rustc_codegen_spirv/
builder_spirv.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
// HACK(eddyb) avoids rewriting all of the imports (see `lib.rs` and `build.rs`).
use crate::maybe_pqp_cg_ssa as rustc_codegen_ssa;

use crate::builder;
use crate::codegen_cx::CodegenCx;
use crate::spirv_type::SpirvType;
use crate::symbols::Symbols;
use crate::target::SpirvTarget;
use crate::target_feature::TargetFeature;
use rspirv::dr::{Block, Builder, Instruction, Module, Operand};
use rspirv::spirv::{
    AddressingModel, Capability, MemoryModel, Op, SourceLanguage, StorageClass, Word,
};
use rspirv::{binary::Assemble, binary::Disassemble};
use rustc_arena::DroplessArena;
use rustc_codegen_ssa::traits::ConstCodegenMethods as _;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::sync::Lrc;
use rustc_middle::bug;
use rustc_middle::mir::interpret::ConstAllocation;
use rustc_middle::ty::TyCtxt;
use rustc_span::source_map::SourceMap;
use rustc_span::symbol::Symbol;
use rustc_span::{DUMMY_SP, FileName, FileNameDisplayPreference, SourceFile, Span};
use rustc_target::abi::Size;
use std::assert_matches::assert_matches;
use std::cell::{RefCell, RefMut};
use std::hash::{Hash, Hasher};
use std::iter;
use std::ops::Range;
use std::str;
use std::{fs::File, io::Write, path::Path};

#[derive(Copy, Clone, Debug, Ord, PartialOrd, Eq, PartialEq, Hash)]
pub enum SpirvValueKind {
    Def(Word),

    /// The ID of a global instruction matching a `SpirvConst`, but which cannot
    /// pass validation. Used to error (or attach zombie spans), at the usesites
    /// of such constants, instead of where they're generated (and cached).
    IllegalConst(Word),

    /// This can only happen in one specific case - which is as a result of
    /// `codegen_buffer_store_intrinsic`, that function is supposed to return
    /// `OpTypeVoid`, however because it gets inline by the compiler it can't.
    /// Instead we return this, and trigger an error if we ever end up using the
    /// result of this function call (which we can't).
    IllegalTypeUsed(Word),

    // FIXME(eddyb) this shouldn't be needed, but `rustc_codegen_ssa` still relies
    // on converting `Function`s to `Value`s even for direct calls, the `Builder`
    // should just have direct and indirect `call` variants (or a `Callee` enum).
    FnAddr {
        function: Word,
    },

    /// Deferred pointer cast, for the `Logical` addressing model (which doesn't
    /// really support raw pointers in the way Rust expects to be able to use).
    ///
    /// The cast's target pointer type is the `ty` of the `SpirvValue` that has
    /// `LogicalPtrCast` as its `kind`, as it would be redundant to have it here.
    LogicalPtrCast {
        /// Pointer value being cast.
        original_ptr: Word,

        /// Pointer type of `original_ptr`.
        original_ptr_ty: Word,

        /// Result ID for the `OpBitcast` instruction representing the cast,
        /// to attach zombies to.
        //
        // HACK(eddyb) having an `OpBitcast` only works by being DCE'd away,
        // or by being replaced with a noop in `qptr::lower`.
        bitcast_result_id: Word,
    },
}

#[derive(Copy, Clone, Debug, Ord, PartialOrd, Eq, PartialEq, Hash)]
pub struct SpirvValue {
    pub kind: SpirvValueKind,
    pub ty: Word,
}

impl SpirvValue {
    pub fn strip_ptrcasts(self) -> Self {
        match self.kind {
            SpirvValueKind::LogicalPtrCast {
                original_ptr,
                original_ptr_ty,
                bitcast_result_id: _,
            } => original_ptr.with_type(original_ptr_ty),

            _ => self,
        }
    }

    pub fn const_fold_load(self, cx: &CodegenCx<'_>) -> Option<Self> {
        match self.kind {
            SpirvValueKind::Def(id) | SpirvValueKind::IllegalConst(id) => {
                let &entry = cx.builder.id_to_const.borrow().get(&id)?;
                match entry.val {
                    SpirvConst::PtrTo { pointee } => {
                        let ty = match cx.lookup_type(self.ty) {
                            SpirvType::Pointer { pointee } => pointee,
                            ty => bug!("load called on value that wasn't a pointer: {:?}", ty),
                        };
                        // FIXME(eddyb) deduplicate this `if`-`else` and its other copies.
                        let kind = if entry.legal.is_ok() {
                            SpirvValueKind::Def(pointee)
                        } else {
                            SpirvValueKind::IllegalConst(pointee)
                        };
                        Some(SpirvValue { kind, ty })
                    }
                    _ => None,
                }
            }

            _ => None,
        }
    }

    // Important: we *cannot* use bx.emit() here, because this is called in
    // contexts where the emitter is already locked. Doing so may cause subtle
    // rare bugs.
    pub fn def(self, bx: &builder::Builder<'_, '_>) -> Word {
        self.def_with_span(bx, bx.span())
    }

    // def and def_cx are separated, because Builder has a span associated with
    // what it's currently emitting.
    pub fn def_cx(self, cx: &CodegenCx<'_>) -> Word {
        self.def_with_span(cx, DUMMY_SP)
    }

    pub fn def_with_span(self, cx: &CodegenCx<'_>, span: Span) -> Word {
        match self.kind {
            SpirvValueKind::Def(id) => id,

            SpirvValueKind::IllegalConst(id) => {
                let entry = &cx.builder.id_to_const.borrow()[&id];
                let msg = match entry.legal.unwrap_err() {
                    IllegalConst::Shallow(cause) => {
                        if let (
                            LeafIllegalConst::CompositeContainsPtrTo,
                            SpirvConst::Composite(_fields),
                        ) = (cause, &entry.val)
                        {
                            // FIXME(eddyb) materialize this at runtime, using
                            // `OpCompositeConstruct` (transitively, i.e. after
                            // putting every field through `SpirvValue::def`),
                            // if we have a `Builder` to do that in.
                            // FIXME(eddyb) this isn't possible right now, as
                            // the builder would be dynamically "locked" anyway
                            // (i.e. attempting to do `bx.emit()` would panic).
                        }

                        cause.message()
                    }

                    IllegalConst::Indirect(cause) => cause.message(),
                };

                cx.zombie_with_span(id, span, msg);

                id
            }

            SpirvValueKind::IllegalTypeUsed(id) => {
                cx.tcx
                    .dcx()
                    .struct_span_err(span, "Can't use type as a value")
                    .with_note(format!("Type: *{}", cx.debug_type(id)))
                    .emit();

                id
            }

            SpirvValueKind::FnAddr { .. } => {
                cx.builder
                    .const_to_id
                    .borrow()
                    .get(&WithType {
                        ty: self.ty,
                        val: SpirvConst::ZombieUndefForFnAddr,
                    })
                    .expect("FnAddr didn't go through proper undef registration")
                    .val
            }

            SpirvValueKind::LogicalPtrCast {
                original_ptr: _,
                original_ptr_ty,
                bitcast_result_id,
            } => {
                cx.zombie_with_span(
                    bitcast_result_id,
                    span,
                    &format!(
                        "cannot cast between pointer types\
                         \nfrom `{}`\
                         \n  to `{}`",
                        cx.debug_type(original_ptr_ty),
                        cx.debug_type(self.ty)
                    ),
                );

                bitcast_result_id
            }
        }
    }
}

pub trait SpirvValueExt {
    fn with_type(self, ty: Word) -> SpirvValue;
}

impl SpirvValueExt for Word {
    fn with_type(self, ty: Word) -> SpirvValue {
        SpirvValue {
            kind: SpirvValueKind::Def(self),
            ty,
        }
    }
}

#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum SpirvConst<'a, 'tcx> {
    /// Constants of boolean, integer or floating-point type (up to 128-bit).
    Scalar(u128),

    Null,
    Undef,

    /// Like `Undef`, but cached separately to avoid `FnAddr` zombies accidentally
    /// applying to non-zombie `Undef`s of the same types.
    // FIXME(eddyb) include the function ID so that multiple `fn` pointers to
    // different functions, but of the same type, don't overlap their zombies.
    ZombieUndefForFnAddr,

    Composite(&'a [Word]),

    /// Pointer to constant data, i.e. `&pointee`, represented as an `OpVariable`
    /// in the `Private` storage class, and with `pointee` as its initializer.
    PtrTo {
        pointee: Word,
    },

    /// Symbolic result for the `const_data_from_alloc` method, to allow deferring
    /// the actual value generation until after a pointer to this value is cast
    /// to its final type (e.g. that will be loaded as).
    //
    // FIXME(eddyb) replace this with `qptr` handling of constant data.
    ConstDataFromAlloc(ConstAllocation<'tcx>),
}

impl<'tcx> SpirvConst<'_, 'tcx> {
    /// Replace `&[T]` fields with `&'tcx [T]` ones produced by calling
    /// `tcx.arena.dropless.alloc_slice(...)` - this is done late for two reasons:
    /// 1. it avoids allocating in the arena when the cache would be hit anyway,
    ///    which would create "garbage" (as in, unreachable allocations)
    ///    (ideally these would also be interned, but that's even more refactors)
    /// 2. an empty slice is disallowed (as it's usually handled as a special
    ///    case elsewhere, e.g. `rustc`'s `ty::List` - sadly we can't use that)
    fn tcx_arena_alloc_slices(self, cx: &CodegenCx<'tcx>) -> SpirvConst<'tcx, 'tcx> {
        fn arena_alloc_slice<'tcx, T: Copy>(cx: &CodegenCx<'tcx>, xs: &[T]) -> &'tcx [T] {
            if xs.is_empty() {
                &[]
            } else {
                cx.tcx.arena.dropless.alloc_slice(xs)
            }
        }

        match self {
            // FIXME(eddyb) these are all noop cases, could they be automated?
            SpirvConst::Scalar(v) => SpirvConst::Scalar(v),
            SpirvConst::Null => SpirvConst::Null,
            SpirvConst::Undef => SpirvConst::Undef,
            SpirvConst::ZombieUndefForFnAddr => SpirvConst::ZombieUndefForFnAddr,
            SpirvConst::PtrTo { pointee } => SpirvConst::PtrTo { pointee },

            SpirvConst::Composite(fields) => SpirvConst::Composite(arena_alloc_slice(cx, fields)),

            SpirvConst::ConstDataFromAlloc(alloc) => SpirvConst::ConstDataFromAlloc(alloc),
        }
    }
}

#[derive(Debug, Clone, Ord, PartialOrd, Eq, PartialEq, Hash)]
struct WithType<V> {
    ty: Word,
    val: V,
}

/// Primary causes for a `SpirvConst` to be deemed illegal.
#[derive(Copy, Clone, Debug)]
enum LeafIllegalConst {
    /// `SpirvConst::Composite` containing a `SpirvConst::PtrTo` as a field.
    /// This is illegal because `OpConstantComposite` must have other constants
    /// as its operands, and `OpVariable`s are never considered constant.
    // FIXME(eddyb) figure out if this is an accidental omission in SPIR-V.
    CompositeContainsPtrTo,

    /// `ConstDataFromAlloc` constant, which cannot currently be materialized
    /// to SPIR-V (and requires to be wrapped in `PtrTo` and bitcast, first).
    //
    // FIXME(eddyb) replace this with `qptr` handling of constant data.
    UntypedConstDataFromAlloc,
}

impl LeafIllegalConst {
    fn message(&self) -> &'static str {
        match *self {
            Self::CompositeContainsPtrTo => {
                "constant arrays/structs cannot contain pointers to other constants"
            }
            Self::UntypedConstDataFromAlloc => {
                "`const_data_from_alloc` result wasn't passed through `static_addr_of`, \
                 then `const_bitcast` (which would've given it a type)"
            }
        }
    }
}

#[derive(Copy, Clone, Debug)]
enum IllegalConst {
    /// This `SpirvConst` is (or contains) a "leaf" illegal constant. As there
    /// is no indirection, some of these could still be materialized at runtime,
    /// using e.g. `OpCompositeConstruct` instead of `OpConstantComposite`.
    Shallow(LeafIllegalConst),

    /// This `SpirvConst` is (or contains/points to) a `PtrTo` which points to
    /// a "leaf" illegal constant. As the data would have to live for `'static`,
    /// there is no way to materialize it as a pointer in SPIR-V. However, it
    /// could still be legalized during codegen by e.g. folding loads from it.
    Indirect(LeafIllegalConst),
}

#[derive(Copy, Clone, Debug)]
struct WithConstLegality<V> {
    val: V,
    legal: Result<(), IllegalConst>,
}

/// `HashMap` key type (for `debug_file_cache` in `BuilderSpirv`), which is
/// equivalent to a whole `rustc` `SourceFile`, but has O(1) `Eq` and `Hash`
/// implementations (i.e. not involving the path or the contents of the file).
///
/// This is possible because we can compare `Lrc<SourceFile>`s by equality, as
/// `rustc`'s `SourceMap` already ensures that only one `SourceFile` will be
/// allocated for some given file. For hashing, we could hash the address, or
///
struct DebugFileKey(Lrc<SourceFile>);

impl PartialEq for DebugFileKey {
    fn eq(&self, other: &Self) -> bool {
        let (Self(self_sf), Self(other_sf)) = (self, other);
        Lrc::ptr_eq(self_sf, other_sf)
    }
}
impl Eq for DebugFileKey {}

impl Hash for DebugFileKey {
    fn hash<H: Hasher>(&self, state: &mut H) {
        let Self(sf) = self;
        sf.stable_id.hash(state);
        sf.src_hash.hash(state);
    }
}

#[derive(Copy, Clone)]
pub struct DebugFileSpirv<'tcx> {
    pub file_name: &'tcx str,

    /// The SPIR-V ID for the result of the `OpString` instruction containing
    /// `file_name` - this is what e.g. `OpLine` uses to identify the file.
    ///
    /// All other details about the file are also attached to this ID, using
    /// other instructions that don't produce their own IDs (e.g. `OpSource`).
    pub file_name_op_string_id: Word,
}

/// Cursor system:
///
/// The LLVM module builder model (and therefore `codegen_ssa`) assumes that there is a central
/// module object, then, builder objects are created pointing at that central module object (e.g.
/// for adding instructions to a basic block).  Several of these builder objects can be live at the
/// same time, mutating the central module object all at once.  Unfortunately, rspirv doesn't work
/// like that. Instead, there is a single builder object, which owns a module and a "cursor". This
/// cursor indicates to the builder where to append instructions when an instruction is added -
/// e.g. if `add()` is called, then `OpAdd` is appended to the basic block pointed to by the cursor.
///
/// So! We emulate the LLVM system by treating the rspirv Builder as the "central module object",
/// then, when a "builder object" is created, we store a reference to a `RefCell<rspirv builder>`,
/// *as well as* a copy of the cursor for that particular builder. Whenever the `RefCell` is
/// borrowed, then we stomp over the rspirv cursor with our copy, causing the duration of that
/// `RefCell` borrow to use that cursor.
///
/// So, if you're writing code inside `crate::builder::Builder`, then `self.emit()` will use
/// `self.cursor` (the current basic block) as that "stomp-over" cursor and return a mutable
/// reference to the rspirv builder. If you're writing code elsewhere (`codegen_cx::CodegenCx`),
/// then `self.emit_global()` will use the generic "global cursor" and return a mutable reference
/// to the rspirv builder with no basic block nor function selected, i.e. any instructions emitted
/// will be in the global section.
#[derive(Debug, Default, Copy, Clone)]
#[must_use = "BuilderCursor should usually be assigned to the Builder.cursor field"]
pub struct BuilderCursor {
    pub function: Option<usize>,
    pub block: Option<usize>,
}

pub struct BuilderSpirv<'tcx> {
    source_map: &'tcx SourceMap,
    dropless_arena: &'tcx DroplessArena,

    builder: RefCell<Builder>,

    // Bidirectional maps between `SpirvConst` and the ID of the defined global
    // (e.g. `OpConstant...`) instruction.
    // NOTE(eddyb) both maps have `WithConstLegality` around their keys, which
    // allows getting that legality information without additional lookups.
    const_to_id: RefCell<FxHashMap<WithType<SpirvConst<'tcx, 'tcx>>, WithConstLegality<Word>>>,
    id_to_const: RefCell<FxHashMap<Word, WithConstLegality<SpirvConst<'tcx, 'tcx>>>>,

    debug_file_cache: RefCell<FxHashMap<DebugFileKey, DebugFileSpirv<'tcx>>>,

    enabled_capabilities: FxHashSet<Capability>,
    enabled_extensions: FxHashSet<Symbol>,
}

impl<'tcx> BuilderSpirv<'tcx> {
    pub fn new(
        tcx: TyCtxt<'tcx>,
        sym: &Symbols,
        target: &SpirvTarget,
        features: &[TargetFeature],
    ) -> Self {
        let version = target.spirv_version();
        let memory_model = target.memory_model();

        let mut builder = Builder::new();
        builder.set_version(version.0, version.1);
        builder.module_mut().header.as_mut().unwrap().generator = 0x001B_0000;

        let mut enabled_capabilities = FxHashSet::default();
        let mut enabled_extensions = FxHashSet::default();

        fn add_cap(
            builder: &mut Builder,
            enabled_capabilities: &mut FxHashSet<Capability>,
            cap: Capability,
        ) {
            // This should be the only callsite of Builder::capability (aside from tests), to make
            // sure the hashset stays in sync.
            builder.capability(cap);
            enabled_capabilities.insert(cap);
        }
        fn add_ext(builder: &mut Builder, enabled_extensions: &mut FxHashSet<Symbol>, ext: Symbol) {
            // This should be the only callsite of Builder::extension (aside from tests), to make
            // sure the hashset stays in sync.
            builder.extension(ext.as_str());
            enabled_extensions.insert(ext);
        }

        for feature in features {
            match *feature {
                TargetFeature::Capability(cap) => {
                    add_cap(&mut builder, &mut enabled_capabilities, cap);
                }
                TargetFeature::Extension(ext) => {
                    add_ext(&mut builder, &mut enabled_extensions, ext);
                }
            }
        }

        add_cap(&mut builder, &mut enabled_capabilities, Capability::Shader);
        if memory_model == MemoryModel::Vulkan {
            if version < (1, 5) {
                add_ext(
                    &mut builder,
                    &mut enabled_extensions,
                    sym.spv_khr_vulkan_memory_model,
                );
            }
            add_cap(
                &mut builder,
                &mut enabled_capabilities,
                Capability::VulkanMemoryModel,
            );
        }

        // The linker will always be ran on this module
        add_cap(&mut builder, &mut enabled_capabilities, Capability::Linkage);

        builder.memory_model(AddressingModel::Logical, memory_model);

        Self {
            source_map: tcx.sess.source_map(),
            dropless_arena: &tcx.arena.dropless,
            builder: RefCell::new(builder),
            const_to_id: Default::default(),
            id_to_const: Default::default(),
            debug_file_cache: Default::default(),
            enabled_capabilities,
            enabled_extensions,
        }
    }

    pub fn finalize(self) -> Module {
        self.builder.into_inner().module()
    }

    pub fn dump_module_str(&self) -> String {
        self.builder.borrow().module_ref().disassemble()
    }

    /// Helper function useful to place right before a crash, to debug the module state.
    pub fn dump_module(&self, path: impl AsRef<Path>) {
        let module = self.builder.borrow().module_ref().assemble();
        File::create(path)
            .unwrap()
            .write_all(spirv_tools::binary::from_binary(&module))
            .unwrap();
    }

    /// See comment on `BuilderCursor`
    pub fn builder(&self, cursor: BuilderCursor) -> RefMut<'_, Builder> {
        let mut builder = self.builder.borrow_mut();
        // select_function does bounds checks and other relatively expensive things, so don't just call it
        // unconditionally.
        if builder.selected_function() != cursor.function {
            builder.select_function(cursor.function).unwrap();
        }
        if cursor.function.is_some() && builder.selected_block() != cursor.block {
            builder.select_block(cursor.block).unwrap();
        }
        builder
    }

    pub fn has_capability(&self, capability: Capability) -> bool {
        self.enabled_capabilities.contains(&capability)
    }

    pub fn has_extension(&self, extension: Symbol) -> bool {
        self.enabled_extensions.contains(&extension)
    }

    pub fn select_function_by_id(&self, id: Word) -> BuilderCursor {
        let mut builder = self.builder.borrow_mut();
        for (index, func) in builder.module_ref().functions.iter().enumerate() {
            if func.def.as_ref().and_then(|i| i.result_id) == Some(id) {
                builder.select_function(Some(index)).unwrap();
                return BuilderCursor {
                    function: Some(index),
                    block: None,
                };
            }
        }

        bug!("Function not found: {}", id);
    }

    pub(crate) fn def_constant_cx(
        &self,
        ty: Word,
        val: SpirvConst<'_, 'tcx>,
        cx: &CodegenCx<'tcx>,
    ) -> SpirvValue {
        let scalar_ty = match val {
            SpirvConst::Scalar(_) => Some(cx.lookup_type(ty)),
            _ => None,
        };

        // HACK(eddyb) this is done so late (just before interning `val`) to
        // minimize any potential misuse from direct `def_constant` calls.
        let val = match (val, scalar_ty) {
            (SpirvConst::Scalar(val), Some(SpirvType::Integer(bits, signed))) => {
                let size = Size::from_bits(bits);
                SpirvConst::Scalar(if signed {
                    size.sign_extend(val) as u128
                } else {
                    size.truncate(val)
                })
            }
            _ => val,
        };

        let val_with_type = WithType { ty, val };
        if let Some(entry) = self.const_to_id.borrow().get(&val_with_type) {
            // FIXME(eddyb) deduplicate this `if`-`else` and its other copies.
            let kind = if entry.legal.is_ok() {
                SpirvValueKind::Def(entry.val)
            } else {
                SpirvValueKind::IllegalConst(entry.val)
            };
            return SpirvValue { kind, ty };
        }
        let val = val_with_type.val;

        // FIXME(eddyb) make this an extension method on `rspirv::dr::Builder`?
        let const_op = |builder: &mut Builder, op, lhs, maybe_rhs: Option<_>| {
            // HACK(eddyb) remove after `OpSpecConstantOp` support gets added to SPIR-T.
            let spirt_has_const_op = false;

            if !spirt_has_const_op {
                let zombie = builder.undef(ty, None);
                cx.zombie_with_span(
                    zombie,
                    DUMMY_SP,
                    &format!("unsupported constant of type `{}`", cx.debug_type(ty)),
                );
                return zombie;
            }

            let id = builder.id();
            builder
                .module_mut()
                .types_global_values
                .push(Instruction::new(
                    Op::SpecConstantOp,
                    Some(ty),
                    Some(id),
                    [
                        Operand::LiteralSpecConstantOpInteger(op),
                        Operand::IdRef(lhs),
                    ]
                    .into_iter()
                    .chain(maybe_rhs.map(Operand::IdRef))
                    .collect(),
                ));
            id
        };

        let mut builder = self.builder(BuilderCursor::default());
        let id = match val {
            SpirvConst::Scalar(v) => match scalar_ty.unwrap() {
                SpirvType::Integer(..=32, _) | SpirvType::Float(..=32) => {
                    builder.constant_bit32(ty, v as u32)
                }
                SpirvType::Integer(64, _) | SpirvType::Float(64) => {
                    builder.constant_bit64(ty, v as u64)
                }
                SpirvType::Integer(128, false) => {
                    // HACK(eddyb) avoid borrow conflicts.
                    drop(builder);

                    let const_64_u32_id = cx.const_u32(64).def_cx(cx);
                    let [lo_id, hi_id] =
                        [v as u64, (v >> 64) as u64].map(|half| cx.const_u64(half).def_cx(cx));

                    builder = self.builder(BuilderCursor::default());
                    let mut const_op =
                        |op, lhs, maybe_rhs| const_op(&mut builder, op, lhs, maybe_rhs);
                    let [lo_u128_id, hi_shifted_u128_id] =
                        [(lo_id, None), (hi_id, Some(const_64_u32_id))].map(
                            |(half_u64_id, shift)| {
                                let mut half_u128_id = const_op(Op::UConvert, half_u64_id, None);
                                if let Some(shift_amount_id) = shift {
                                    half_u128_id = const_op(
                                        Op::ShiftLeftLogical,
                                        half_u128_id,
                                        Some(shift_amount_id),
                                    );
                                }
                                half_u128_id
                            },
                        );
                    const_op(Op::BitwiseOr, lo_u128_id, Some(hi_shifted_u128_id))
                }
                SpirvType::Integer(128, true) | SpirvType::Float(128) => {
                    // HACK(eddyb) avoid borrow conflicts.
                    drop(builder);

                    let v_u128_id = cx.const_u128(v).def_cx(cx);

                    builder = self.builder(BuilderCursor::default());
                    const_op(&mut builder, Op::Bitcast, v_u128_id, None)
                }
                SpirvType::Bool => match v {
                    0 => builder.constant_false(ty),
                    1 => builder.constant_true(ty),
                    _ => cx
                        .tcx
                        .dcx()
                        .fatal(format!("invalid constant value for bool: {v}")),
                },
                other => cx.tcx.dcx().fatal(format!(
                    "SpirvConst::Scalar does not support type {}",
                    other.debug(ty, cx)
                )),
            },

            SpirvConst::Null => builder.constant_null(ty),
            SpirvConst::Undef
            | SpirvConst::ZombieUndefForFnAddr
            | SpirvConst::ConstDataFromAlloc(_) => builder.undef(ty, None),

            SpirvConst::Composite(v) => builder.constant_composite(ty, v.iter().copied()),

            SpirvConst::PtrTo { pointee } => {
                builder.variable(ty, None, StorageClass::Private, Some(pointee))
            }
        };
        #[allow(clippy::match_same_arms)]
        let legal = match val {
            SpirvConst::Scalar(_) => Ok(()),

            SpirvConst::Null => {
                // FIXME(eddyb) check that the type supports `OpConstantNull`.
                Ok(())
            }
            SpirvConst::Undef => {
                // FIXME(eddyb) check that the type supports `OpUndef`.
                Ok(())
            }

            SpirvConst::ZombieUndefForFnAddr => {
                // This can be considered legal as it's already marked as zombie.
                // FIXME(eddyb) is it possible for the original zombie to lack a
                // span, and should we go through `IllegalConst` in order to be
                // able to attach a proper usesite span?
                Ok(())
            }

            SpirvConst::Composite(v) => v
                .iter()
                .map(|field| {
                    let field_entry = &self.id_to_const.borrow()[field];
                    field_entry.legal.and(
                        // `field` is itself some legal `SpirvConst`, but can we have
                        // it as part of an `OpConstantComposite`?
                        match field_entry.val {
                            SpirvConst::PtrTo { .. } => Err(IllegalConst::Shallow(
                                LeafIllegalConst::CompositeContainsPtrTo,
                            )),
                            _ => Ok(()),
                        },
                    )
                })
                .reduce(|a, b| {
                    match (a, b) {
                        (Ok(()), Ok(())) => Ok(()),
                        (Err(illegal), Ok(())) | (Ok(()), Err(illegal)) => Err(illegal),

                        // Combining two causes of an illegal `SpirvConst` has to
                        // take into account which is "worse", i.e. which imposes
                        // more restrictions on how the resulting value can be used.
                        // `Indirect` is worse than `Shallow` because it cannot be
                        // materialized at runtime in the same way `Shallow` can be.
                        (Err(illegal @ IllegalConst::Indirect(_)), Err(_))
                        | (Err(_), Err(illegal @ IllegalConst::Indirect(_)))
                        | (
                            Err(illegal @ IllegalConst::Shallow(_)),
                            Err(IllegalConst::Shallow(_)),
                        ) => Err(illegal),
                    }
                })
                .unwrap_or(Ok(())),

            SpirvConst::PtrTo { pointee } => match self.id_to_const.borrow()[&pointee].legal {
                Ok(()) => Ok(()),

                // `Shallow` becomes `Indirect` when placed behind a pointer.
                Err(IllegalConst::Shallow(cause) | IllegalConst::Indirect(cause)) => {
                    Err(IllegalConst::Indirect(cause))
                }
            },

            SpirvConst::ConstDataFromAlloc(_) => Err(IllegalConst::Shallow(
                LeafIllegalConst::UntypedConstDataFromAlloc,
            )),
        };
        let val = val.tcx_arena_alloc_slices(cx);
        assert_matches!(
            self.const_to_id
                .borrow_mut()
                .insert(WithType { ty, val }, WithConstLegality { val: id, legal }),
            None
        );
        assert_matches!(
            self.id_to_const
                .borrow_mut()
                .insert(id, WithConstLegality { val, legal }),
            None
        );
        // FIXME(eddyb) deduplicate this `if`-`else` and its other copies.
        let kind = if legal.is_ok() {
            SpirvValueKind::Def(id)
        } else {
            SpirvValueKind::IllegalConst(id)
        };
        SpirvValue { kind, ty }
    }

    pub fn lookup_const_by_id(&self, id: Word) -> Option<SpirvConst<'tcx, 'tcx>> {
        Some(self.id_to_const.borrow().get(&id)?.val)
    }

    pub fn lookup_const(&self, def: SpirvValue) -> Option<SpirvConst<'tcx, 'tcx>> {
        match def.kind {
            SpirvValueKind::Def(id) | SpirvValueKind::IllegalConst(id) => {
                self.lookup_const_by_id(id)
            }
            _ => None,
        }
    }

    pub fn lookup_const_scalar(&self, def: SpirvValue) -> Option<u128> {
        match self.lookup_const(def)? {
            SpirvConst::Scalar(v) => Some(v),
            _ => None,
        }
    }

    pub fn file_line_col_range_for_debuginfo(
        &self,
        span: Span,
    ) -> (DebugFileSpirv<'tcx>, Range<(u32, u32)>) {
        // HACK(eddyb) this is similar to what `#[track_caller]` does, and it
        // allows us to point to the use site of a macro, instead of inside the
        // macro (but ideally we would record the entire macro backtrace).
        let span = span.ctxt().outer_expn().expansion_cause().unwrap_or(span);

        let (lo, hi) = (span.lo(), span.hi());

        let lo_loc = self.source_map.lookup_char_pos(lo);
        let lo_line_col = (lo_loc.line as u32, lo_loc.col_display as u32);

        // Only use `hi` if the span is actually a range within a file.
        let hi_line_col = if lo <= hi {
            let hi_loc = self.source_map.lookup_char_pos(hi);
            if lo_loc.file.start_pos == hi_loc.file.start_pos {
                (hi_loc.line as u32, hi_loc.col_display as u32)
            } else {
                lo_line_col
            }
        } else {
            lo_line_col
        };

        (self.def_debug_file(lo_loc.file), lo_line_col..hi_line_col)
    }

    fn def_debug_file(&self, sf: Lrc<SourceFile>) -> DebugFileSpirv<'tcx> {
        *self
            .debug_file_cache
            .borrow_mut()
            .entry(DebugFileKey(sf))
            .or_insert_with_key(|DebugFileKey(sf)| {
                let mut builder = self.builder(Default::default());

                // FIXME(eddyb) it would be nicer if we could just rely on
                // `RealFileName::to_string_lossy` returning `Cow<'_, str>`,
                // but sadly that `'_` is the lifetime of the temporary `Lrc`,
                // not `'tcx`, so we have to arena-allocate to get `&'tcx str`.
                let file_name = match &sf.name {
                    FileName::Real(name) => {
                        name.to_string_lossy(FileNameDisplayPreference::Remapped)
                    }
                    _ => sf.name.prefer_remapped_unconditionaly().to_string().into(),
                };
                let file_name = {
                    // FIXME(eddyb) it should be possible to arena-allocate a
                    // `&str` directly, but it would require upstream changes,
                    // and strings are handled by string interning in `rustc`.
                    fn arena_alloc_slice<'tcx, T: Copy>(
                        dropless_arena: &'tcx DroplessArena,
                        xs: &[T],
                    ) -> &'tcx [T] {
                        if xs.is_empty() {
                            &[]
                        } else {
                            dropless_arena.alloc_slice(xs)
                        }
                    }
                    str::from_utf8(arena_alloc_slice(self.dropless_arena, file_name.as_bytes()))
                        .unwrap()
                };
                let file_name_op_string_id = builder.string(file_name.to_owned());

                let file_contents = self
                    .source_map
                    .span_to_snippet(Span::with_root_ctxt(sf.start_pos, sf.end_position()))
                    .ok();

                // HACK(eddyb) this logic is duplicated from `spirt::spv::lift`.
                let op_source_and_continued_chunks = file_contents.as_ref().map(|contents| {
                    // The maximum word count is `2**16 - 1`, the first word is
                    // taken up by the opcode & word count, and one extra byte is
                    // taken up by the nil byte at the end of the LiteralString.
                    const MAX_OP_SOURCE_CONT_CONTENTS_LEN: usize = (0xffff - 1) * 4 - 1;

                    // `OpSource` has 3 more operands than `OpSourceContinued`,
                    // and each of them take up exactly one word.
                    const MAX_OP_SOURCE_CONTENTS_LEN: usize =
                        MAX_OP_SOURCE_CONT_CONTENTS_LEN - 3 * 4;

                    let (op_source_str, mut all_op_source_continued_str) =
                        contents.split_at(contents.len().min(MAX_OP_SOURCE_CONTENTS_LEN));

                    // FIXME(eddyb) `spirt::spv::lift` should use this.
                    let all_op_source_continued_str_chunks = iter::from_fn(move || {
                        let contents_rest = &mut all_op_source_continued_str;
                        if contents_rest.is_empty() {
                            return None;
                        }

                        // FIXME(eddyb) test with UTF-8! this `split_at` should
                        // actually take *less* than the full possible size, to
                        // avoid cutting a UTF-8 sequence.
                        let (cont_chunk, rest) = contents_rest
                            .split_at(contents_rest.len().min(MAX_OP_SOURCE_CONT_CONTENTS_LEN));
                        *contents_rest = rest;
                        Some(cont_chunk)
                    });
                    (op_source_str, all_op_source_continued_str_chunks)
                });

                if let Some((op_source_str, all_op_source_continued_str_chunks)) =
                    op_source_and_continued_chunks
                {
                    builder.source(
                        SourceLanguage::Unknown,
                        0,
                        Some(file_name_op_string_id),
                        Some(op_source_str),
                    );
                    for cont_chunk in all_op_source_continued_str_chunks {
                        builder.source_continued(cont_chunk);
                    }
                }

                DebugFileSpirv {
                    file_name,
                    file_name_op_string_id,
                }
            })
    }

    pub fn set_global_initializer(&self, global: Word, initializer: Word) {
        let mut builder = self.builder.borrow_mut();
        let module = builder.module_mut();
        let index = module
            .types_global_values
            .iter()
            .enumerate()
            .find_map(|(index, inst)| {
                if inst.result_id == Some(global) {
                    Some(index)
                } else {
                    None
                }
            })
            .expect("set_global_initializer global not found");
        // Remove and push it to the end, to keep spir-v definition order.
        let mut inst = module.types_global_values.remove(index);
        assert_eq!(inst.class.opcode, Op::Variable);
        assert_eq!(
            inst.operands.len(),
            1,
            "global already has initializer defined: {global}"
        );
        inst.operands.push(Operand::IdRef(initializer));
        module.types_global_values.push(inst);
    }

    pub fn select_block_by_id(&self, id: Word) -> BuilderCursor {
        fn block_matches(block: &Block, id: Word) -> bool {
            block.label.as_ref().and_then(|b| b.result_id) == Some(id)
        }

        let mut builder = self.builder.borrow_mut();
        let module = builder.module_ref();

        // The user is probably selecting a block in the current function, so search that first.
        if let Some(selected_function) = builder.selected_function() {
            // make no-ops really fast
            if let Some(selected_block) = builder.selected_block() {
                let block = &module.functions[selected_function].blocks[selected_block];
                if block_matches(block, id) {
                    return BuilderCursor {
                        function: Some(selected_function),
                        block: Some(selected_block),
                    };
                }
            }

            for (index, block) in module.functions[selected_function]
                .blocks
                .iter()
                .enumerate()
            {
                if block_matches(block, id) {
                    builder.select_block(Some(index)).unwrap();
                    return BuilderCursor {
                        function: Some(selected_function),
                        block: Some(index),
                    };
                }
            }
        }

        // Search the whole module.
        for (function_index, function) in module.functions.iter().enumerate() {
            for (block_index, block) in function.blocks.iter().enumerate() {
                if block_matches(block, id) {
                    builder.select_function(Some(function_index)).unwrap();
                    builder.select_block(Some(block_index)).unwrap();
                    return BuilderCursor {
                        function: Some(function_index),
                        block: Some(block_index),
                    };
                }
            }
        }

        bug!("Block not found: {}", id);
    }
}