rustc_codegen_spirv/codegen_cx/entry.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
// HACK(eddyb) avoids rewriting all of the imports (see `lib.rs` and `build.rs`).
use crate::maybe_pqp_cg_ssa as rustc_codegen_ssa;
use super::CodegenCx;
use crate::abi::ConvSpirvType;
use crate::attr::{AggregatedSpirvAttributes, Entry, Spanned, SpecConstant};
use crate::builder::Builder;
use crate::builder_spirv::{SpirvValue, SpirvValueExt};
use crate::spirv_type::SpirvType;
use rspirv::dr::Operand;
use rspirv::spirv::{
Capability, Decoration, Dim, ExecutionModel, FunctionControl, StorageClass, Word,
};
use rustc_codegen_ssa::traits::{BaseTypeCodegenMethods, BuilderMethods};
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::MultiSpan;
use rustc_hir as hir;
use rustc_middle::span_bug;
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
use rustc_middle::ty::{self, Instance, Ty};
use rustc_span::Span;
use rustc_target::abi::call::{ArgAbi, FnAbi, PassMode};
use std::assert_matches::assert_matches;
/// Various information about an entry-point parameter, which can only be deduced
/// (and/or checked) in all cases by using the original reference/value Rust type
/// (e.g. `&mut T` vs `&T` vs `T`).
///
/// This is in contrast to other information about "shader interface variables",
/// that can rely on merely the SPIR-V type and/or `#[spirv(...)]` attributes.
///
/// See also `entry_param_deduce_from_rust_ref_or_value` (which computes this).
struct EntryParamDeducedFromRustRefOrValue<'tcx> {
/// The type/layout for the data to pass onto the entry-point parameter,
/// either by-value (only for `Input`) or behind some kind of reference.
///
/// That is, the original parameter type is (given `T = value_layout.ty`):
/// * `T` (iff `storage_class` is `Input`)
/// * `&T` (all shader interface storage classes other than `Input`/`Output`)
/// * `&mut T` (only writable storage classes)
value_layout: TyAndLayout<'tcx>,
/// The SPIR-V storage class to declare the shader interface variable in,
/// either deduced from the type (e.g. opaque handles use `UniformConstant`),
/// provided via `#[spirv(...)]` attributes, or an `Input`/`Output` default.
//
// HACK(eddyb) this can be `Err(SpecConstant)` to indicate this is actually
// an `OpSpecConstant` being exposed as if it were an `Input`
storage_class: Result<StorageClass, SpecConstant>,
/// Whether this entry-point parameter doesn't allow writes to the underlying
/// shader interface variable (i.e. is by-value, or `&T` where `T: Freeze`).
///
/// For some storage classes, this can be mapped to `NonWritable` decorations
/// (only `StorageBuffer` for now, with few others, if any, plausible at all).
read_only: bool,
}
impl<'tcx> CodegenCx<'tcx> {
// Entry points declare their "interface" (all uniforms, inputs, outputs, etc.) as parameters.
// spir-v uses globals to declare the interface. So, we need to generate a lil stub for the
// "real" main that collects all those global variables and calls the user-defined main
// function.
pub fn entry_stub(
&self,
instance: &Instance<'_>,
fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
entry_func: SpirvValue,
name: String,
entry: Entry,
) {
let span = self
.tcx
.def_ident_span(instance.def_id())
.unwrap_or_else(|| self.tcx.def_span(instance.def_id()));
let hir_params = {
let fn_local_def_id = if let Some(id) = instance.def_id().as_local() {
id
} else {
self.tcx
.dcx()
.span_err(span, format!("cannot declare {name} as an entry point"));
return;
};
self.tcx.hir().body_owned_by(fn_local_def_id).params
};
for (arg_abi, hir_param) in fn_abi.args.iter().zip(hir_params) {
match arg_abi.mode {
PassMode::Direct(_) => {}
PassMode::Pair(..) => {
// FIXME(eddyb) implement `ScalarPair` `Input`s, or change
// the `FnAbi` readjustment to only use `PassMode::Pair` for
// pointers to `!Sized` types, but not other `ScalarPair`s.
if !matches!(arg_abi.layout.ty.kind(), ty::Ref(..)) {
self.tcx.dcx().span_err(
hir_param.ty_span,
format!(
"entry point parameter type not yet supported \
(`{}` has `ScalarPair` ABI but is not a `&T`)",
arg_abi.layout.ty
),
);
}
}
// FIXME(eddyb) support these (by just ignoring them) - if there
// is any validation concern, it should be done on the types.
PassMode::Ignore => self.tcx.dcx().span_fatal(
hir_param.ty_span,
format!(
"entry point parameter type not yet supported \
(`{}` has size `0`)",
arg_abi.layout.ty
),
),
_ => span_bug!(
hir_param.ty_span,
"query hooks should've made this `PassMode` impossible: {:#?}",
arg_abi
),
}
}
if fn_abi.ret.layout.ty.is_unit() {
assert_matches!(fn_abi.ret.mode, PassMode::Ignore);
} else {
self.tcx.dcx().span_err(
span,
format!(
"entry point should return `()`, not `{}`",
fn_abi.ret.layout.ty
),
);
}
// let execution_model = entry.execution_model;
let fn_id = self.shader_entry_stub(
span,
entry_func,
fn_abi,
hir_params,
name,
entry.execution_model,
);
let mut emit = self.emit_global();
entry
.execution_modes
.iter()
.for_each(|(execution_mode, execution_mode_extra)| {
emit.execution_mode(fn_id, *execution_mode, execution_mode_extra);
});
}
fn shader_entry_stub(
&self,
span: Span,
entry_func: SpirvValue,
entry_fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
hir_params: &[hir::Param<'tcx>],
name: String,
execution_model: ExecutionModel,
) -> Word {
let stub_fn = {
let void = SpirvType::Void.def(span, self);
let fn_void_void = SpirvType::Function {
return_type: void,
arguments: &[],
}
.def(span, self);
let mut emit = self.emit_global();
let id = emit
.begin_function(void, None, FunctionControl::NONE, fn_void_void)
.unwrap();
emit.end_function().unwrap();
id.with_type(fn_void_void)
};
let mut op_entry_point_interface_operands = vec![];
let mut bx = Builder::build(self, Builder::append_block(self, stub_fn, ""));
let mut call_args = vec![];
let mut decoration_locations = FxHashMap::default();
for (entry_arg_abi, hir_param) in entry_fn_abi.args.iter().zip(hir_params) {
bx.set_span(hir_param.span);
self.declare_shader_interface_for_param(
execution_model,
entry_arg_abi,
hir_param,
&mut op_entry_point_interface_operands,
&mut bx,
&mut call_args,
&mut decoration_locations,
);
}
bx.set_span(span);
bx.call(
entry_func.ty,
None,
Some(entry_fn_abi),
entry_func,
&call_args,
None,
None,
);
bx.ret_void();
let stub_fn_id = stub_fn.def_cx(self);
self.emit_global().entry_point(
execution_model,
stub_fn_id,
name,
op_entry_point_interface_operands,
);
stub_fn_id
}
/// Attempt to compute `EntryParamDeducedFromRustRefOrValue` (see its docs)
/// from `ref_or_value_layout` (and potentially some of `attrs`).
///
// FIXME(eddyb) document this by itself.
fn entry_param_deduce_from_rust_ref_or_value(
&self,
ref_or_value_layout: TyAndLayout<'tcx>,
hir_param: &hir::Param<'tcx>,
attrs: &AggregatedSpirvAttributes,
) -> EntryParamDeducedFromRustRefOrValue<'tcx> {
// FIXME(eddyb) attribute validation should be done ahead of time.
// FIXME(eddyb) also check the type for compatibility with being
// part of the interface, including potentially `Sync`ness etc.
// FIXME(eddyb) really need to require `T: Sync` for references
// (especially relevant with interior mutability!).
let (value_layout, explicit_mutbl, is_ref) = match *ref_or_value_layout.ty.kind() {
ty::Ref(_, pointee_ty, mutbl) => (self.layout_of(pointee_ty), mutbl, true),
_ => (ref_or_value_layout, hir::Mutability::Not, false),
};
let effective_mutbl = match explicit_mutbl {
// NOTE(eddyb) `T: !Freeze` used to detect "`T` has interior mutability"
// (i.e. "`&T` is a shared+mutable reference"), more specifically `T`
// containing `UnsafeCell` (but not behind any indirection), which
// includes many safe abstractions (e.g. `Cell`, `RefCell`, `Atomic*`).
hir::Mutability::Not
if is_ref
&& !value_layout
.ty
.is_freeze(self.tcx, ty::TypingEnv::fully_monomorphized()) =>
{
hir::Mutability::Mut
}
_ => explicit_mutbl,
};
// FIXME(eddyb) this should maybe be an extension method on `StorageClass`?
let expected_mutbl_for = |storage_class| match storage_class {
StorageClass::UniformConstant
| StorageClass::Input
| StorageClass::Uniform
| StorageClass::PushConstant => hir::Mutability::Not,
// FIXME(eddyb) further categorize this by which want interior
// mutability (+`Sync`!), likely almost all of them, and which
// can be per-lane-owning `&mut T`.
_ => hir::Mutability::Mut,
};
let value_spirv_type = value_layout.spirv_type(hir_param.ty_span, self);
// Some types automatically specify a storage class. Compute that here.
let element_ty = match self.lookup_type(value_spirv_type) {
SpirvType::Array { element, .. } | SpirvType::RuntimeArray { element } => {
self.lookup_type(element)
}
ty => ty,
};
let deduced_storage_class_from_ty = match element_ty {
SpirvType::Image { .. }
| SpirvType::Sampler
| SpirvType::SampledImage { .. }
| SpirvType::AccelerationStructureKhr { .. } => {
if is_ref {
Some(StorageClass::UniformConstant)
} else {
self.tcx.dcx().span_err(
hir_param.ty_span,
format!(
"entry parameter type must be by-reference: `&{}`",
value_layout.ty,
),
);
None
}
}
_ => None,
};
// Storage classes can be specified via attribute. Compute that here, and emit diagnostics.
let attr_storage_class = attrs.storage_class.map(|storage_class_attr| {
let storage_class = storage_class_attr.value;
if !is_ref {
self.tcx.dcx().span_fatal(
hir_param.ty_span,
format!(
"invalid entry param type `{}` for storage class `{storage_class:?}` \
(expected `&{}T`)",
value_layout.ty,
expected_mutbl_for(storage_class).prefix_str()
),
)
}
match deduced_storage_class_from_ty {
Some(deduced) if storage_class == deduced => self.tcx.dcx().span_warn(
storage_class_attr.span,
"redundant storage class attribute, storage class is deduced from type",
),
Some(deduced) => {
self.tcx
.dcx()
.struct_span_err(hir_param.span, "storage class mismatch")
.with_span_label(
storage_class_attr.span,
format!("`{storage_class:?}` specified in attribute"),
)
.with_span_label(
hir_param.ty_span,
format!("`{deduced:?}` deduced from type"),
)
.with_help(format!(
"remove storage class attribute to use `{deduced:?}` as storage class"
))
.emit();
}
None => (),
}
storage_class
});
// If storage class was not deduced nor specified, compute the default (i.e. input/output)
let storage_class = deduced_storage_class_from_ty
.or(attr_storage_class)
.unwrap_or_else(|| match (is_ref, explicit_mutbl) {
(false, _) => StorageClass::Input,
(true, hir::Mutability::Mut) => StorageClass::Output,
(true, hir::Mutability::Not) => self.tcx.dcx().span_fatal(
hir_param.ty_span,
format!(
"invalid entry param type `{}` (expected `{}` or `&mut {1}`)",
ref_or_value_layout.ty, value_layout.ty
),
),
});
// Validate reference mutability against the *final* storage class.
let read_only = effective_mutbl == hir::Mutability::Not;
if is_ref {
// FIXME(eddyb) named booleans make uses a bit more readable.
let ref_is_read_only = read_only;
let storage_class_requires_read_only =
expected_mutbl_for(storage_class) == hir::Mutability::Not;
if !ref_is_read_only && storage_class_requires_read_only {
let mut err = self.tcx.dcx().struct_span_err(
hir_param.ty_span,
format!("entry-point requires {}...", match explicit_mutbl {
hir::Mutability::Not => "interior mutability",
hir::Mutability::Mut => "a mutable reference",
}),
);
{
let note_message =
format!("...but storage class `{storage_class:?}` is read-only");
let (note_label_span, note_label) =
if let Some(storage_class_attr) = attrs.storage_class {
(
storage_class_attr.span,
format!("`{storage_class:?}` specified in attribute"),
)
} else {
(
hir_param.ty_span,
format!("`{storage_class:?}` deduced from type"),
)
};
// HACK(eddyb) have to use `MultiSpan` directly for labels,
// as there's no `span_label` equivalent for `span_note`s.
let mut note_multi_span: MultiSpan = vec![note_label_span].into();
note_multi_span.push_span_label(note_label_span, note_label);
err.span_note(note_multi_span, note_message);
}
err.emit();
}
}
// HACK(eddyb) only handle `attrs.spec_constant` after everything above
// would've assumed it was actually an implicitly-`Input`.
let mut storage_class = Ok(storage_class);
if let Some(spec_constant) = attrs.spec_constant {
if ref_or_value_layout.ty != self.tcx.types.u32 {
self.tcx.dcx().span_err(
hir_param.ty_span,
format!(
"unsupported `#[spirv(spec_constant)]` type `{}` (expected `{}`)",
ref_or_value_layout.ty, self.tcx.types.u32
),
);
} else if let Some(storage_class) = attrs.storage_class {
self.tcx.dcx().span_err(
storage_class.span,
"`#[spirv(spec_constant)]` cannot have a storage class",
);
} else {
assert_eq!(storage_class, Ok(StorageClass::Input));
assert!(!is_ref);
storage_class = Err(spec_constant.value);
}
}
EntryParamDeducedFromRustRefOrValue {
value_layout,
storage_class,
read_only,
}
}
#[allow(clippy::too_many_arguments)]
fn declare_shader_interface_for_param(
&self,
execution_model: ExecutionModel,
entry_arg_abi: &ArgAbi<'tcx, Ty<'tcx>>,
hir_param: &hir::Param<'tcx>,
op_entry_point_interface_operands: &mut Vec<Word>,
bx: &mut Builder<'_, 'tcx>,
call_args: &mut Vec<SpirvValue>,
decoration_locations: &mut FxHashMap<StorageClass, u32>,
) {
let attrs = AggregatedSpirvAttributes::parse(self, self.tcx.hir().attrs(hir_param.hir_id));
let EntryParamDeducedFromRustRefOrValue {
value_layout,
storage_class,
read_only,
} = self.entry_param_deduce_from_rust_ref_or_value(entry_arg_abi.layout, hir_param, &attrs);
let value_spirv_type = value_layout.spirv_type(hir_param.ty_span, self);
let (var_id, spec_const_id) = match storage_class {
// Pre-allocate the module-scoped `OpVariable` *Result* ID.
Ok(_) => (
Ok(self.emit_global().id()),
Err("entry-point interface variable is not a `#[spirv(spec_constant)]`"),
),
Err(SpecConstant { id, default }) => {
let mut emit = self.emit_global();
let spec_const_id =
emit.spec_constant_bit32(value_spirv_type, default.unwrap_or(0));
emit.decorate(spec_const_id, Decoration::SpecId, [Operand::LiteralBit32(
id,
)]);
(
Err("`#[spirv(spec_constant)]` is not an entry-point interface variable"),
Ok(spec_const_id),
)
}
};
// Emit decorations deduced from the reference/value Rust type.
if read_only {
// NOTE(eddyb) it appears only `StorageBuffer`s simultaneously:
// - allow `NonWritable` decorations on shader interface variables
// - default to writable (i.e. the decoration actually has an effect)
if storage_class == Ok(StorageClass::StorageBuffer) {
self.emit_global()
.decorate(var_id.unwrap(), Decoration::NonWritable, []);
}
}
// Certain storage classes require an `OpTypeStruct` decorated with `Block`,
// which we represent with `SpirvType::InterfaceBlock` (see its doc comment).
// This "interface block" construct is also required for "runtime arrays".
let is_unsized = self.lookup_type(value_spirv_type).sizeof(self).is_none();
let is_pair = matches!(entry_arg_abi.mode, PassMode::Pair(..));
let is_unsized_with_len = is_pair && is_unsized;
// HACK(eddyb) sanity check because we get the same information in two
// very different ways, and going out of sync could cause subtle issues.
assert_eq!(
is_unsized_with_len,
value_layout.is_unsized(),
"`{}` param mismatch in call ABI (is_pair={is_pair}) + \
SPIR-V type (is_unsized={is_unsized}) \
vs layout:\n{value_layout:#?}",
entry_arg_abi.layout.ty
);
if is_pair && !is_unsized {
// If PassMode is Pair, then we need to fill in the second part of the pair with a
// value. We currently only do that with unsized types, so if a type is a pair for some
// other reason (e.g. a tuple), we bail.
self.tcx
.dcx()
.span_fatal(hir_param.ty_span, "pair type not supported yet")
}
// FIXME(eddyb) should this talk about "typed buffers" instead of "interface blocks"?
// FIXME(eddyb) should we talk about "descriptor indexing" or
// actually use more reasonable terms like "resource arrays"?
let needs_interface_block_and_supports_descriptor_indexing = matches!(
storage_class,
Ok(StorageClass::Uniform | StorageClass::StorageBuffer)
);
let needs_interface_block = needs_interface_block_and_supports_descriptor_indexing
|| storage_class == Ok(StorageClass::PushConstant);
// NOTE(eddyb) `#[spirv(typed_buffer)]` adds `SpirvType::InterfaceBlock`s
// which must bypass the automated ones (i.e. the user is taking control).
let has_explicit_interface_block = needs_interface_block_and_supports_descriptor_indexing
&& {
// Peel off arrays first (used for "descriptor indexing").
let outermost_or_array_element = match self.lookup_type(value_spirv_type) {
SpirvType::Array { element, .. } | SpirvType::RuntimeArray { element } => {
element
}
_ => value_spirv_type,
};
matches!(
self.lookup_type(outermost_or_array_element),
SpirvType::InterfaceBlock { .. }
)
};
let var_ptr_spirv_type;
let (value_ptr, value_len) = if needs_interface_block && !has_explicit_interface_block {
let var_spirv_type = SpirvType::InterfaceBlock {
inner_type: value_spirv_type,
}
.def(hir_param.span, self);
var_ptr_spirv_type = self.type_ptr_to(var_spirv_type);
let zero_u32 = self.constant_u32(hir_param.span, 0).def_cx(self);
let value_ptr_spirv_type = self.type_ptr_to(value_spirv_type);
let value_ptr = bx
.emit()
.in_bounds_access_chain(
value_ptr_spirv_type,
None,
var_id.unwrap(),
[zero_u32].iter().cloned(),
)
.unwrap()
.with_type(value_ptr_spirv_type);
let value_len = if is_unsized_with_len {
match self.lookup_type(value_spirv_type) {
SpirvType::RuntimeArray { .. } => {}
_ => {
self.tcx.dcx().span_err(
hir_param.ty_span,
"only plain slices are supported as unsized types",
);
}
}
// FIXME(eddyb) shouldn't this be `usize`?
let len_spirv_type = self.type_isize();
let len = bx
.emit()
.array_length(len_spirv_type, None, var_id.unwrap(), 0)
.unwrap();
Some(len.with_type(len_spirv_type))
} else {
if is_unsized {
// It's OK to use a RuntimeArray<u32> and not have a length parameter, but
// it's just nicer ergonomics to use a slice.
self.tcx
.dcx()
.span_warn(hir_param.ty_span, "use &[T] instead of &RuntimeArray<T>");
}
None
};
(Ok(value_ptr), value_len)
} else {
var_ptr_spirv_type = self.type_ptr_to(value_spirv_type);
// FIXME(eddyb) should we talk about "descriptor indexing" or
// actually use more reasonable terms like "resource arrays"?
let unsized_is_descriptor_indexing =
needs_interface_block_and_supports_descriptor_indexing
|| storage_class == Ok(StorageClass::UniformConstant);
if unsized_is_descriptor_indexing {
match self.lookup_type(value_spirv_type) {
SpirvType::RuntimeArray { .. } => {
if is_unsized_with_len {
self.tcx.dcx().span_err(
hir_param.ty_span,
"descriptor indexing must use &RuntimeArray<T>, not &[T]",
);
}
}
_ => {
if is_unsized {
self.tcx.dcx().span_err(
hir_param.ty_span,
"only RuntimeArray is supported, not other unsized types",
);
}
}
}
} else {
// FIXME(eddyb) determine, based on the type, what kind of type
// this is, to narrow it further to e.g. "buffer in a non-buffer
// storage class" or "storage class expects fixed data sizes".
if is_unsized {
self.tcx.dcx().span_fatal(
hir_param.ty_span,
format!(
"unsized types are not supported for {}",
match storage_class {
Ok(storage_class) => format!("storage class {storage_class:?}"),
Err(SpecConstant { .. }) => "`#[spirv(spec_constant)]`".into(),
},
),
);
}
}
let value_len = if is_pair {
// We've already emitted an error, fill in a placeholder value
Some(bx.undef(self.type_isize()))
} else {
None
};
(
var_id.map(|var_id| var_id.with_type(var_ptr_spirv_type)),
value_len,
)
};
// Compute call argument(s) to match what the Rust entry `fn` expects,
// starting from the `value_ptr` pointing to a `value_spirv_type`
// (e.g. `Input` doesn't use indirection, so we have to load from it).
if let ty::Ref(..) = entry_arg_abi.layout.ty.kind() {
call_args.push(value_ptr.unwrap());
match entry_arg_abi.mode {
PassMode::Direct(_) => assert_eq!(value_len, None),
PassMode::Pair(..) => call_args.push(value_len.unwrap()),
_ => unreachable!(),
}
} else {
assert_matches!(entry_arg_abi.mode, PassMode::Direct(_));
let value = match storage_class {
Ok(_) => {
assert_eq!(storage_class, Ok(StorageClass::Input));
bx.load(
entry_arg_abi.layout.spirv_type(hir_param.ty_span, bx),
value_ptr.unwrap(),
entry_arg_abi.layout.align.abi,
)
}
Err(SpecConstant { .. }) => spec_const_id.unwrap().with_type(value_spirv_type),
};
call_args.push(value);
assert_eq!(value_len, None);
}
// FIXME(eddyb) check whether the storage class is compatible with the
// specific shader stage of this entry-point, and any decorations
// (e.g. Vulkan has specific rules for builtin storage classes).
// Emit `OpName` in the simple case of a pattern that's just a variable
// name (e.g. "foo" for `foo: Vec3`). While `OpName` is *not* supposed
// to be semantic, OpenGL and some tooling rely on it for reflection.
if let hir::PatKind::Binding(_, _, ident, _) = &hir_param.pat.kind {
self.emit_global()
.name(var_id.or(spec_const_id).unwrap(), ident.to_string());
}
// Emit `OpDecorate`s based on attributes.
let mut decoration_supersedes_location = false;
if let Some(builtin) = attrs.builtin {
if let Err(SpecConstant { .. }) = storage_class {
self.tcx.dcx().span_fatal(
builtin.span,
format!(
"`#[spirv(spec_constant)]` cannot be `{:?}` builtin",
builtin.value
),
);
}
self.emit_global().decorate(
var_id.unwrap(),
Decoration::BuiltIn,
std::iter::once(Operand::BuiltIn(builtin.value)),
);
decoration_supersedes_location = true;
}
if let Some(descriptor_set) = attrs.descriptor_set {
if let Err(SpecConstant { .. }) = storage_class {
self.tcx.dcx().span_fatal(
descriptor_set.span,
"`#[spirv(descriptor_set = ...)]` cannot apply to `#[spirv(spec_constant)]`",
);
}
self.emit_global().decorate(
var_id.unwrap(),
Decoration::DescriptorSet,
std::iter::once(Operand::LiteralBit32(descriptor_set.value)),
);
decoration_supersedes_location = true;
}
if let Some(binding) = attrs.binding {
if let Err(SpecConstant { .. }) = storage_class {
self.tcx.dcx().span_fatal(
binding.span,
"`#[spirv(binding = ...)]` cannot apply to `#[spirv(spec_constant)]`",
);
}
self.emit_global().decorate(
var_id.unwrap(),
Decoration::Binding,
std::iter::once(Operand::LiteralBit32(binding.value)),
);
decoration_supersedes_location = true;
}
if let Some(flat) = attrs.flat {
if let Err(SpecConstant { .. }) = storage_class {
self.tcx.dcx().span_fatal(
flat.span,
"`#[spirv(flat)]` cannot apply to `#[spirv(spec_constant)]`",
);
}
self.emit_global()
.decorate(var_id.unwrap(), Decoration::Flat, std::iter::empty());
}
if let Some(invariant) = attrs.invariant {
if storage_class != Ok(StorageClass::Output) {
self.tcx.dcx().span_fatal(
invariant.span,
"`#[spirv(invariant)]` is only valid on Output variables",
);
}
self.emit_global()
.decorate(var_id.unwrap(), Decoration::Invariant, std::iter::empty());
}
if let Some(per_primitive_ext) = attrs.per_primitive_ext {
match execution_model {
ExecutionModel::Fragment => {
if storage_class != Ok(StorageClass::Input) {
self.tcx.dcx().span_fatal(
per_primitive_ext.span,
"`#[spirv(per_primitive_ext)]` in fragment shaders is only valid on Input variables",
);
}
}
ExecutionModel::MeshNV | ExecutionModel::MeshEXT => {
if storage_class != Ok(StorageClass::Output) {
self.tcx.dcx().span_fatal(
per_primitive_ext.span,
"`#[spirv(per_primitive_ext)]` in mesh shaders is only valid on Output variables",
);
}
}
_ => {
self.tcx.dcx().span_fatal(
per_primitive_ext.span,
"`#[spirv(per_primitive_ext)]` is only valid in fragment or mesh shaders",
);
}
}
self.emit_global().decorate(
var_id.unwrap(),
Decoration::PerPrimitiveEXT,
std::iter::empty(),
);
}
let is_subpass_input = match self.lookup_type(value_spirv_type) {
SpirvType::Image {
dim: Dim::DimSubpassData,
..
} => true,
SpirvType::RuntimeArray { element: elt, .. }
| SpirvType::Array { element: elt, .. } => {
matches!(self.lookup_type(elt), SpirvType::Image {
dim: Dim::DimSubpassData,
..
})
}
_ => false,
};
if let Some(attachment_index) = attrs.input_attachment_index {
if is_subpass_input && self.builder.has_capability(Capability::InputAttachment) {
self.emit_global().decorate(
var_id.unwrap(),
Decoration::InputAttachmentIndex,
std::iter::once(Operand::LiteralBit32(attachment_index.value)),
);
} else if is_subpass_input {
self.tcx
.dcx()
.span_err(hir_param.ty_span, "Missing capability InputAttachment");
} else {
self.tcx.dcx().span_err(
attachment_index.span,
"#[spirv(input_attachment_index)] is only valid on Image types with dim = SubpassData"
);
}
decoration_supersedes_location = true;
} else if is_subpass_input {
self.tcx.dcx().span_err(
hir_param.ty_span,
"Image types with dim = SubpassData require #[spirv(input_attachment_index)] decoration",
);
}
if let Ok(storage_class) = storage_class {
self.check_for_bad_types(
execution_model,
hir_param.ty_span,
var_ptr_spirv_type,
storage_class,
attrs.builtin.is_some(),
attrs.flat,
);
}
// Assign locations from left to right, incrementing each storage class
// individually.
// TODO: Is this right for UniformConstant? Do they share locations with
// input/outpus?
let has_location = !decoration_supersedes_location
&& matches!(
storage_class,
Ok(StorageClass::Input | StorageClass::Output | StorageClass::UniformConstant)
);
if has_location {
let location = decoration_locations
.entry(storage_class.unwrap())
.or_insert_with(|| 0);
self.emit_global().decorate(
var_id.unwrap(),
Decoration::Location,
std::iter::once(Operand::LiteralBit32(*location)),
);
*location += 1;
}
match storage_class {
Ok(storage_class) => {
let var = var_id.unwrap();
// Emit the `OpVariable` with its *Result* ID set to `var_id`.
self.emit_global()
.variable(var_ptr_spirv_type, Some(var), storage_class, None);
// Record this `OpVariable` as needing to be added (if applicable),
// to the *Interface* operands of the `OpEntryPoint` instruction.
if self.emit_global().version().unwrap() > (1, 3) {
// SPIR-V >= v1.4 includes all OpVariables in the interface.
op_entry_point_interface_operands.push(var);
} else {
// SPIR-V <= v1.3 only includes Input and Output in the interface.
if storage_class == StorageClass::Input || storage_class == StorageClass::Output
{
op_entry_point_interface_operands.push(var);
}
}
}
Err(not_var) => {
// Emitted earlier.
let SpecConstant { .. } = not_var;
}
}
}
// Booleans are only allowed in some storage classes. Error if they're in others.
// Integers and `f64`s must be decorated with `#[spirv(flat)]`.
fn check_for_bad_types(
&self,
execution_model: ExecutionModel,
span: Span,
ty: Word,
storage_class: StorageClass,
is_builtin: bool,
flat_attr: Option<Spanned<()>>,
) {
// private and function are allowed here, but they can't happen.
if matches!(
storage_class,
StorageClass::Workgroup | StorageClass::CrossWorkgroup
) {
return;
}
let mut has_bool = false;
let mut type_must_be_flat = false;
recurse(self, ty, &mut has_bool, &mut type_must_be_flat);
// SPIR-V technically allows all input/output variables to be booleans, not just builtins,
// but has a note:
// > Khronos Issue #363: OpTypeBool can be used in the Input and Output storage classes,
// but the client APIs still only allow built-in Boolean variables (e.g. FrontFacing),
// not user variables.
// spirv-val disallows non-builtin inputs/outputs, so we do too, I guess.
if has_bool
&& !(is_builtin && matches!(storage_class, StorageClass::Input | StorageClass::Output))
{
self.tcx
.dcx()
.span_err(span, "entry-point parameter cannot contain `bool`s");
}
// Enforce Vulkan validation rules around `Flat` as accurately as possible,
// i.e. "interpolation control" can only be used "within" the rasterization
// pipeline (roughly: `vertex (outputs) -> ... -> (inputs for) fragment`),
// but not at the "outer" interface (vertex inputs/fragment outputs).
// Also, fragment inputs *require* it for some ("uninterpolatable") types.
// FIXME(eddyb) maybe this kind of `enum` could be placed elsewhere?
enum Force {
Disallow,
Require,
}
#[allow(clippy::match_same_arms)]
let flat_forced = match (execution_model, storage_class) {
// VUID-StandaloneSpirv-Flat-06202
// > The `Flat`, `NoPerspective`, `Sample`, and `Centroid` decorations **must**
// > not be used on variables with the `Input` storage class in a vertex shader
(ExecutionModel::Vertex, StorageClass::Input) => Some(Force::Disallow),
// VUID-StandaloneSpirv-Flat-04744
// > Any variable with integer or double-precision floating-point type and
// > with `Input` storage class in a fragment shader, **must** be decorated `Flat`
(ExecutionModel::Fragment, StorageClass::Input) if type_must_be_flat => {
// FIXME(eddyb) shouldn't this be automatic then? (maybe with a warning?)
Some(Force::Require)
}
// VUID-StandaloneSpirv-Flat-06201
// > The `Flat`, `NoPerspective`, `Sample`, and `Centroid` decorations **must**
// > not be used on variables with the `Output` storage class in a fragment shader
(ExecutionModel::Fragment, StorageClass::Output) => Some(Force::Disallow),
// VUID-StandaloneSpirv-Flat-04670
// > The `Flat`, `NoPerspective`, `Sample`, and `Centroid` decorations **must**
// > only be used on variables with the `Output` or `Input` storage class
(_, StorageClass::Input | StorageClass::Output) => None,
_ => Some(Force::Disallow),
};
let flat_mismatch = match (flat_forced, flat_attr) {
(Some(Force::Disallow), Some(flat_attr)) => Some((flat_attr.span, "cannot")),
// FIXME(eddyb) it would be useful to show the type that required it.
(Some(Force::Require), None) => Some((span, "must")),
_ => None,
};
if let Some((span, must_or_cannot)) = flat_mismatch {
self.tcx.dcx().span_err(
span,
format!(
"`{execution_model:?}` entry-point `{storage_class:?}` parameter \
{must_or_cannot} be decorated with `#[spirv(flat)]`"
),
);
}
fn recurse(cx: &CodegenCx<'_>, ty: Word, has_bool: &mut bool, must_be_flat: &mut bool) {
match cx.lookup_type(ty) {
SpirvType::Bool => *has_bool = true,
SpirvType::Integer(_, _) | SpirvType::Float(64) => *must_be_flat = true,
SpirvType::Adt { field_types, .. } => {
for &f in field_types {
recurse(cx, f, has_bool, must_be_flat);
}
}
SpirvType::Vector { element, .. }
| SpirvType::Matrix { element, .. }
| SpirvType::Array { element, .. }
| SpirvType::RuntimeArray { element }
| SpirvType::Pointer { pointee: element }
| SpirvType::InterfaceBlock {
inner_type: element,
} => recurse(cx, element, has_bool, must_be_flat),
SpirvType::Function {
return_type,
arguments,
} => {
recurse(cx, return_type, has_bool, must_be_flat);
for &a in arguments {
recurse(cx, a, has_bool, must_be_flat);
}
}
_ => (),
}
}
}
}