTo {
pointee: Word,
},
/// Symbolic result for the `const_data_from_alloc` method, to allow deferring
/// the actual value generation until after a pointer to this value is cast
/// to its final type (e.g. that will be loaded as).
//
// FIXME(eddyb) replace this with `qptr` handling of constant data.
ConstDataFromAlloc(ConstAllocation<'tcx>),
}
impl<'tcx> SpirvConst<'_, 'tcx> {
/// Replace `&[T]` fields with `&'tcx [T]` ones produced by calling
/// `tcx.arena.dropless.alloc_slice(...)` - this is done late for two reasons:
/// 1. it avoids allocating in the arena when the cache would be hit anyway,
/// which would create "garbage" (as in, unreachable allocations)
/// (ideally these would also be interned, but that's even more refactors)
/// 2. an empty slice is disallowed (as it's usually handled as a special
/// case elsewhere, e.g. `rustc`'s `ty::List` - sadly we can't use that)
fn tcx_arena_alloc_slices(self, cx: &CodegenCx<'tcx>) -> SpirvConst<'tcx, 'tcx> {
fn arena_alloc_slice<'tcx, T: Copy>(cx: &CodegenCx<'tcx>, xs: &[T]) -> &'tcx [T] {
if xs.is_empty() {
&[]
} else {
cx.tcx.arena.dropless.alloc_slice(xs)
}
}
match self {
// FIXME(eddyb) these are all noop cases, could they be automated?
SpirvConst::Scalar(v) => SpirvConst::Scalar(v),
SpirvConst::Null => SpirvConst::Null,
SpirvConst::Undef => SpirvConst::Undef,
SpirvConst::ZombieUndefForFnAddr => SpirvConst::ZombieUndefForFnAddr,
SpirvConst::PtrTo { pointee } => SpirvConst::PtrTo { pointee },
SpirvConst::Composite(fields) => SpirvConst::Composite(arena_alloc_slice(cx, fields)),
SpirvConst::ConstDataFromAlloc(alloc) => SpirvConst::ConstDataFromAlloc(alloc),
}
}
}
#[derive(Debug, Clone, Ord, PartialOrd, Eq, PartialEq, Hash)]
struct WithType<V> {
ty: Word,
val: V,
}
/// Primary causes for a `SpirvConst` to be deemed illegal.
#[derive(Copy, Clone, Debug)]
enum LeafIllegalConst {
/// `SpirvConst::Composite` containing a `SpirvConst::PtrTo` as a field.
/// This is illegal because `OpConstantComposite` must have other constants
/// as its operands, and `OpVariable`s are never considered constant.
// FIXME(eddyb) figure out if this is an accidental omission in SPIR-V.
CompositeContainsPtrTo,
/// `ConstDataFromAlloc` constant, which cannot currently be materialized
/// to SPIR-V (and requires to be wrapped in `PtrTo` and bitcast, first).
//
// FIXME(eddyb) replace this with `qptr` handling of constant data.
UntypedConstDataFromAlloc,
}
impl LeafIllegalConst {
fn message(&self) -> &'static str {
match *self {
Self::CompositeContainsPtrTo => {
"constant arrays/structs cannot contain pointers to other constants"
}
Self::UntypedConstDataFromAlloc => {
"`const_data_from_alloc` result wasn't passed through `static_addr_of`, \
then `const_bitcast` (which would've given it a type)"
}
}
}
}
#[derive(Copy, Clone, Debug)]
enum IllegalConst {
/// This `SpirvConst` is (or contains) a "leaf" illegal constant. As there
/// is no indirection, some of these could still be materialized at runtime,
/// using e.g. `OpCompositeConstruct` instead of `OpConstantComposite`.
Shallow(LeafIllegalConst),
/// This `SpirvConst` is (or contains/points to) a `PtrTo` which points to
/// a "leaf" illegal constant. As the data would have to live for `'static`,
/// there is no way to materialize it as a pointer in SPIR-V. However, it
/// could still be legalized during codegen by e.g. folding loads from it.
Indirect(LeafIllegalConst),
}
#[derive(Copy, Clone, Debug)]
struct WithConstLegality<V> {
val: V,
legal: Result<(), IllegalConst>,
}
/// `HashMap` key type (for `debug_file_cache` in `BuilderSpirv`), which is
/// equivalent to a whole `rustc` `SourceFile`, but has O(1) `Eq` and `Hash`
/// implementations (i.e. not involving the path or the contents of the file).
///
/// This is possible because we can compare `Lrc<SourceFile>`s by equality, as
/// `rustc`'s `SourceMap` already ensures that only one `SourceFile` will be
/// allocated for some given file. For hashing, we could hash the address, or
///
struct DebugFileKey(Lrc<SourceFile>);
impl PartialEq for DebugFileKey {
fn eq(&self, other: &Self) -> bool {
let (Self(self_sf), Self(other_sf)) = (self, other);
Lrc::ptr_eq(self_sf, other_sf)
}
}
impl Eq for DebugFileKey {}
impl Hash for DebugFileKey {
fn hash<H: Hasher>(&self, state: &mut H) {
let Self(sf) = self;
sf.stable_id.hash(state);
sf.src_hash.hash(state);
}
}
#[derive(Copy, Clone)]
pub struct DebugFileSpirv<'tcx> {
pub file_name: &'tcx str,
/// The SPIR-V ID for the result of the `OpString` instruction containing
/// `file_name` - this is what e.g. `OpLine` uses to identify the file.
///
/// All other details about the file are also attached to this ID, using
/// other instructions that don't produce their own IDs (e.g. `OpSource`).
pub file_name_op_string_id: Word,
}
/// Cursor system:
///
/// The LLVM module builder model (and therefore `codegen_ssa`) assumes that there is a central
/// module object, then, builder objects are created pointing at that central module object (e.g.
/// for adding instructions to a basic block). Several of these builder objects can be live at the
/// same time, mutating the central module object all at once. Unfortunately, rspirv doesn't work
/// like that. Instead, there is a single builder object, which owns a module and a "cursor". This
/// cursor indicates to the builder where to append instructions when an instruction is added -
/// e.g. if `add()` is called, then `OpAdd` is appended to the basic block pointed to by the cursor.
///
/// So! We emulate the LLVM system by treating the rspirv Builder as the "central module object",
/// then, when a "builder object" is created, we store a reference to a `RefCell<rspirv builder>`,
/// *as well as* a copy of the cursor for that particular builder. Whenever the `RefCell` is
/// borrowed, then we stomp over the rspirv cursor with our copy, causing the duration of that
/// `RefCell` borrow to use that cursor.
///
/// So, if you're writing code inside `crate::builder::Builder`, then `self.emit()` will use
/// `self.cursor` (the current basic block) as that "stomp-over" cursor and return a mutable
/// reference to the rspirv builder. If you're writing code elsewhere (`codegen_cx::CodegenCx`),
/// then `self.emit_global()` will use the generic "global cursor" and return a mutable reference
/// to the rspirv builder with no basic block nor function selected, i.e. any instructions emitted
/// will be in the global section.
#[derive(Debug, Default, Copy, Clone)]
#[must_use = "BuilderCursor should usually be assigned to the Builder.cursor field"]
pub struct BuilderCursor {
pub function: Option<usize>,
pub block: Option<usize>,
}
pub struct BuilderSpirv<'tcx> {
source_map: &'tcx SourceMap,
dropless_arena: &'tcx DroplessArena,
builder: RefCell<Builder>,
// Bidirectional maps between `SpirvConst` and the ID of the defined global
// (e.g. `OpConstant...`) instruction.
// NOTE(eddyb) both maps have `WithConstLegality` around their keys, which
// allows getting that legality information without additional lookups.
const_to_id: RefCell<FxHashMap<WithType<SpirvConst<'tcx, 'tcx>>, WithConstLegality<Word>>>,
id_to_const: RefCell<FxHashMap<Word, WithConstLegality<SpirvConst<'tcx, 'tcx>>>>,
debug_file_cache: RefCell<FxHashMap<DebugFileKey, DebugFileSpirv<'tcx>>>,
enabled_capabilities: FxHashSet<Capability>,
enabled_extensions: FxHashSet<Symbol>,
}
impl<'tcx> BuilderSpirv<'tcx> {
pub fn new(
tcx: TyCtxt<'tcx>,
sym: &Symbols,
target: &SpirvTarget,
features: &[TargetFeature],
) -> Self {
let version = target.spirv_version();
let memory_model = target.memory_model();
let mut builder = Builder::new();
builder.set_version(version.0, version.1);
builder.module_mut().header.as_mut().unwrap().generator = 0x001B_0000;
let mut enabled_capabilities = FxHashSet::default();
let mut enabled_extensions = FxHashSet::default();
fn add_cap(
builder: &mut Builder,
enabled_capabilities: &mut FxHashSet<Capability>,
cap: Capability,
) {
// This should be the only callsite of Builder::capability (aside from tests), to make
// sure the hashset stays in sync.
builder.capability(cap);
enabled_capabilities.insert(cap);
}
fn add_ext(builder: &mut Builder, enabled_extensions: &mut FxHashSet<Symbol>, ext: Symbol) {
// This should be the only callsite of Builder::extension (aside from tests), to make
// sure the hashset stays in sync.
builder.extension(ext.as_str());
enabled_extensions.insert(ext);
}
for feature in features {
match *feature {
TargetFeature::Capability(cap) => {
add_cap(&mut builder, &mut enabled_capabilities, cap);
}
TargetFeature::Extension(ext) => {
add_ext(&mut builder, &mut enabled_extensions, ext);
}
}
}
add_cap(&mut builder, &mut enabled_capabilities, Capability::Shader);
if memory_model == MemoryModel::Vulkan {
if version < (1, 5) {
add_ext(
&mut builder,
&mut enabled_extensions,
sym.spv_khr_vulkan_memory_model,
);
}
add_cap(
&mut builder,
&mut enabled_capabilities,
Capability::VulkanMemoryModel,
);
}
// The linker will always be ran on this module
add_cap(&mut builder, &mut enabled_capabilities, Capability::Linkage);
builder.memory_model(AddressingModel::Logical, memory_model);
Self {
source_map: tcx.sess.source_map(),
dropless_arena: &tcx.arena.dropless,
builder: RefCell::new(builder),
const_to_id: Default::default(),
id_to_const: Default::default(),
debug_file_cache: Default::default(),
enabled_capabilities,
enabled_extensions,
}
}
pub fn finalize(self) -> Module {
self.builder.into_inner().module()
}
pub fn dump_module_str(&self) -> String {
self.builder.borrow().module_ref().disassemble()
}
/// Helper function useful to place right before a crash, to debug the module state.
pub fn dump_module(&self, path: impl AsRef<Path>) {
let module = self.builder.borrow().module_ref().assemble();
File::create(path)
.unwrap()
.write_all(spirv_tools::binary::from_binary(&module))
.unwrap();
}
/// See comment on `BuilderCursor`
pub fn builder(&self, cursor: BuilderCursor) -> RefMut<'_, Builder> {
let mut builder = self.builder.borrow_mut();
// select_function does bounds checks and other relatively expensive things, so don't just call it
// unconditionally.
if builder.selected_function() != cursor.function {
builder.select_function(cursor.function).unwrap();
}
if cursor.function.is_some() && builder.selected_block() != cursor.block {
builder.select_block(cursor.block).unwrap();
}
builder
}
pub fn has_capability(&self, capability: Capability) -> bool {
self.enabled_capabilities.contains(&capability)
}
pub fn has_extension(&self, extension: Symbol) -> bool {
self.enabled_extensions.contains(&extension)
}
pub fn select_function_by_id(&self, id: Word) -> BuilderCursor {
let mut builder = self.builder.borrow_mut();
for (index, func) in builder.module_ref().functions.iter().enumerate() {
if func.def.as_ref().and_then(|i| i.result_id) == Some(id) {
builder.select_function(Some(index)).unwrap();
return BuilderCursor {
function: Some(index),
block: None,
};
}
}
bug!("Function not found: {}", id);
}
pub(crate) fn def_constant_cx(
&self,
ty: Word,
val: SpirvConst<'_, 'tcx>,
cx: &CodegenCx<'tcx>,
) -> SpirvValue {
let scalar_ty = match val {
SpirvConst::Scalar(_) => Some(cx.lookup_type(ty)),
_ => None,
};
// HACK(eddyb) this is done so late (just before interning `val`) to
// minimize any potential misuse from direct `def_constant` calls.
let val = match (val, scalar_ty) {
(SpirvConst::Scalar(val), Some(SpirvType::Integer(bits, signed))) => {
let size = Size::from_bits(bits);
SpirvConst::Scalar(if signed {
size.sign_extend(val) as u128
} else {
size.truncate(val)
})
}
_ => val,
};
let val_with_type = WithType { ty, val };
if let Some(entry) = self.const_to_id.borrow().get(&val_with_type) {
// FIXME(eddyb) deduplicate this `if`-`else` and its other copies.
let kind = if entry.legal.is_ok() {
SpirvValueKind::Def(entry.val)
} else {
SpirvValueKind::IllegalConst(entry.val)
};
return SpirvValue { kind, ty };
}
let val = val_with_type.val;
// FIXME(eddyb) make this an extension method on `rspirv::dr::Builder`?
let const_op = |builder: &mut Builder, op, lhs, maybe_rhs: Option<_>| {
// HACK(eddyb) remove after `OpSpecConstantOp` support gets added to SPIR-T.
let spirt_has_const_op = false;
if !spirt_has_const_op {
let zombie = builder.undef(ty, None);
cx.zombie_with_span(
zombie,
DUMMY_SP,
&format!("unsupported constant of type `{}`", cx.debug_type(ty)),
);
return zombie;
}
let id = builder.id();
builder
.module_mut()
.types_global_values
.push(Instruction::new(
Op::SpecConstantOp,
Some(ty),
Some(id),
[
Operand::LiteralSpecConstantOpInteger(op),
Operand::IdRef(lhs),
]
.into_iter()
.chain(maybe_rhs.map(Operand::IdRef))
.collect(),
));
id
};
let mut builder = self.builder(BuilderCursor::default());
let id = match val {
SpirvConst::Scalar(v) => match scalar_ty.unwrap() {
SpirvType::Integer(..=32, _) | SpirvType::Float(..=32) => {
builder.constant_bit32(ty, v as u32)
}
SpirvType::Integer(64, _) | SpirvType::Float(64) => {
builder.constant_bit64(ty, v as u64)
}
SpirvType::Integer(128, false) => {
// HACK(eddyb) avoid borrow conflicts.
drop(builder);
let const_64_u32_id = cx.const_u32(64).def_cx(cx);
let [lo_id, hi_id] =
[v as u64, (v >> 64) as u64].map(|half| cx.const_u64(half).def_cx(cx));
builder = self.builder(BuilderCursor::default());
let mut const_op =
|op, lhs, maybe_rhs| const_op(&mut builder, op, lhs, maybe_rhs);
let [lo_u128_id, hi_shifted_u128_id] =
[(lo_id, None), (hi_id, Some(const_64_u32_id))].map(
|(half_u64_id, shift)| {
let mut half_u128_id = const_op(Op::UConvert, half_u64_id, None);
if let Some(shift_amount_id) = shift {
half_u128_id = const_op(
Op::ShiftLeftLogical,
half_u128_id,
Some(shift_amount_id),
);
}
half_u128_id
},
);
const_op(Op::BitwiseOr, lo_u128_id, Some(hi_shifted_u128_id))
}
SpirvType::Integer(128, true) | SpirvType::Float(128) => {
// HACK(eddyb) avoid borrow conflicts.
drop(builder);
let v_u128_id = cx.const_u128(v).def_cx(cx);
builder = self.builder(BuilderCursor::default());
const_op(&mut builder, Op::Bitcast, v_u128_id, None)
}
SpirvType::Bool => match v {
0 => builder.constant_false(ty),
1 => builder.constant_true(ty),
_ => cx
.tcx
.dcx()
.fatal(format!("invalid constant value for bool: {v}")),
},
other => cx.tcx.dcx().fatal(format!(
"SpirvConst::Scalar does not support type {}",
other.debug(ty, cx)
)),
},
SpirvConst::Null => builder.constant_null(ty),
SpirvConst::Undef
| SpirvConst::ZombieUndefForFnAddr
| SpirvConst::ConstDataFromAlloc(_) => builder.undef(ty, None),
SpirvConst::Composite(v) => builder.constant_composite(ty, v.iter().copied()),
SpirvConst::PtrTo { pointee } => {
builder.variable(ty, None, StorageClass::Private, Some(pointee))
}
};
#[allow(clippy::match_same_arms)]
let legal = match val {
SpirvConst::Scalar(_) => Ok(()),
SpirvConst::Null => {
// FIXME(eddyb) check that the type supports `OpConstantNull`.
Ok(())
}
SpirvConst::Undef => {
// FIXME(eddyb) check that the type supports `OpUndef`.
Ok(())
}
SpirvConst::ZombieUndefForFnAddr => {
// This can be considered legal as it's already marked as zombie.
// FIXME(eddyb) is it possible for the original zombie to lack a
// span, and should we go through `IllegalConst` in order to be
// able to attach a proper usesite span?
Ok(())
}
SpirvConst::Composite(v) => v
.iter()
.map(|field| {
let field_entry = &self.id_to_const.borrow()[field];
field_entry.legal.and(
// `field` is itself some legal `SpirvConst`, but can we have
// it as part of an `OpConstantComposite`?
match field_entry.val {
SpirvConst::PtrTo { .. } => Err(IllegalConst::Shallow(
LeafIllegalConst::CompositeContainsPtrTo,
)),
_ => Ok(()),
},
)
})
.reduce(|a, b| {
match (a, b) {
(Ok(()), Ok(())) => Ok(()),
(Err(illegal), Ok(())) | (Ok(()), Err(illegal)) => Err(illegal),
// Combining two causes of an illegal `SpirvConst` has to
// take into account which is "worse", i.e. which imposes
// more restrictions on how the resulting value can be used.
// `Indirect` is worse than `Shallow` because it cannot be
// materialized at runtime in the same way `Shallow` can be.
(Err(illegal @ IllegalConst::Indirect(_)), Err(_))
| (Err(_), Err(illegal @ IllegalConst::Indirect(_)))
| (
Err(illegal @ IllegalConst::Shallow(_)),
Err(IllegalConst::Shallow(_)),
) => Err(illegal),
}
})
.unwrap_or(Ok(())),
SpirvConst::PtrTo { pointee } => match self.id_to_const.borrow()[&pointee].legal {
Ok(()) => Ok(()),
// `Shallow` becomes `Indirect` when placed behind a pointer.
Err(IllegalConst::Shallow(cause) | IllegalConst::Indirect(cause)) => {
Err(IllegalConst::Indirect(cause))
}
},
SpirvConst::ConstDataFromAlloc(_) => Err(IllegalConst::Shallow(
LeafIllegalConst::UntypedConstDataFromAlloc,
)),
};
let val = val.tcx_arena_alloc_slices(cx);
assert_matches!(
self.const_to_id
.borrow_mut()
.insert(WithType { ty, val }, WithConstLegality { val: id, legal }),
None
);
assert_matches!(
self.id_to_const
.borrow_mut()
.insert(id, WithConstLegality { val, legal }),
None
);
// FIXME(eddyb) deduplicate this `if`-`else` and its other copies.
let kind = if legal.is_ok() {
SpirvValueKind::Def(id)
} else {
SpirvValueKind::IllegalConst(id)
};
SpirvValue { kind, ty }
}
pub fn lookup_const_by_id(&self, id: Word) -> Option<SpirvConst<'tcx, 'tcx>> {
Some(self.id_to_const.borrow().get(&id)?.val)
}
pub fn lookup_const(&self, def: SpirvValue) -> Option<SpirvConst<'tcx, 'tcx>> {
match def.kind {
SpirvValueKind::Def(id) | SpirvValueKind::IllegalConst(id) => {
self.lookup_const_by_id(id)
}
_ => None,
}
}
pub fn lookup_const_scalar(&self, def: SpirvValue) -> Option<u128> {
match self.lookup_const(def)? {
SpirvConst::Scalar(v) => Some(v),
_ => None,
}
}
pub fn file_line_col_range_for_debuginfo(
&self,
span: Span,
) -> (DebugFileSpirv<'tcx>, Range<(u32, u32)>) {
// HACK(eddyb) this is similar to what `#[track_caller]` does, and it
// allows us to point to the use site of a macro, instead of inside the
// macro (but ideally we would record the entire macro backtrace).
let span = span.ctxt().outer_expn().expansion_cause().unwrap_or(span);
let (lo, hi) = (span.lo(), span.hi());
let lo_loc = self.source_map.lookup_char_pos(lo);
let lo_line_col = (lo_loc.line as u32, lo_loc.col_display as u32);
// Only use `hi` if the span is actually a range within a file.
let hi_line_col = if lo <= hi {
let hi_loc = self.source_map.lookup_char_pos(hi);
if lo_loc.file.start_pos == hi_loc.file.start_pos {
(hi_loc.line as u32, hi_loc.col_display as u32)
} else {
lo_line_col
}
} else {
lo_line_col
};
(self.def_debug_file(lo_loc.file), lo_line_col..hi_line_col)
}
fn def_debug_file(&self, sf: Lrc<SourceFile>) -> DebugFileSpirv<'tcx> {
*self
.debug_file_cache
.borrow_mut()
.entry(DebugFileKey(sf))
.or_insert_with_key(|DebugFileKey(sf)| {
let mut builder = self.builder(Default::default());
// FIXME(eddyb) it would be nicer if we could just rely on
// `RealFileName::to_string_lossy` returning `Cow<'_, str>`,
// but sadly that `'_` is the lifetime of the temporary `Lrc`,
// not `'tcx`, so we have to arena-allocate to get `&'tcx str`.
let file_name = match &sf.name {
FileName::Real(name) => {
name.to_string_lossy(FileNameDisplayPreference::Remapped)
}
_ => sf.name.prefer_remapped_unconditionaly().to_string().into(),
};
let file_name = {
// FIXME(eddyb) it should be possible to arena-allocate a
// `&str` directly, but it would require upstream changes,
// and strings are handled by string interning in `rustc`.
fn arena_alloc_slice<'tcx, T: Copy>(
dropless_arena: &'tcx DroplessArena,
xs: &[T],
) -> &'tcx [T] {
if xs.is_empty() {
&[]
} else {
dropless_arena.alloc_slice(xs)
}
}
str::from_utf8(arena_alloc_slice(self.dropless_arena, file_name.as_bytes()))
.unwrap()
};
let file_name_op_string_id = builder.string(file_name.to_owned());
let file_contents = self
.source_map
.span_to_snippet(Span::with_root_ctxt(sf.start_pos, sf.end_position()))
.ok();
// HACK(eddyb) this logic is duplicated from `spirt::spv::lift`.
let op_source_and_continued_chunks = file_contents.as_ref().map(|contents| {
// The maximum word count is `2**16 - 1`, the first word is
// taken up by the opcode & word count, and one extra byte is
// taken up by the nil byte at the end of the LiteralString.
const MAX_OP_SOURCE_CONT_CONTENTS_LEN: usize = (0xffff - 1) * 4 - 1;
// `OpSource` has 3 more operands than `OpSourceContinued`,
// and each of them take up exactly one word.
const MAX_OP_SOURCE_CONTENTS_LEN: usize =
MAX_OP_SOURCE_CONT_CONTENTS_LEN - 3 * 4;
let (op_source_str, mut all_op_source_continued_str) =
contents.split_at(contents.len().min(MAX_OP_SOURCE_CONTENTS_LEN));
// FIXME(eddyb) `spirt::spv::lift` should use this.
let all_op_source_continued_str_chunks = iter::from_fn(move || {
let contents_rest = &mut all_op_source_continued_str;
if contents_rest.is_empty() {
return None;
}
// FIXME(eddyb) test with UTF-8! this `split_at` should
// actually take *less* than the full possible size, to
// avoid cutting a UTF-8 sequence.
let (cont_chunk, rest) = contents_rest
.split_at(contents_rest.len().min(MAX_OP_SOURCE_CONT_CONTENTS_LEN));
*contents_rest = rest;
Some(cont_chunk)
});
(op_source_str, all_op_source_continued_str_chunks)
});
if let Some((op_source_str, all_op_source_continued_str_chunks)) =
op_source_and_continued_chunks
{
builder.source(
SourceLanguage::Unknown,
0,
Some(file_name_op_string_id),
Some(op_source_str),
);
for cont_chunk in all_op_source_continued_str_chunks {
builder.source_continued(cont_chunk);
}
}
DebugFileSpirv {
file_name,
file_name_op_string_id,
}
})
}
pub fn set_global_initializer(&self, global: Word, initializer: Word) {
let mut builder = self.builder.borrow_mut();
let module = builder.module_mut();
let index = module
.types_global_values
.iter()
.enumerate()
.find_map(|(index, inst)| {
if inst.result_id == Some(global) {
Some(index)
} else {
None
}
})
.expect("set_global_initializer global not found");
// Remove and push it to the end, to keep spir-v definition order.
let mut inst = module.types_global_values.remove(index);
assert_eq!(inst.class.opcode, Op::Variable);
assert_eq!(
inst.operands.len(),
1,
"global already has initializer defined: {global}"
);
inst.operands.push(Operand::IdRef(initializer));
module.types_global_values.push(inst);
}
pub fn select_block_by_id(&self, id: Word) -> BuilderCursor {
fn block_matches(block: &Block, id: Word) -> bool {
block.label.as_ref().and_then(|b| b.result_id) == Some(id)
}
let mut builder = self.builder.borrow_mut();
let module = builder.module_ref();
// The user is probably selecting a block in the current function, so search that first.
if let Some(selected_function) = builder.selected_function() {
// make no-ops really fast
if let Some(selected_block) = builder.selected_block() {
let block = &module.functions[selected_function].blocks[selected_block];
if block_matches(block, id) {
return BuilderCursor {
function: Some(selected_function),
block: Some(selected_block),
};
}
}
for (index, block) in module.functions[selected_function]
.blocks
.iter()
.enumerate()
{
if block_matches(block, id) {
builder.select_block(Some(index)).unwrap();
return BuilderCursor {
function: Some(selected_function),
block: Some(index),
};
}
}
}
// Search the whole module.
for (function_index, function) in module.functions.iter().enumerate() {
for (block_index, block) in function.blocks.iter().enumerate() {
if block_matches(block, id) {
builder.select_function(Some(function_index)).unwrap();
builder.select_block(Some(block_index)).unwrap();
return BuilderCursor {
function: Some(function_index),
block: Some(block_index),
};
}
}
}
bug!("Block not found: {}", id);
}
}