rustc_codegen_spirv/linker/
duplicates.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
use crate::custom_insts::{self, CustomOp};
use rspirv::binary::Assemble;
use rspirv::dr::{Instruction, Module, Operand};
use rspirv::spirv::{Op, Word};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_middle::bug;
use smallvec::SmallVec;
use std::collections::hash_map;
use std::mem;

// FIXME(eddyb) consider deduplicating the `OpString` and `OpSource` created for
// file-level debuginfo (but using SPIR-T for linking might be better?).

pub fn remove_duplicate_extensions(module: &mut Module) {
    let mut set = FxHashSet::default();

    module.extensions.retain(|inst| {
        inst.class.opcode != Op::Extension
            || set.insert(inst.operands[0].unwrap_literal_string().to_string())
    });
}

pub fn remove_duplicate_capabilities(module: &mut Module) {
    let mut set = FxHashSet::default();
    module.capabilities.retain(|inst| {
        inst.class.opcode != Op::Capability || set.insert(inst.operands[0].unwrap_capability())
    });
}

pub fn remove_duplicate_ext_inst_imports(module: &mut Module) {
    // This is a simpler version of remove_duplicate_types, see that for comments
    let mut ext_to_id = FxHashMap::default();
    let mut rewrite_rules = FxHashMap::default();

    // First deduplicate the imports
    for inst in &mut module.ext_inst_imports {
        if let Operand::LiteralString(ext_inst_import) = &inst.operands[0] {
            match ext_to_id.entry(ext_inst_import.clone()) {
                hash_map::Entry::Vacant(entry) => {
                    entry.insert(inst.result_id.unwrap());
                }
                hash_map::Entry::Occupied(entry) => {
                    let old_value = rewrite_rules.insert(inst.result_id.unwrap(), *entry.get());
                    assert!(old_value.is_none());
                    // We're iterating through the vec, so removing items is hard - nop it out.
                    *inst = Instruction::new(Op::Nop, None, None, vec![]);
                }
            }
        }
    }

    // Delete the nops we inserted
    module
        .ext_inst_imports
        .retain(|op| op.class.opcode != Op::Nop);

    // Then rewrite all OpExtInst referencing the rewritten IDs
    for inst in module.all_inst_iter_mut() {
        if inst.class.opcode == Op::ExtInst {
            if let Operand::IdRef(ref mut id) = inst.operands[0] {
                *id = rewrite_rules.get(id).copied().unwrap_or(*id);
            }
        }
    }
}

fn make_annotation_key(inst: &Instruction) -> Vec<u32> {
    let mut data = vec![inst.class.opcode as u32];

    // skip over the target ID
    for op in inst.operands.iter().skip(1) {
        op.assemble_into(&mut data);
    }

    data
}

fn gather_annotations(annotations: &[Instruction]) -> FxHashMap<Word, Vec<u32>> {
    let mut map = FxHashMap::default();
    for inst in annotations {
        match inst.class.opcode {
            Op::Decorate
            | Op::DecorateId
            | Op::DecorateString
            | Op::MemberDecorate
            | Op::MemberDecorateString => match map.entry(inst.operands[0].id_ref_any().unwrap()) {
                hash_map::Entry::Vacant(entry) => {
                    entry.insert(vec![make_annotation_key(inst)]);
                }
                hash_map::Entry::Occupied(mut entry) => {
                    entry.get_mut().push(make_annotation_key(inst));
                }
            },
            _ => {}
        }
    }
    map.into_iter()
        .map(|(key, mut value)| {
            (key, {
                value.sort();
                value.concat()
            })
        })
        .collect()
}

fn gather_names(debug_names: &[Instruction]) -> FxHashMap<Word, String> {
    debug_names
        .iter()
        .filter(|inst| inst.class.opcode == Op::Name)
        .map(|inst| {
            (
                inst.operands[0].unwrap_id_ref(),
                inst.operands[1].unwrap_literal_string().to_owned(),
            )
        })
        .collect()
}

fn make_dedupe_key(
    inst: &Instruction,
    unresolved_forward_pointers: &FxHashSet<Word>,
    annotations: &FxHashMap<Word, Vec<u32>>,
    names: &FxHashMap<Word, String>,
) -> Vec<u32> {
    let mut data = vec![inst.class.opcode as u32];

    if let Some(id) = inst.result_type {
        // We're not only deduplicating types here, but constants as well. Those contain result_types, and so we
        // need to include those here. For example, OpConstant can have the same arg, but different result_type,
        // and it should not be deduplicated (e.g. the constants 1u8 and 1u16).
        data.push(id);
    }
    for op in &inst.operands {
        if let Operand::IdRef(id) = op {
            if unresolved_forward_pointers.contains(id) {
                // TODO: This is implementing forward pointers incorrectly. All unresolved forward pointers will
                // compare equal.
                Operand::IdRef(0).assemble_into(&mut data);
            } else {
                op.assemble_into(&mut data);
            }
        } else {
            op.assemble_into(&mut data);
        }
    }
    if let Some(id) = inst.result_id {
        if let Some(annos) = annotations.get(&id) {
            data.extend_from_slice(annos);
        }
        if inst.class.opcode == Op::Variable {
            // Names only matter for OpVariable.
            if let Some(name) = names.get(&id) {
                // Jump through some hoops to shove a String into a Vec<u32>.
                //
                // FIXME(eddyb) this should `.assemble_into(&mut data)` the
                // `Operand::LiteralString(...)` from the original `Op::Name`.
                for chunk in name.as_bytes().chunks(4) {
                    let slice = match *chunk {
                        [a] => [a, 0, 0, 0],
                        [a, b] => [a, b, 0, 0],
                        [a, b, c] => [a, b, c, 0],
                        [a, b, c, d] => [a, b, c, d],
                        _ => bug!(),
                    };
                    data.push(u32::from_le_bytes(slice));
                }
            }
        }
    }

    data
}

fn rewrite_inst_with_rules(inst: &mut Instruction, rules: &FxHashMap<u32, u32>) {
    if let Some(ref mut id) = inst.result_type {
        // If the rewrite rules contain this ID, replace with the mapped value, otherwise don't touch it.
        *id = rules.get(id).copied().unwrap_or(*id);
    }
    for op in &mut inst.operands {
        if let Some(id) = op.id_ref_any_mut() {
            *id = rules.get(id).copied().unwrap_or(*id);
        }
    }
}

pub fn remove_duplicate_types(module: &mut Module) {
    // Keep in mind, this algorithm requires forward type references to not exist - i.e. it's a valid spir-v module.

    // When a duplicate type is encountered, then this is a map from the deleted ID, to the new, deduplicated ID.
    let mut rewrite_rules = FxHashMap::default();
    // Instructions are encoded into "keys": their opcode, followed by arguments, then annotations.
    // Importantly, result_id is left out. This means that any instruction that declares the same
    // type, but with different result_id, will result in the same key.
    let mut key_to_result_id = FxHashMap::default();
    // TODO: This is implementing forward pointers incorrectly.
    let mut unresolved_forward_pointers = FxHashSet::default();

    // Collect a map from type ID to an annotation "key blob" (to append to the type key)
    let annotations = gather_annotations(&module.annotations);
    let names = gather_names(&module.debug_names);

    for inst in &mut module.types_global_values {
        if inst.class.opcode == Op::TypeForwardPointer {
            if let Operand::IdRef(id) = inst.operands[0] {
                unresolved_forward_pointers.insert(id);
                continue;
            }
        }
        if inst.class.opcode == Op::TypePointer
            && unresolved_forward_pointers.contains(&inst.result_id.unwrap())
        {
            unresolved_forward_pointers.remove(&inst.result_id.unwrap());
        }
        // This is an important spot: Say that we come upon a duplicated aggregate type (one that references
        // other types). Its arguments may be duplicated themselves, and so building the key directly will fail
        // to match up with the first type. However, **because forward references are not allowed**, we're
        // guaranteed to have already found and deduplicated the argument types! So that means the deduplication
        // translation is already in rewrite_rules, and we merely need to apply the mapping before generating
        // the key.
        // Nit: Overwriting the instruction isn't technically necessary, as it will get handled by the final
        // all_inst_iter_mut pass below. However, the code is a lil bit cleaner this way I guess.
        rewrite_inst_with_rules(inst, &rewrite_rules);

        let key = make_dedupe_key(inst, &unresolved_forward_pointers, &annotations, &names);

        match key_to_result_id.entry(key) {
            hash_map::Entry::Vacant(entry) => {
                // This is the first time we've seen this key. Insert the key into the map, registering this type as
                // something other types can deduplicate to.
                entry.insert(inst.result_id.unwrap());
            }
            hash_map::Entry::Occupied(entry) => {
                // We've already seen this key. We need to do two things:
                // 1) Add a rewrite rule from this type to the type that we saw before.
                let old_value = rewrite_rules.insert(inst.result_id.unwrap(), *entry.get());
                // 2) Erase this instruction. Because we're iterating over this vec, removing an element is hard, so
                // clear it with OpNop, and then remove it in the retain() call below.
                assert!(old_value.is_none());
                *inst = Instruction::new(Op::Nop, None, None, vec![]);
            }
        }
    }

    // We rewrote instructions we wanted to remove with OpNop. Remove them properly.
    module
        .types_global_values
        .retain(|op| op.class.opcode != Op::Nop);

    // Apply the rewrite rules to the whole module
    for inst in module.all_inst_iter_mut() {
        rewrite_inst_with_rules(inst, &rewrite_rules);
    }

    // The same decorations for duplicated types will cause those different types to merge
    // together. So, we need to deduplicate the annotations as well. (Note we *do* care about the
    // ID of the type being applied to here, unlike `gather_annotations`)
    let mut anno_set = FxHashSet::default();
    module
        .annotations
        .retain(|inst| anno_set.insert(inst.assemble()));
    // Same thing with OpName
    let mut name_ids = FxHashSet::default();
    let mut member_name_ids = FxHashSet::default();
    module.debug_names.retain(|inst| {
        (inst.class.opcode != Op::Name || name_ids.insert(inst.operands[0].unwrap_id_ref()))
            && (inst.class.opcode != Op::MemberName
                || member_name_ids.insert((
                    inst.operands[0].unwrap_id_ref(),
                    inst.operands[1].unwrap_literal_bit32(),
                )))
    });
}

pub fn remove_duplicate_debuginfo(module: &mut Module) {
    // FIXME(eddyb) avoid repeating this across different passes/helpers.
    let custom_ext_inst_set_import = module
        .ext_inst_imports
        .iter()
        .find(|inst| {
            assert_eq!(inst.class.opcode, Op::ExtInstImport);
            inst.operands[0].unwrap_literal_string() == &custom_insts::CUSTOM_EXT_INST_SET[..]
        })
        .map(|inst| inst.result_id.unwrap());

    for func in &mut module.functions {
        for block in &mut func.blocks {
            // Ignore the terminator, it's effectively "outside" debuginfo.
            let (_, insts) = block.instructions.split_last_mut().unwrap();

            // HACK(eddyb) to make random access easier, we first replace unused
            // instructions with `OpNop`, and then remove all the `OpNop`s.

            #[derive(Clone)]
            struct DbgLocInst {
                inst_idx: usize,
                used: bool,
            }

            fn nop() -> Instruction {
                Instruction::new(Op::Nop, None, None, vec![])
            }
            impl DbgLocInst {
                fn nop_if_unused(&self, insts: &mut [Instruction]) {
                    if !self.used {
                        insts[self.inst_idx] = nop();
                    }
                }
            }

            #[derive(Clone, Default)]
            struct DbgState {
                loc: Option<DbgLocInst>,
                has_semantic_insts: bool,
            }
            let mut dbg = DbgState::default();

            struct Frame {
                call_dbg: DbgState,
                push_inst_idx: usize,
            }
            let mut inlined_frames = SmallVec::<[Frame; 8]>::new();

            // HACK(eddyb) `PopInlinedCallFrame` moves `inlined_frames.last()`
            // `fusable_freshly_popped_inlined_frames.last()`, so a sequence of
            // N pops will reverse the N last entries of `inlined_frames` into
            // this vector (and go from outside-in, to inside-out), which allows
            // *fusing* a pop with a push (of an identical inlined frame), when
            // no interverning instructions prevent it (such instructions will
            // clear this vector to indicate the pops are "fully committed").
            struct PoppedFrame {
                frame: Frame,
                callee_has_semantic_insts: bool,
                pop_inst_idx: usize,
            }
            let mut fusable_freshly_popped_inlined_frames = SmallVec::<[PoppedFrame; 8]>::new();

            for inst_idx in 0..insts.len() {
                let inst = &insts[inst_idx];
                let custom_op = match inst.class.opcode {
                    Op::ExtInst
                        if Some(inst.operands[0].unwrap_id_ref()) == custom_ext_inst_set_import =>
                    {
                        Some(CustomOp::decode_from_ext_inst(inst))
                    }
                    _ => None,
                };

                fn inst_eq_key(inst: &Instruction) -> impl PartialEq + '_ {
                    (inst.class.opcode, &inst.operands)
                }

                // NOTE(eddyb) `fusable_freshly_popped_inlined_frames`-preserving
                // cases must all use `if can_continue { continue; }` to skip the
                // draining logic (`can_continue` is only `false` at the very end).
                let can_continue = inst_idx < insts.len() - 1;
                let prev_dbg_loc_snapshot = dbg.loc.clone();
                match (inst.class.opcode, custom_op) {
                    (Op::Line | Op::NoLine, _)
                    | (_, Some(CustomOp::SetDebugSrcLoc | CustomOp::ClearDebugSrcLoc)) => {
                        // HACK(eddyb) prefer keeping older active `DbgLocInst`s,
                        // if all the details are the same (it helps with fusion).
                        if dbg.loc.as_ref().is_some_and(|old_dbg_loc| {
                            inst_eq_key(inst) == inst_eq_key(&insts[old_dbg_loc.inst_idx])
                        }) {
                            insts[inst_idx] = nop();
                            if can_continue {
                                continue;
                            }
                        } else {
                            dbg.loc = Some(DbgLocInst {
                                inst_idx,
                                used: false,
                            });
                        }
                    }
                    (_, Some(CustomOp::PushInlinedCallFrame)) => {
                        // HACK(eddyb) attempt fusing this push with the last pop.
                        let fuse_with_last_pop = fusable_freshly_popped_inlined_frames
                            .last()
                            .is_some_and(|last_popped| {
                                // HACK(eddyb) updating `dbg.loc` deduplicates eagerly,
                                // so here it suffices to check the (deduped) indices.
                                let dbg_loc_inst_idx =
                                    |dbg: &DbgState| dbg.loc.as_ref().map(|d| d.inst_idx);
                                dbg_loc_inst_idx(&last_popped.frame.call_dbg)
                                    == dbg_loc_inst_idx(&dbg)
                                    && inst_eq_key(inst)
                                        == inst_eq_key(&insts[last_popped.frame.push_inst_idx])
                            });
                        if fuse_with_last_pop {
                            let PoppedFrame {
                                frame,
                                callee_has_semantic_insts,
                                pop_inst_idx,
                            } = fusable_freshly_popped_inlined_frames.pop().unwrap();

                            insts[pop_inst_idx] = nop();

                            // Can't make entering an inlined function a nop,
                            // as it needs to reset callee-side `DbgLocInst`,
                            // but we can replace it in-place and hope later
                            // it get nop'd out by some real `DbgLocInst`.
                            insts[inst_idx]
                                .operands
                                .splice(1.., [Operand::LiteralExtInstInteger(
                                    CustomOp::ClearDebugSrcLoc as u32,
                                )]);
                            dbg = DbgState {
                                loc: Some(DbgLocInst {
                                    inst_idx,
                                    used: false,
                                }),
                                has_semantic_insts: callee_has_semantic_insts,
                            };

                            inlined_frames.push(frame);

                            // Allow further fusing to occur.
                            if can_continue {
                                continue;
                            }
                        } else {
                            // HACK(eddyb) the actual push to `inlined_frames` is
                            // done at the very end of the loop body, to be able
                            // to process any pending updates on the previous state.
                        }
                    }
                    (_, Some(CustomOp::PopInlinedCallFrame)) => {
                        // Leaving an inlined function doesn't use `DbgLocInst`.
                        if let Some(dbg_loc) = dbg.loc.take() {
                            // HACK(eddyb) only treat as "definitely unused"
                            // instructions that are too "recent" to have been
                            // used by a `PushInlinedCallFrame` with a still
                            // uncommitted `PopInlinedCallFrame`.
                            let min_safe_inst_idx_to_nop = fusable_freshly_popped_inlined_frames
                                .last()
                                .map_or(0, |last_popped| last_popped.pop_inst_idx);
                            if dbg_loc.inst_idx > min_safe_inst_idx_to_nop {
                                dbg_loc.nop_if_unused(insts);
                            }
                        }
                        if let Some(frame) = inlined_frames.pop() {
                            let callee_has_semantic_insts = dbg.has_semantic_insts;
                            dbg = frame.call_dbg.clone();
                            dbg.has_semantic_insts |= callee_has_semantic_insts;

                            // HACK(eddyb) inform future `PushInlinedCallFrame`s
                            // of potential fusion, by saving a copy of the frame.
                            fusable_freshly_popped_inlined_frames.push(PoppedFrame {
                                frame,
                                callee_has_semantic_insts,
                                pop_inst_idx: inst_idx,
                            });
                        } else {
                            // FIXME(eddyb) this may indicate a bug elsewhere.
                            insts[inst_idx] = nop();
                        }
                        if can_continue {
                            continue;
                        }
                    }
                    _ => {
                        if let Some(dbg_loc) = &mut dbg.loc {
                            dbg_loc.used = true;
                        }
                        dbg.has_semantic_insts = true;
                    }
                }

                // NOTE(eddyb) mutable so that it may be marked as used below.
                let mut freshly_replaced_dbg_loc = prev_dbg_loc_snapshot.filter(|prev_dbg_loc| {
                    dbg.loc.as_ref().map(|d| d.inst_idx) != Some(prev_dbg_loc.inst_idx)
                });

                // NOTE(eddyb) the iteration order doesn't matter, as this is
                // effectively a set of `PopInlinedCallFrame`s which have had
                // all their other side-effects processed, and didn't get a
                // chance to be fused away, so they're getting committed.
                for popped in fusable_freshly_popped_inlined_frames.drain(..) {
                    let PoppedFrame {
                        mut frame,
                        callee_has_semantic_insts,
                        pop_inst_idx,
                    } = popped;

                    // HACK(eddyb) this popped frame's `call_dbg.loc` may still
                    // be used elsewhere, in which case that use takes precedence,
                    // and is effectively the new "owner" of the `DbgLocInst`.
                    let call_dbg_loc_used_elsewhere =
                        frame.call_dbg.loc.as_ref().and_then(|call_dbg_loc| {
                            [dbg.loc.as_mut(), freshly_replaced_dbg_loc.as_mut()]
                                .into_iter()
                                .flatten()
                                .find(|dbg_loc| dbg_loc.inst_idx == call_dbg_loc.inst_idx)
                        });
                    if call_dbg_loc_used_elsewhere.is_some() {
                        frame.call_dbg.loc = None;
                    }

                    if callee_has_semantic_insts {
                        // The `PushInlinedCallFrame` being kept requires its
                        // original `DbgLocInst` to also be kept around.
                        if let Some(call_dbg_loc) = call_dbg_loc_used_elsewhere {
                            call_dbg_loc.used = true;
                        }
                    } else {
                        // If the entire inlined call is all `OpNop`s now,
                        // entering/leaving it can also become `OpNop`s.
                        if let Some(call_dbg_loc) = &mut frame.call_dbg.loc {
                            call_dbg_loc.nop_if_unused(insts);
                        }
                        insts[frame.push_inst_idx] = nop();
                        insts[pop_inst_idx] = nop();
                    }
                }

                // Only remove a replaced `DbgLocInst` after it had a chance to
                // be marked as used above (for e.g. a `PushInlinedCallFrame`).
                if let Some(old_dbg_loc) = freshly_replaced_dbg_loc {
                    old_dbg_loc.nop_if_unused(insts);
                }

                // HACK(eddyb) the actual push to `inlined_frames` is
                // done at the very end of the loop body, to be able
                // to process any pending updates on the previous state.
                if custom_op == Some(CustomOp::PushInlinedCallFrame) {
                    inlined_frames.push(Frame {
                        call_dbg: mem::take(&mut dbg),
                        push_inst_idx: inst_idx,
                    });
                }
            }

            assert!(fusable_freshly_popped_inlined_frames.is_empty());

            block
                .instructions
                .retain(|inst| inst.class.opcode != Op::Nop);
        }
    }
}