rustc_codegen_spirv/codegen_cx/
entry.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
// HACK(eddyb) avoids rewriting all of the imports (see `lib.rs` and `build.rs`).
use crate::maybe_pqp_cg_ssa as rustc_codegen_ssa;

use super::CodegenCx;
use crate::abi::ConvSpirvType;
use crate::attr::{AggregatedSpirvAttributes, Entry, Spanned, SpecConstant};
use crate::builder::Builder;
use crate::builder_spirv::{SpirvValue, SpirvValueExt};
use crate::spirv_type::SpirvType;
use rspirv::dr::Operand;
use rspirv::spirv::{
    Capability, Decoration, Dim, ExecutionModel, FunctionControl, StorageClass, Word,
};
use rustc_codegen_ssa::traits::{BaseTypeCodegenMethods, BuilderMethods};
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::MultiSpan;
use rustc_hir as hir;
use rustc_middle::span_bug;
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
use rustc_middle::ty::{self, Instance, Ty};
use rustc_span::Span;
use rustc_target::abi::call::{ArgAbi, FnAbi, PassMode};
use std::assert_matches::assert_matches;

/// Various information about an entry-point parameter, which can only be deduced
/// (and/or checked) in all cases by using the original reference/value Rust type
/// (e.g. `&mut T` vs `&T` vs `T`).
///
/// This is in contrast to other information about "shader interface variables",
/// that can rely on merely the SPIR-V type and/or `#[spirv(...)]` attributes.
///
/// See also `entry_param_deduce_from_rust_ref_or_value` (which computes this).
struct EntryParamDeducedFromRustRefOrValue<'tcx> {
    /// The type/layout for the data to pass onto the entry-point parameter,
    /// either by-value (only for `Input`) or behind some kind of reference.
    ///
    /// That is, the original parameter type is (given `T = value_layout.ty`):
    /// * `T` (iff `storage_class` is `Input`)
    /// * `&T` (all shader interface storage classes other than `Input`/`Output`)
    /// * `&mut T` (only writable storage classes)
    value_layout: TyAndLayout<'tcx>,

    /// The SPIR-V storage class to declare the shader interface variable in,
    /// either deduced from the type (e.g. opaque handles use `UniformConstant`),
    /// provided via `#[spirv(...)]` attributes, or an `Input`/`Output` default.
    //
    // HACK(eddyb) this can be `Err(SpecConstant)` to indicate this is actually
    // an `OpSpecConstant` being exposed as if it were an `Input`
    storage_class: Result<StorageClass, SpecConstant>,

    /// Whether this entry-point parameter doesn't allow writes to the underlying
    /// shader interface variable (i.e. is by-value, or `&T` where `T: Freeze`).
    ///
    /// For some storage classes, this can be mapped to `NonWritable` decorations
    /// (only `StorageBuffer` for now, with few others, if any, plausible at all).
    read_only: bool,
}

impl<'tcx> CodegenCx<'tcx> {
    // Entry points declare their "interface" (all uniforms, inputs, outputs, etc.) as parameters.
    // spir-v uses globals to declare the interface. So, we need to generate a lil stub for the
    // "real" main that collects all those global variables and calls the user-defined main
    // function.
    pub fn entry_stub(
        &self,
        instance: &Instance<'_>,
        fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
        entry_func: SpirvValue,
        name: String,
        entry: Entry,
    ) {
        let span = self
            .tcx
            .def_ident_span(instance.def_id())
            .unwrap_or_else(|| self.tcx.def_span(instance.def_id()));
        let hir_params = {
            let fn_local_def_id = if let Some(id) = instance.def_id().as_local() {
                id
            } else {
                self.tcx
                    .dcx()
                    .span_err(span, format!("cannot declare {name} as an entry point"));
                return;
            };
            self.tcx.hir().body_owned_by(fn_local_def_id).params
        };
        for (arg_abi, hir_param) in fn_abi.args.iter().zip(hir_params) {
            match arg_abi.mode {
                PassMode::Direct(_) => {}
                PassMode::Pair(..) => {
                    // FIXME(eddyb) implement `ScalarPair` `Input`s, or change
                    // the `FnAbi` readjustment to only use `PassMode::Pair` for
                    // pointers to `!Sized` types, but not other `ScalarPair`s.
                    if !matches!(arg_abi.layout.ty.kind(), ty::Ref(..)) {
                        self.tcx.dcx().span_err(
                            hir_param.ty_span,
                            format!(
                                "entry point parameter type not yet supported \
                                 (`{}` has `ScalarPair` ABI but is not a `&T`)",
                                arg_abi.layout.ty
                            ),
                        );
                    }
                }
                // FIXME(eddyb) support these (by just ignoring them) - if there
                // is any validation concern, it should be done on the types.
                PassMode::Ignore => self.tcx.dcx().span_fatal(
                    hir_param.ty_span,
                    format!(
                        "entry point parameter type not yet supported \
                        (`{}` has size `0`)",
                        arg_abi.layout.ty
                    ),
                ),
                _ => span_bug!(
                    hir_param.ty_span,
                    "query hooks should've made this `PassMode` impossible: {:#?}",
                    arg_abi
                ),
            }
        }
        if fn_abi.ret.layout.ty.is_unit() {
            assert_matches!(fn_abi.ret.mode, PassMode::Ignore);
        } else {
            self.tcx.dcx().span_err(
                span,
                format!(
                    "entry point should return `()`, not `{}`",
                    fn_abi.ret.layout.ty
                ),
            );
        }

        // let execution_model = entry.execution_model;
        let fn_id = self.shader_entry_stub(
            span,
            entry_func,
            fn_abi,
            hir_params,
            name,
            entry.execution_model,
        );
        let mut emit = self.emit_global();
        entry
            .execution_modes
            .iter()
            .for_each(|(execution_mode, execution_mode_extra)| {
                emit.execution_mode(fn_id, *execution_mode, execution_mode_extra);
            });
    }

    fn shader_entry_stub(
        &self,
        span: Span,
        entry_func: SpirvValue,
        entry_fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
        hir_params: &[hir::Param<'tcx>],
        name: String,
        execution_model: ExecutionModel,
    ) -> Word {
        let stub_fn = {
            let void = SpirvType::Void.def(span, self);
            let fn_void_void = SpirvType::Function {
                return_type: void,
                arguments: &[],
            }
            .def(span, self);
            let mut emit = self.emit_global();
            let id = emit
                .begin_function(void, None, FunctionControl::NONE, fn_void_void)
                .unwrap();
            emit.end_function().unwrap();
            id.with_type(fn_void_void)
        };

        let mut op_entry_point_interface_operands = vec![];

        let mut bx = Builder::build(self, Builder::append_block(self, stub_fn, ""));
        let mut call_args = vec![];
        let mut decoration_locations = FxHashMap::default();
        for (entry_arg_abi, hir_param) in entry_fn_abi.args.iter().zip(hir_params) {
            bx.set_span(hir_param.span);
            self.declare_shader_interface_for_param(
                execution_model,
                entry_arg_abi,
                hir_param,
                &mut op_entry_point_interface_operands,
                &mut bx,
                &mut call_args,
                &mut decoration_locations,
            );
        }
        bx.set_span(span);
        bx.call(
            entry_func.ty,
            None,
            Some(entry_fn_abi),
            entry_func,
            &call_args,
            None,
            None,
        );
        bx.ret_void();

        let stub_fn_id = stub_fn.def_cx(self);
        self.emit_global().entry_point(
            execution_model,
            stub_fn_id,
            name,
            op_entry_point_interface_operands,
        );
        stub_fn_id
    }

    /// Attempt to compute `EntryParamDeducedFromRustRefOrValue` (see its docs)
    /// from `ref_or_value_layout` (and potentially some of `attrs`).
    ///
    // FIXME(eddyb) document this by itself.
    fn entry_param_deduce_from_rust_ref_or_value(
        &self,
        ref_or_value_layout: TyAndLayout<'tcx>,
        hir_param: &hir::Param<'tcx>,
        attrs: &AggregatedSpirvAttributes,
    ) -> EntryParamDeducedFromRustRefOrValue<'tcx> {
        // FIXME(eddyb) attribute validation should be done ahead of time.
        // FIXME(eddyb) also check the type for compatibility with being
        // part of the interface, including potentially `Sync`ness etc.
        // FIXME(eddyb) really need to require `T: Sync` for references
        // (especially relevant with interior mutability!).
        let (value_layout, explicit_mutbl, is_ref) = match *ref_or_value_layout.ty.kind() {
            ty::Ref(_, pointee_ty, mutbl) => (self.layout_of(pointee_ty), mutbl, true),
            _ => (ref_or_value_layout, hir::Mutability::Not, false),
        };
        let effective_mutbl = match explicit_mutbl {
            // NOTE(eddyb) `T: !Freeze` used to detect "`T` has interior mutability"
            // (i.e. "`&T` is a shared+mutable reference"), more specifically `T`
            // containing `UnsafeCell` (but not behind any indirection), which
            // includes many safe abstractions (e.g. `Cell`, `RefCell`, `Atomic*`).
            hir::Mutability::Not
                if is_ref
                    && !value_layout
                        .ty
                        .is_freeze(self.tcx, ty::TypingEnv::fully_monomorphized()) =>
            {
                hir::Mutability::Mut
            }
            _ => explicit_mutbl,
        };
        // FIXME(eddyb) this should maybe be an extension method on `StorageClass`?
        let expected_mutbl_for = |storage_class| match storage_class {
            StorageClass::UniformConstant
            | StorageClass::Input
            | StorageClass::Uniform
            | StorageClass::PushConstant => hir::Mutability::Not,

            // FIXME(eddyb) further categorize this by which want interior
            // mutability (+`Sync`!), likely almost all of them, and which
            // can be per-lane-owning `&mut T`.
            _ => hir::Mutability::Mut,
        };
        let value_spirv_type = value_layout.spirv_type(hir_param.ty_span, self);
        // Some types automatically specify a storage class. Compute that here.
        let element_ty = match self.lookup_type(value_spirv_type) {
            SpirvType::Array { element, .. } | SpirvType::RuntimeArray { element } => {
                self.lookup_type(element)
            }
            ty => ty,
        };
        let deduced_storage_class_from_ty = match element_ty {
            SpirvType::Image { .. }
            | SpirvType::Sampler
            | SpirvType::SampledImage { .. }
            | SpirvType::AccelerationStructureKhr { .. } => {
                if is_ref {
                    Some(StorageClass::UniformConstant)
                } else {
                    self.tcx.dcx().span_err(
                        hir_param.ty_span,
                        format!(
                            "entry parameter type must be by-reference: `&{}`",
                            value_layout.ty,
                        ),
                    );
                    None
                }
            }
            _ => None,
        };
        // Storage classes can be specified via attribute. Compute that here, and emit diagnostics.
        let attr_storage_class = attrs.storage_class.map(|storage_class_attr| {
            let storage_class = storage_class_attr.value;

            if !is_ref {
                self.tcx.dcx().span_fatal(
                    hir_param.ty_span,
                    format!(
                        "invalid entry param type `{}` for storage class `{storage_class:?}` \
                         (expected `&{}T`)",
                        value_layout.ty,
                        expected_mutbl_for(storage_class).prefix_str()
                    ),
                )
            }

            match deduced_storage_class_from_ty {
                Some(deduced) if storage_class == deduced => self.tcx.dcx().span_warn(
                    storage_class_attr.span,
                    "redundant storage class attribute, storage class is deduced from type",
                ),
                Some(deduced) => {
                    self.tcx
                        .dcx()
                        .struct_span_err(hir_param.span, "storage class mismatch")
                        .with_span_label(
                            storage_class_attr.span,
                            format!("`{storage_class:?}` specified in attribute"),
                        )
                        .with_span_label(
                            hir_param.ty_span,
                            format!("`{deduced:?}` deduced from type"),
                        )
                        .with_help(format!(
                            "remove storage class attribute to use `{deduced:?}` as storage class"
                        ))
                        .emit();
                }
                None => (),
            }

            storage_class
        });
        // If storage class was not deduced nor specified, compute the default (i.e. input/output)
        let storage_class = deduced_storage_class_from_ty
            .or(attr_storage_class)
            .unwrap_or_else(|| match (is_ref, explicit_mutbl) {
                (false, _) => StorageClass::Input,
                (true, hir::Mutability::Mut) => StorageClass::Output,
                (true, hir::Mutability::Not) => self.tcx.dcx().span_fatal(
                    hir_param.ty_span,
                    format!(
                        "invalid entry param type `{}` (expected `{}` or `&mut {1}`)",
                        ref_or_value_layout.ty, value_layout.ty
                    ),
                ),
            });

        // Validate reference mutability against the *final* storage class.
        let read_only = effective_mutbl == hir::Mutability::Not;
        if is_ref {
            // FIXME(eddyb) named booleans make uses a bit more readable.
            let ref_is_read_only = read_only;
            let storage_class_requires_read_only =
                expected_mutbl_for(storage_class) == hir::Mutability::Not;
            if !ref_is_read_only && storage_class_requires_read_only {
                let mut err = self.tcx.dcx().struct_span_err(
                    hir_param.ty_span,
                    format!("entry-point requires {}...", match explicit_mutbl {
                        hir::Mutability::Not => "interior mutability",
                        hir::Mutability::Mut => "a mutable reference",
                    }),
                );
                {
                    let note_message =
                        format!("...but storage class `{storage_class:?}` is read-only");
                    let (note_label_span, note_label) =
                        if let Some(storage_class_attr) = attrs.storage_class {
                            (
                                storage_class_attr.span,
                                format!("`{storage_class:?}` specified in attribute"),
                            )
                        } else {
                            (
                                hir_param.ty_span,
                                format!("`{storage_class:?}` deduced from type"),
                            )
                        };
                    // HACK(eddyb) have to use `MultiSpan` directly for labels,
                    // as there's no `span_label` equivalent for `span_note`s.
                    let mut note_multi_span: MultiSpan = vec![note_label_span].into();
                    note_multi_span.push_span_label(note_label_span, note_label);
                    err.span_note(note_multi_span, note_message);
                }
                err.emit();
            }
        }

        // HACK(eddyb) only handle `attrs.spec_constant` after everything above
        // would've assumed it was actually an implicitly-`Input`.
        let mut storage_class = Ok(storage_class);
        if let Some(spec_constant) = attrs.spec_constant {
            if ref_or_value_layout.ty != self.tcx.types.u32 {
                self.tcx.dcx().span_err(
                    hir_param.ty_span,
                    format!(
                        "unsupported `#[spirv(spec_constant)]` type `{}` (expected `{}`)",
                        ref_or_value_layout.ty, self.tcx.types.u32
                    ),
                );
            } else if let Some(storage_class) = attrs.storage_class {
                self.tcx.dcx().span_err(
                    storage_class.span,
                    "`#[spirv(spec_constant)]` cannot have a storage class",
                );
            } else {
                assert_eq!(storage_class, Ok(StorageClass::Input));
                assert!(!is_ref);
                storage_class = Err(spec_constant.value);
            }
        }

        EntryParamDeducedFromRustRefOrValue {
            value_layout,
            storage_class,
            read_only,
        }
    }

    #[allow(clippy::too_many_arguments)]
    fn declare_shader_interface_for_param(
        &self,
        execution_model: ExecutionModel,
        entry_arg_abi: &ArgAbi<'tcx, Ty<'tcx>>,
        hir_param: &hir::Param<'tcx>,
        op_entry_point_interface_operands: &mut Vec<Word>,
        bx: &mut Builder<'_, 'tcx>,
        call_args: &mut Vec<SpirvValue>,
        decoration_locations: &mut FxHashMap<StorageClass, u32>,
    ) {
        let attrs = AggregatedSpirvAttributes::parse(self, self.tcx.hir().attrs(hir_param.hir_id));

        let EntryParamDeducedFromRustRefOrValue {
            value_layout,
            storage_class,
            read_only,
        } = self.entry_param_deduce_from_rust_ref_or_value(entry_arg_abi.layout, hir_param, &attrs);
        let value_spirv_type = value_layout.spirv_type(hir_param.ty_span, self);

        let (var_id, spec_const_id) = match storage_class {
            // Pre-allocate the module-scoped `OpVariable` *Result* ID.
            Ok(_) => (
                Ok(self.emit_global().id()),
                Err("entry-point interface variable is not a `#[spirv(spec_constant)]`"),
            ),
            Err(SpecConstant { id, default }) => {
                let mut emit = self.emit_global();
                let spec_const_id =
                    emit.spec_constant_bit32(value_spirv_type, default.unwrap_or(0));
                emit.decorate(spec_const_id, Decoration::SpecId, [Operand::LiteralBit32(
                    id,
                )]);
                (
                    Err("`#[spirv(spec_constant)]` is not an entry-point interface variable"),
                    Ok(spec_const_id),
                )
            }
        };

        // Emit decorations deduced from the reference/value Rust type.
        if read_only {
            // NOTE(eddyb) it appears only `StorageBuffer`s simultaneously:
            // - allow `NonWritable` decorations on shader interface variables
            // - default to writable (i.e. the decoration actually has an effect)
            if storage_class == Ok(StorageClass::StorageBuffer) {
                self.emit_global()
                    .decorate(var_id.unwrap(), Decoration::NonWritable, []);
            }
        }

        // Certain storage classes require an `OpTypeStruct` decorated with `Block`,
        // which we represent with `SpirvType::InterfaceBlock` (see its doc comment).
        // This "interface block" construct is also required for "runtime arrays".
        let is_unsized = self.lookup_type(value_spirv_type).sizeof(self).is_none();
        let is_pair = matches!(entry_arg_abi.mode, PassMode::Pair(..));
        let is_unsized_with_len = is_pair && is_unsized;
        // HACK(eddyb) sanity check because we get the same information in two
        // very different ways, and going out of sync could cause subtle issues.
        assert_eq!(
            is_unsized_with_len,
            value_layout.is_unsized(),
            "`{}` param mismatch in call ABI (is_pair={is_pair}) + \
             SPIR-V type (is_unsized={is_unsized}) \
             vs layout:\n{value_layout:#?}",
            entry_arg_abi.layout.ty
        );
        if is_pair && !is_unsized {
            // If PassMode is Pair, then we need to fill in the second part of the pair with a
            // value. We currently only do that with unsized types, so if a type is a pair for some
            // other reason (e.g. a tuple), we bail.
            self.tcx
                .dcx()
                .span_fatal(hir_param.ty_span, "pair type not supported yet")
        }
        // FIXME(eddyb) should this talk about "typed buffers" instead of "interface blocks"?
        // FIXME(eddyb) should we talk about "descriptor indexing" or
        // actually use more reasonable terms like "resource arrays"?
        let needs_interface_block_and_supports_descriptor_indexing = matches!(
            storage_class,
            Ok(StorageClass::Uniform | StorageClass::StorageBuffer)
        );
        let needs_interface_block = needs_interface_block_and_supports_descriptor_indexing
            || storage_class == Ok(StorageClass::PushConstant);
        // NOTE(eddyb) `#[spirv(typed_buffer)]` adds `SpirvType::InterfaceBlock`s
        // which must bypass the automated ones (i.e. the user is taking control).
        let has_explicit_interface_block = needs_interface_block_and_supports_descriptor_indexing
            && {
                // Peel off arrays first (used for "descriptor indexing").
                let outermost_or_array_element = match self.lookup_type(value_spirv_type) {
                    SpirvType::Array { element, .. } | SpirvType::RuntimeArray { element } => {
                        element
                    }
                    _ => value_spirv_type,
                };
                matches!(
                    self.lookup_type(outermost_or_array_element),
                    SpirvType::InterfaceBlock { .. }
                )
            };
        let var_ptr_spirv_type;
        let (value_ptr, value_len) = if needs_interface_block && !has_explicit_interface_block {
            let var_spirv_type = SpirvType::InterfaceBlock {
                inner_type: value_spirv_type,
            }
            .def(hir_param.span, self);
            var_ptr_spirv_type = self.type_ptr_to(var_spirv_type);

            let zero_u32 = self.constant_u32(hir_param.span, 0).def_cx(self);
            let value_ptr_spirv_type = self.type_ptr_to(value_spirv_type);
            let value_ptr = bx
                .emit()
                .in_bounds_access_chain(
                    value_ptr_spirv_type,
                    None,
                    var_id.unwrap(),
                    [zero_u32].iter().cloned(),
                )
                .unwrap()
                .with_type(value_ptr_spirv_type);

            let value_len = if is_unsized_with_len {
                match self.lookup_type(value_spirv_type) {
                    SpirvType::RuntimeArray { .. } => {}
                    _ => {
                        self.tcx.dcx().span_err(
                            hir_param.ty_span,
                            "only plain slices are supported as unsized types",
                        );
                    }
                }

                // FIXME(eddyb) shouldn't this be `usize`?
                let len_spirv_type = self.type_isize();
                let len = bx
                    .emit()
                    .array_length(len_spirv_type, None, var_id.unwrap(), 0)
                    .unwrap();

                Some(len.with_type(len_spirv_type))
            } else {
                if is_unsized {
                    // It's OK to use a RuntimeArray<u32> and not have a length parameter, but
                    // it's just nicer ergonomics to use a slice.
                    self.tcx
                        .dcx()
                        .span_warn(hir_param.ty_span, "use &[T] instead of &RuntimeArray<T>");
                }
                None
            };

            (Ok(value_ptr), value_len)
        } else {
            var_ptr_spirv_type = self.type_ptr_to(value_spirv_type);

            // FIXME(eddyb) should we talk about "descriptor indexing" or
            // actually use more reasonable terms like "resource arrays"?
            let unsized_is_descriptor_indexing =
                needs_interface_block_and_supports_descriptor_indexing
                    || storage_class == Ok(StorageClass::UniformConstant);
            if unsized_is_descriptor_indexing {
                match self.lookup_type(value_spirv_type) {
                    SpirvType::RuntimeArray { .. } => {
                        if is_unsized_with_len {
                            self.tcx.dcx().span_err(
                                hir_param.ty_span,
                                "descriptor indexing must use &RuntimeArray<T>, not &[T]",
                            );
                        }
                    }
                    _ => {
                        if is_unsized {
                            self.tcx.dcx().span_err(
                                hir_param.ty_span,
                                "only RuntimeArray is supported, not other unsized types",
                            );
                        }
                    }
                }
            } else {
                // FIXME(eddyb) determine, based on the type, what kind of type
                // this is, to narrow it further to e.g. "buffer in a non-buffer
                // storage class" or "storage class expects fixed data sizes".
                if is_unsized {
                    self.tcx.dcx().span_fatal(
                        hir_param.ty_span,
                        format!(
                            "unsized types are not supported for {}",
                            match storage_class {
                                Ok(storage_class) => format!("storage class {storage_class:?}"),
                                Err(SpecConstant { .. }) => "`#[spirv(spec_constant)]`".into(),
                            },
                        ),
                    );
                }
            }

            let value_len = if is_pair {
                // We've already emitted an error, fill in a placeholder value
                Some(bx.undef(self.type_isize()))
            } else {
                None
            };

            (
                var_id.map(|var_id| var_id.with_type(var_ptr_spirv_type)),
                value_len,
            )
        };

        // Compute call argument(s) to match what the Rust entry `fn` expects,
        // starting from the `value_ptr` pointing to a `value_spirv_type`
        // (e.g. `Input` doesn't use indirection, so we have to load from it).
        if let ty::Ref(..) = entry_arg_abi.layout.ty.kind() {
            call_args.push(value_ptr.unwrap());
            match entry_arg_abi.mode {
                PassMode::Direct(_) => assert_eq!(value_len, None),
                PassMode::Pair(..) => call_args.push(value_len.unwrap()),
                _ => unreachable!(),
            }
        } else {
            assert_matches!(entry_arg_abi.mode, PassMode::Direct(_));

            let value = match storage_class {
                Ok(_) => {
                    assert_eq!(storage_class, Ok(StorageClass::Input));
                    bx.load(
                        entry_arg_abi.layout.spirv_type(hir_param.ty_span, bx),
                        value_ptr.unwrap(),
                        entry_arg_abi.layout.align.abi,
                    )
                }
                Err(SpecConstant { .. }) => spec_const_id.unwrap().with_type(value_spirv_type),
            };
            call_args.push(value);
            assert_eq!(value_len, None);
        }

        // FIXME(eddyb) check whether the storage class is compatible with the
        // specific shader stage of this entry-point, and any decorations
        // (e.g. Vulkan has specific rules for builtin storage classes).

        // Emit `OpName` in the simple case of a pattern that's just a variable
        // name (e.g. "foo" for `foo: Vec3`). While `OpName` is *not* supposed
        // to be semantic, OpenGL and some tooling rely on it for reflection.
        if let hir::PatKind::Binding(_, _, ident, _) = &hir_param.pat.kind {
            self.emit_global()
                .name(var_id.or(spec_const_id).unwrap(), ident.to_string());
        }

        // Emit `OpDecorate`s based on attributes.
        let mut decoration_supersedes_location = false;
        if let Some(builtin) = attrs.builtin {
            if let Err(SpecConstant { .. }) = storage_class {
                self.tcx.dcx().span_fatal(
                    builtin.span,
                    format!(
                        "`#[spirv(spec_constant)]` cannot be `{:?}` builtin",
                        builtin.value
                    ),
                );
            }
            self.emit_global().decorate(
                var_id.unwrap(),
                Decoration::BuiltIn,
                std::iter::once(Operand::BuiltIn(builtin.value)),
            );
            decoration_supersedes_location = true;
        }
        if let Some(descriptor_set) = attrs.descriptor_set {
            if let Err(SpecConstant { .. }) = storage_class {
                self.tcx.dcx().span_fatal(
                    descriptor_set.span,
                    "`#[spirv(descriptor_set = ...)]` cannot apply to `#[spirv(spec_constant)]`",
                );
            }
            self.emit_global().decorate(
                var_id.unwrap(),
                Decoration::DescriptorSet,
                std::iter::once(Operand::LiteralBit32(descriptor_set.value)),
            );
            decoration_supersedes_location = true;
        }
        if let Some(binding) = attrs.binding {
            if let Err(SpecConstant { .. }) = storage_class {
                self.tcx.dcx().span_fatal(
                    binding.span,
                    "`#[spirv(binding = ...)]` cannot apply to `#[spirv(spec_constant)]`",
                );
            }
            self.emit_global().decorate(
                var_id.unwrap(),
                Decoration::Binding,
                std::iter::once(Operand::LiteralBit32(binding.value)),
            );
            decoration_supersedes_location = true;
        }
        if let Some(flat) = attrs.flat {
            if let Err(SpecConstant { .. }) = storage_class {
                self.tcx.dcx().span_fatal(
                    flat.span,
                    "`#[spirv(flat)]` cannot apply to `#[spirv(spec_constant)]`",
                );
            }
            self.emit_global()
                .decorate(var_id.unwrap(), Decoration::Flat, std::iter::empty());
        }
        if let Some(invariant) = attrs.invariant {
            if storage_class != Ok(StorageClass::Output) {
                self.tcx.dcx().span_fatal(
                    invariant.span,
                    "`#[spirv(invariant)]` is only valid on Output variables",
                );
            }
            self.emit_global()
                .decorate(var_id.unwrap(), Decoration::Invariant, std::iter::empty());
        }
        if let Some(per_primitive_ext) = attrs.per_primitive_ext {
            match execution_model {
                ExecutionModel::Fragment => {
                    if storage_class != Ok(StorageClass::Input) {
                        self.tcx.dcx().span_fatal(
                            per_primitive_ext.span,
                            "`#[spirv(per_primitive_ext)]` in fragment shaders is only valid on Input variables",
                        );
                    }
                }
                ExecutionModel::MeshNV | ExecutionModel::MeshEXT => {
                    if storage_class != Ok(StorageClass::Output) {
                        self.tcx.dcx().span_fatal(
                            per_primitive_ext.span,
                            "`#[spirv(per_primitive_ext)]` in mesh shaders is only valid on Output variables",
                        );
                    }
                }
                _ => {
                    self.tcx.dcx().span_fatal(
                        per_primitive_ext.span,
                        "`#[spirv(per_primitive_ext)]` is only valid in fragment or mesh shaders",
                    );
                }
            }

            self.emit_global().decorate(
                var_id.unwrap(),
                Decoration::PerPrimitiveEXT,
                std::iter::empty(),
            );
        }

        let is_subpass_input = match self.lookup_type(value_spirv_type) {
            SpirvType::Image {
                dim: Dim::DimSubpassData,
                ..
            } => true,
            SpirvType::RuntimeArray { element: elt, .. }
            | SpirvType::Array { element: elt, .. } => {
                matches!(self.lookup_type(elt), SpirvType::Image {
                    dim: Dim::DimSubpassData,
                    ..
                })
            }
            _ => false,
        };
        if let Some(attachment_index) = attrs.input_attachment_index {
            if is_subpass_input && self.builder.has_capability(Capability::InputAttachment) {
                self.emit_global().decorate(
                    var_id.unwrap(),
                    Decoration::InputAttachmentIndex,
                    std::iter::once(Operand::LiteralBit32(attachment_index.value)),
                );
            } else if is_subpass_input {
                self.tcx
                    .dcx()
                    .span_err(hir_param.ty_span, "Missing capability InputAttachment");
            } else {
                self.tcx.dcx().span_err(
                    attachment_index.span,
                    "#[spirv(input_attachment_index)] is only valid on Image types with dim = SubpassData"
                );
            }
            decoration_supersedes_location = true;
        } else if is_subpass_input {
            self.tcx.dcx().span_err(
                hir_param.ty_span,
                "Image types with dim = SubpassData require #[spirv(input_attachment_index)] decoration",
            );
        }

        if let Ok(storage_class) = storage_class {
            self.check_for_bad_types(
                execution_model,
                hir_param.ty_span,
                var_ptr_spirv_type,
                storage_class,
                attrs.builtin.is_some(),
                attrs.flat,
            );
        }

        // Assign locations from left to right, incrementing each storage class
        // individually.
        // TODO: Is this right for UniformConstant? Do they share locations with
        // input/outpus?
        let has_location = !decoration_supersedes_location
            && matches!(
                storage_class,
                Ok(StorageClass::Input | StorageClass::Output | StorageClass::UniformConstant)
            );
        if has_location {
            let location = decoration_locations
                .entry(storage_class.unwrap())
                .or_insert_with(|| 0);
            self.emit_global().decorate(
                var_id.unwrap(),
                Decoration::Location,
                std::iter::once(Operand::LiteralBit32(*location)),
            );
            *location += 1;
        }

        match storage_class {
            Ok(storage_class) => {
                let var = var_id.unwrap();

                // Emit the `OpVariable` with its *Result* ID set to `var_id`.
                self.emit_global()
                    .variable(var_ptr_spirv_type, Some(var), storage_class, None);

                // Record this `OpVariable` as needing to be added (if applicable),
                // to the *Interface* operands of the `OpEntryPoint` instruction.
                if self.emit_global().version().unwrap() > (1, 3) {
                    // SPIR-V >= v1.4 includes all OpVariables in the interface.
                    op_entry_point_interface_operands.push(var);
                } else {
                    // SPIR-V <= v1.3 only includes Input and Output in the interface.
                    if storage_class == StorageClass::Input || storage_class == StorageClass::Output
                    {
                        op_entry_point_interface_operands.push(var);
                    }
                }
            }
            Err(not_var) => {
                // Emitted earlier.
                let SpecConstant { .. } = not_var;
            }
        }
    }

    // Booleans are only allowed in some storage classes. Error if they're in others.
    // Integers and `f64`s must be decorated with `#[spirv(flat)]`.
    fn check_for_bad_types(
        &self,
        execution_model: ExecutionModel,
        span: Span,
        ty: Word,
        storage_class: StorageClass,
        is_builtin: bool,
        flat_attr: Option<Spanned<()>>,
    ) {
        // private and function are allowed here, but they can't happen.
        if matches!(
            storage_class,
            StorageClass::Workgroup | StorageClass::CrossWorkgroup
        ) {
            return;
        }

        let mut has_bool = false;
        let mut type_must_be_flat = false;
        recurse(self, ty, &mut has_bool, &mut type_must_be_flat);

        // SPIR-V technically allows all input/output variables to be booleans, not just builtins,
        // but has a note:
        // > Khronos Issue #363: OpTypeBool can be used in the Input and Output storage classes,
        //   but the client APIs still only allow built-in Boolean variables (e.g. FrontFacing),
        //   not user variables.
        // spirv-val disallows non-builtin inputs/outputs, so we do too, I guess.
        if has_bool
            && !(is_builtin && matches!(storage_class, StorageClass::Input | StorageClass::Output))
        {
            self.tcx
                .dcx()
                .span_err(span, "entry-point parameter cannot contain `bool`s");
        }

        // Enforce Vulkan validation rules around `Flat` as accurately as possible,
        // i.e. "interpolation control" can only be used "within" the rasterization
        // pipeline (roughly: `vertex (outputs) -> ... -> (inputs for) fragment`),
        // but not at the "outer" interface (vertex inputs/fragment outputs).
        // Also, fragment inputs *require* it for some ("uninterpolatable") types.
        // FIXME(eddyb) maybe this kind of `enum` could be placed elsewhere?
        enum Force {
            Disallow,
            Require,
        }
        #[allow(clippy::match_same_arms)]
        let flat_forced = match (execution_model, storage_class) {
            // VUID-StandaloneSpirv-Flat-06202
            // > The `Flat`, `NoPerspective`, `Sample`, and `Centroid` decorations **must**
            // > not be used on variables with the `Input` storage class in a vertex shader
            (ExecutionModel::Vertex, StorageClass::Input) => Some(Force::Disallow),

            // VUID-StandaloneSpirv-Flat-04744
            // > Any variable with integer or double-precision floating-point type and
            // > with `Input` storage class in a fragment shader, **must** be decorated `Flat`
            (ExecutionModel::Fragment, StorageClass::Input) if type_must_be_flat => {
                // FIXME(eddyb) shouldn't this be automatic then? (maybe with a warning?)
                Some(Force::Require)
            }

            // VUID-StandaloneSpirv-Flat-06201
            // > The `Flat`, `NoPerspective`, `Sample`, and `Centroid` decorations **must**
            // > not be used on variables with the `Output` storage class in a fragment shader
            (ExecutionModel::Fragment, StorageClass::Output) => Some(Force::Disallow),

            // VUID-StandaloneSpirv-Flat-04670
            // > The `Flat`, `NoPerspective`, `Sample`, and `Centroid` decorations **must**
            // > only be used on variables with the `Output` or `Input` storage class
            (_, StorageClass::Input | StorageClass::Output) => None,
            _ => Some(Force::Disallow),
        };

        let flat_mismatch = match (flat_forced, flat_attr) {
            (Some(Force::Disallow), Some(flat_attr)) => Some((flat_attr.span, "cannot")),
            // FIXME(eddyb) it would be useful to show the type that required it.
            (Some(Force::Require), None) => Some((span, "must")),
            _ => None,
        };
        if let Some((span, must_or_cannot)) = flat_mismatch {
            self.tcx.dcx().span_err(
                span,
                format!(
                    "`{execution_model:?}` entry-point `{storage_class:?}` parameter \
                     {must_or_cannot} be decorated with `#[spirv(flat)]`"
                ),
            );
        }

        fn recurse(cx: &CodegenCx<'_>, ty: Word, has_bool: &mut bool, must_be_flat: &mut bool) {
            match cx.lookup_type(ty) {
                SpirvType::Bool => *has_bool = true,
                SpirvType::Integer(_, _) | SpirvType::Float(64) => *must_be_flat = true,
                SpirvType::Adt { field_types, .. } => {
                    for &f in field_types {
                        recurse(cx, f, has_bool, must_be_flat);
                    }
                }
                SpirvType::Vector { element, .. }
                | SpirvType::Matrix { element, .. }
                | SpirvType::Array { element, .. }
                | SpirvType::RuntimeArray { element }
                | SpirvType::Pointer { pointee: element }
                | SpirvType::InterfaceBlock {
                    inner_type: element,
                } => recurse(cx, element, has_bool, must_be_flat),
                SpirvType::Function {
                    return_type,
                    arguments,
                } => {
                    recurse(cx, return_type, has_bool, must_be_flat);
                    for &a in arguments {
                        recurse(cx, a, has_bool, must_be_flat);
                    }
                }
                _ => (),
            }
        }
    }
}