rustc_codegen_spirv/linker/duplicates.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
use crate::custom_insts::{self, CustomOp};
use rspirv::binary::Assemble;
use rspirv::dr::{Instruction, Module, Operand};
use rspirv::spirv::{Op, Word};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_middle::bug;
use smallvec::SmallVec;
use std::collections::hash_map;
use std::mem;
// FIXME(eddyb) consider deduplicating the `OpString` and `OpSource` created for
// file-level debuginfo (but using SPIR-T for linking might be better?).
pub fn remove_duplicate_extensions(module: &mut Module) {
let mut set = FxHashSet::default();
module.extensions.retain(|inst| {
inst.class.opcode != Op::Extension
|| set.insert(inst.operands[0].unwrap_literal_string().to_string())
});
}
pub fn remove_duplicate_capabilities(module: &mut Module) {
let mut set = FxHashSet::default();
module.capabilities.retain(|inst| {
inst.class.opcode != Op::Capability || set.insert(inst.operands[0].unwrap_capability())
});
}
pub fn remove_duplicate_ext_inst_imports(module: &mut Module) {
// This is a simpler version of remove_duplicate_types, see that for comments
let mut ext_to_id = FxHashMap::default();
let mut rewrite_rules = FxHashMap::default();
// First deduplicate the imports
for inst in &mut module.ext_inst_imports {
if let Operand::LiteralString(ext_inst_import) = &inst.operands[0] {
match ext_to_id.entry(ext_inst_import.clone()) {
hash_map::Entry::Vacant(entry) => {
entry.insert(inst.result_id.unwrap());
}
hash_map::Entry::Occupied(entry) => {
let old_value = rewrite_rules.insert(inst.result_id.unwrap(), *entry.get());
assert!(old_value.is_none());
// We're iterating through the vec, so removing items is hard - nop it out.
*inst = Instruction::new(Op::Nop, None, None, vec![]);
}
}
}
}
// Delete the nops we inserted
module
.ext_inst_imports
.retain(|op| op.class.opcode != Op::Nop);
// Then rewrite all OpExtInst referencing the rewritten IDs
for inst in module.all_inst_iter_mut() {
if inst.class.opcode == Op::ExtInst {
if let Operand::IdRef(ref mut id) = inst.operands[0] {
*id = rewrite_rules.get(id).copied().unwrap_or(*id);
}
}
}
}
fn make_annotation_key(inst: &Instruction) -> Vec<u32> {
let mut data = vec![inst.class.opcode as u32];
// skip over the target ID
for op in inst.operands.iter().skip(1) {
op.assemble_into(&mut data);
}
data
}
fn gather_annotations(annotations: &[Instruction]) -> FxHashMap<Word, Vec<u32>> {
let mut map = FxHashMap::default();
for inst in annotations {
match inst.class.opcode {
Op::Decorate
| Op::DecorateId
| Op::DecorateString
| Op::MemberDecorate
| Op::MemberDecorateString => match map.entry(inst.operands[0].id_ref_any().unwrap()) {
hash_map::Entry::Vacant(entry) => {
entry.insert(vec![make_annotation_key(inst)]);
}
hash_map::Entry::Occupied(mut entry) => {
entry.get_mut().push(make_annotation_key(inst));
}
},
_ => {}
}
}
map.into_iter()
.map(|(key, mut value)| {
(key, {
value.sort();
value.concat()
})
})
.collect()
}
fn gather_names(debug_names: &[Instruction]) -> FxHashMap<Word, String> {
debug_names
.iter()
.filter(|inst| inst.class.opcode == Op::Name)
.map(|inst| {
(
inst.operands[0].unwrap_id_ref(),
inst.operands[1].unwrap_literal_string().to_owned(),
)
})
.collect()
}
fn make_dedupe_key(
inst: &Instruction,
unresolved_forward_pointers: &FxHashSet<Word>,
annotations: &FxHashMap<Word, Vec<u32>>,
names: &FxHashMap<Word, String>,
) -> Vec<u32> {
let mut data = vec![inst.class.opcode as u32];
if let Some(id) = inst.result_type {
// We're not only deduplicating types here, but constants as well. Those contain result_types, and so we
// need to include those here. For example, OpConstant can have the same arg, but different result_type,
// and it should not be deduplicated (e.g. the constants 1u8 and 1u16).
data.push(id);
}
for op in &inst.operands {
if let Operand::IdRef(id) = op {
if unresolved_forward_pointers.contains(id) {
// TODO: This is implementing forward pointers incorrectly. All unresolved forward pointers will
// compare equal.
Operand::IdRef(0).assemble_into(&mut data);
} else {
op.assemble_into(&mut data);
}
} else {
op.assemble_into(&mut data);
}
}
if let Some(id) = inst.result_id {
if let Some(annos) = annotations.get(&id) {
data.extend_from_slice(annos);
}
if inst.class.opcode == Op::Variable {
// Names only matter for OpVariable.
if let Some(name) = names.get(&id) {
// Jump through some hoops to shove a String into a Vec<u32>.
//
// FIXME(eddyb) this should `.assemble_into(&mut data)` the
// `Operand::LiteralString(...)` from the original `Op::Name`.
for chunk in name.as_bytes().chunks(4) {
let slice = match *chunk {
[a] => [a, 0, 0, 0],
[a, b] => [a, b, 0, 0],
[a, b, c] => [a, b, c, 0],
[a, b, c, d] => [a, b, c, d],
_ => bug!(),
};
data.push(u32::from_le_bytes(slice));
}
}
}
}
data
}
fn rewrite_inst_with_rules(inst: &mut Instruction, rules: &FxHashMap<u32, u32>) {
if let Some(ref mut id) = inst.result_type {
// If the rewrite rules contain this ID, replace with the mapped value, otherwise don't touch it.
*id = rules.get(id).copied().unwrap_or(*id);
}
for op in &mut inst.operands {
if let Some(id) = op.id_ref_any_mut() {
*id = rules.get(id).copied().unwrap_or(*id);
}
}
}
pub fn remove_duplicate_types(module: &mut Module) {
// Keep in mind, this algorithm requires forward type references to not exist - i.e. it's a valid spir-v module.
// When a duplicate type is encountered, then this is a map from the deleted ID, to the new, deduplicated ID.
let mut rewrite_rules = FxHashMap::default();
// Instructions are encoded into "keys": their opcode, followed by arguments, then annotations.
// Importantly, result_id is left out. This means that any instruction that declares the same
// type, but with different result_id, will result in the same key.
let mut key_to_result_id = FxHashMap::default();
// TODO: This is implementing forward pointers incorrectly.
let mut unresolved_forward_pointers = FxHashSet::default();
// Collect a map from type ID to an annotation "key blob" (to append to the type key)
let annotations = gather_annotations(&module.annotations);
let names = gather_names(&module.debug_names);
for inst in &mut module.types_global_values {
if inst.class.opcode == Op::TypeForwardPointer {
if let Operand::IdRef(id) = inst.operands[0] {
unresolved_forward_pointers.insert(id);
continue;
}
}
if inst.class.opcode == Op::TypePointer
&& unresolved_forward_pointers.contains(&inst.result_id.unwrap())
{
unresolved_forward_pointers.remove(&inst.result_id.unwrap());
}
// This is an important spot: Say that we come upon a duplicated aggregate type (one that references
// other types). Its arguments may be duplicated themselves, and so building the key directly will fail
// to match up with the first type. However, **because forward references are not allowed**, we're
// guaranteed to have already found and deduplicated the argument types! So that means the deduplication
// translation is already in rewrite_rules, and we merely need to apply the mapping before generating
// the key.
// Nit: Overwriting the instruction isn't technically necessary, as it will get handled by the final
// all_inst_iter_mut pass below. However, the code is a lil bit cleaner this way I guess.
rewrite_inst_with_rules(inst, &rewrite_rules);
let key = make_dedupe_key(inst, &unresolved_forward_pointers, &annotations, &names);
match key_to_result_id.entry(key) {
hash_map::Entry::Vacant(entry) => {
// This is the first time we've seen this key. Insert the key into the map, registering this type as
// something other types can deduplicate to.
entry.insert(inst.result_id.unwrap());
}
hash_map::Entry::Occupied(entry) => {
// We've already seen this key. We need to do two things:
// 1) Add a rewrite rule from this type to the type that we saw before.
let old_value = rewrite_rules.insert(inst.result_id.unwrap(), *entry.get());
// 2) Erase this instruction. Because we're iterating over this vec, removing an element is hard, so
// clear it with OpNop, and then remove it in the retain() call below.
assert!(old_value.is_none());
*inst = Instruction::new(Op::Nop, None, None, vec![]);
}
}
}
// We rewrote instructions we wanted to remove with OpNop. Remove them properly.
module
.types_global_values
.retain(|op| op.class.opcode != Op::Nop);
// Apply the rewrite rules to the whole module
for inst in module.all_inst_iter_mut() {
rewrite_inst_with_rules(inst, &rewrite_rules);
}
// The same decorations for duplicated types will cause those different types to merge
// together. So, we need to deduplicate the annotations as well. (Note we *do* care about the
// ID of the type being applied to here, unlike `gather_annotations`)
let mut anno_set = FxHashSet::default();
module
.annotations
.retain(|inst| anno_set.insert(inst.assemble()));
// Same thing with OpName
let mut name_ids = FxHashSet::default();
let mut member_name_ids = FxHashSet::default();
module.debug_names.retain(|inst| {
(inst.class.opcode != Op::Name || name_ids.insert(inst.operands[0].unwrap_id_ref()))
&& (inst.class.opcode != Op::MemberName
|| member_name_ids.insert((
inst.operands[0].unwrap_id_ref(),
inst.operands[1].unwrap_literal_bit32(),
)))
});
}
pub fn remove_duplicate_debuginfo(module: &mut Module) {
// FIXME(eddyb) avoid repeating this across different passes/helpers.
let custom_ext_inst_set_import = module
.ext_inst_imports
.iter()
.find(|inst| {
assert_eq!(inst.class.opcode, Op::ExtInstImport);
inst.operands[0].unwrap_literal_string() == &custom_insts::CUSTOM_EXT_INST_SET[..]
})
.map(|inst| inst.result_id.unwrap());
for func in &mut module.functions {
for block in &mut func.blocks {
// Ignore the terminator, it's effectively "outside" debuginfo.
let (_, insts) = block.instructions.split_last_mut().unwrap();
// HACK(eddyb) to make random access easier, we first replace unused
// instructions with `OpNop`, and then remove all the `OpNop`s.
#[derive(Clone)]
struct DbgLocInst {
inst_idx: usize,
used: bool,
}
fn nop() -> Instruction {
Instruction::new(Op::Nop, None, None, vec![])
}
impl DbgLocInst {
fn nop_if_unused(&self, insts: &mut [Instruction]) {
if !self.used {
insts[self.inst_idx] = nop();
}
}
}
#[derive(Clone, Default)]
struct DbgState {
loc: Option<DbgLocInst>,
has_semantic_insts: bool,
}
let mut dbg = DbgState::default();
struct Frame {
call_dbg: DbgState,
push_inst_idx: usize,
}
let mut inlined_frames = SmallVec::<[Frame; 8]>::new();
// HACK(eddyb) `PopInlinedCallFrame` moves `inlined_frames.last()`
// `fusable_freshly_popped_inlined_frames.last()`, so a sequence of
// N pops will reverse the N last entries of `inlined_frames` into
// this vector (and go from outside-in, to inside-out), which allows
// *fusing* a pop with a push (of an identical inlined frame), when
// no interverning instructions prevent it (such instructions will
// clear this vector to indicate the pops are "fully committed").
struct PoppedFrame {
frame: Frame,
callee_has_semantic_insts: bool,
pop_inst_idx: usize,
}
let mut fusable_freshly_popped_inlined_frames = SmallVec::<[PoppedFrame; 8]>::new();
for inst_idx in 0..insts.len() {
let inst = &insts[inst_idx];
let custom_op = match inst.class.opcode {
Op::ExtInst
if Some(inst.operands[0].unwrap_id_ref()) == custom_ext_inst_set_import =>
{
Some(CustomOp::decode_from_ext_inst(inst))
}
_ => None,
};
fn inst_eq_key(inst: &Instruction) -> impl PartialEq + '_ {
(inst.class.opcode, &inst.operands)
}
// NOTE(eddyb) `fusable_freshly_popped_inlined_frames`-preserving
// cases must all use `if can_continue { continue; }` to skip the
// draining logic (`can_continue` is only `false` at the very end).
let can_continue = inst_idx < insts.len() - 1;
let prev_dbg_loc_snapshot = dbg.loc.clone();
match (inst.class.opcode, custom_op) {
(Op::Line | Op::NoLine, _)
| (_, Some(CustomOp::SetDebugSrcLoc | CustomOp::ClearDebugSrcLoc)) => {
// HACK(eddyb) prefer keeping older active `DbgLocInst`s,
// if all the details are the same (it helps with fusion).
if dbg.loc.as_ref().is_some_and(|old_dbg_loc| {
inst_eq_key(inst) == inst_eq_key(&insts[old_dbg_loc.inst_idx])
}) {
insts[inst_idx] = nop();
if can_continue {
continue;
}
} else {
dbg.loc = Some(DbgLocInst {
inst_idx,
used: false,
});
}
}
(_, Some(CustomOp::PushInlinedCallFrame)) => {
// HACK(eddyb) attempt fusing this push with the last pop.
let fuse_with_last_pop = fusable_freshly_popped_inlined_frames
.last()
.is_some_and(|last_popped| {
// HACK(eddyb) updating `dbg.loc` deduplicates eagerly,
// so here it suffices to check the (deduped) indices.
let dbg_loc_inst_idx =
|dbg: &DbgState| dbg.loc.as_ref().map(|d| d.inst_idx);
dbg_loc_inst_idx(&last_popped.frame.call_dbg)
== dbg_loc_inst_idx(&dbg)
&& inst_eq_key(inst)
== inst_eq_key(&insts[last_popped.frame.push_inst_idx])
});
if fuse_with_last_pop {
let PoppedFrame {
frame,
callee_has_semantic_insts,
pop_inst_idx,
} = fusable_freshly_popped_inlined_frames.pop().unwrap();
insts[pop_inst_idx] = nop();
// Can't make entering an inlined function a nop,
// as it needs to reset callee-side `DbgLocInst`,
// but we can replace it in-place and hope later
// it get nop'd out by some real `DbgLocInst`.
insts[inst_idx]
.operands
.splice(1.., [Operand::LiteralExtInstInteger(
CustomOp::ClearDebugSrcLoc as u32,
)]);
dbg = DbgState {
loc: Some(DbgLocInst {
inst_idx,
used: false,
}),
has_semantic_insts: callee_has_semantic_insts,
};
inlined_frames.push(frame);
// Allow further fusing to occur.
if can_continue {
continue;
}
} else {
// HACK(eddyb) the actual push to `inlined_frames` is
// done at the very end of the loop body, to be able
// to process any pending updates on the previous state.
}
}
(_, Some(CustomOp::PopInlinedCallFrame)) => {
// Leaving an inlined function doesn't use `DbgLocInst`.
if let Some(dbg_loc) = dbg.loc.take() {
// HACK(eddyb) only treat as "definitely unused"
// instructions that are too "recent" to have been
// used by a `PushInlinedCallFrame` with a still
// uncommitted `PopInlinedCallFrame`.
let min_safe_inst_idx_to_nop = fusable_freshly_popped_inlined_frames
.last()
.map_or(0, |last_popped| last_popped.pop_inst_idx);
if dbg_loc.inst_idx > min_safe_inst_idx_to_nop {
dbg_loc.nop_if_unused(insts);
}
}
if let Some(frame) = inlined_frames.pop() {
let callee_has_semantic_insts = dbg.has_semantic_insts;
dbg = frame.call_dbg.clone();
dbg.has_semantic_insts |= callee_has_semantic_insts;
// HACK(eddyb) inform future `PushInlinedCallFrame`s
// of potential fusion, by saving a copy of the frame.
fusable_freshly_popped_inlined_frames.push(PoppedFrame {
frame,
callee_has_semantic_insts,
pop_inst_idx: inst_idx,
});
} else {
// FIXME(eddyb) this may indicate a bug elsewhere.
insts[inst_idx] = nop();
}
if can_continue {
continue;
}
}
_ => {
if let Some(dbg_loc) = &mut dbg.loc {
dbg_loc.used = true;
}
dbg.has_semantic_insts = true;
}
}
// NOTE(eddyb) mutable so that it may be marked as used below.
let mut freshly_replaced_dbg_loc = prev_dbg_loc_snapshot.filter(|prev_dbg_loc| {
dbg.loc.as_ref().map(|d| d.inst_idx) != Some(prev_dbg_loc.inst_idx)
});
// NOTE(eddyb) the iteration order doesn't matter, as this is
// effectively a set of `PopInlinedCallFrame`s which have had
// all their other side-effects processed, and didn't get a
// chance to be fused away, so they're getting committed.
for popped in fusable_freshly_popped_inlined_frames.drain(..) {
let PoppedFrame {
mut frame,
callee_has_semantic_insts,
pop_inst_idx,
} = popped;
// HACK(eddyb) this popped frame's `call_dbg.loc` may still
// be used elsewhere, in which case that use takes precedence,
// and is effectively the new "owner" of the `DbgLocInst`.
let call_dbg_loc_used_elsewhere =
frame.call_dbg.loc.as_ref().and_then(|call_dbg_loc| {
[dbg.loc.as_mut(), freshly_replaced_dbg_loc.as_mut()]
.into_iter()
.flatten()
.find(|dbg_loc| dbg_loc.inst_idx == call_dbg_loc.inst_idx)
});
if call_dbg_loc_used_elsewhere.is_some() {
frame.call_dbg.loc = None;
}
if callee_has_semantic_insts {
// The `PushInlinedCallFrame` being kept requires its
// original `DbgLocInst` to also be kept around.
if let Some(call_dbg_loc) = call_dbg_loc_used_elsewhere {
call_dbg_loc.used = true;
}
} else {
// If the entire inlined call is all `OpNop`s now,
// entering/leaving it can also become `OpNop`s.
if let Some(call_dbg_loc) = &mut frame.call_dbg.loc {
call_dbg_loc.nop_if_unused(insts);
}
insts[frame.push_inst_idx] = nop();
insts[pop_inst_idx] = nop();
}
}
// Only remove a replaced `DbgLocInst` after it had a chance to
// be marked as used above (for e.g. a `PushInlinedCallFrame`).
if let Some(old_dbg_loc) = freshly_replaced_dbg_loc {
old_dbg_loc.nop_if_unused(insts);
}
// HACK(eddyb) the actual push to `inlined_frames` is
// done at the very end of the loop body, to be able
// to process any pending updates on the previous state.
if custom_op == Some(CustomOp::PushInlinedCallFrame) {
inlined_frames.push(Frame {
call_dbg: mem::take(&mut dbg),
push_inst_idx: inst_idx,
});
}
}
assert!(fusable_freshly_popped_inlined_frames.is_empty());
block
.instructions
.retain(|inst| inst.class.opcode != Op::Nop);
}
}
}