rustc_codegen_spirv/linker/
inline.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
//! This algorithm is not intended to be an optimization, it is rather for legalization.
//! Specifically, spir-v disallows things like a `StorageClass::Function` pointer to a
//! `StorageClass::Input` pointer. Our frontend definitely allows it, though, this is like taking a
//! `&Input<T>` in a function! So, we inline all functions that take these "illegal" pointers, then
//! run mem2reg (see mem2reg.rs) on the result to "unwrap" the Function pointer.

use super::apply_rewrite_rules;
use super::ipo::CallGraph;
use super::simple_passes::outgoing_edges;
use super::{get_name, get_names};
use crate::custom_insts::{self, CustomInst, CustomOp};
use rspirv::dr::{Block, Function, Instruction, Module, ModuleHeader, Operand};
use rspirv::spirv::{FunctionControl, Op, StorageClass, Word};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::ErrorGuaranteed;
use rustc_session::Session;
use smallvec::SmallVec;
use std::mem::{self, take};

type FunctionMap = FxHashMap<Word, Function>;

// FIXME(eddyb) this is a bit silly, but this keeps being repeated everywhere.
fn next_id(header: &mut ModuleHeader) -> Word {
    let result = header.bound;
    header.bound += 1;
    result
}

pub fn inline(sess: &Session, module: &mut Module) -> super::Result<()> {
    // This algorithm gets real sad if there's recursion - but, good news, SPIR-V bans recursion
    deny_recursion_in_module(sess, module)?;

    let custom_ext_inst_set_import = module
        .ext_inst_imports
        .iter()
        .find(|inst| {
            assert_eq!(inst.class.opcode, Op::ExtInstImport);
            inst.operands[0].unwrap_literal_string() == &custom_insts::CUSTOM_EXT_INST_SET[..]
        })
        .map(|inst| inst.result_id.unwrap());

    // HACK(eddyb) compute the set of functions that may `Abort` *transitively*,
    // which is only needed because of how we inline (sometimes it's outside-in,
    // aka top-down, instead of always being inside-out, aka bottom-up).
    //
    // (inlining is needed in the first place because our custom `Abort`
    // instructions get lowered to a simple `OpReturn` in entry-points, but
    // that requires that they get inlined all the way up to the entry-points)
    let functions_that_may_abort = custom_ext_inst_set_import
        .map(|custom_ext_inst_set_import| {
            let mut may_abort_by_id = FxHashSet::default();

            // FIXME(eddyb) use this `CallGraph` abstraction more during inlining.
            let call_graph = CallGraph::collect(module);
            for func_idx in call_graph.post_order() {
                let func_id = module.functions[func_idx].def_id().unwrap();

                let any_callee_may_abort = call_graph.callees[func_idx].iter().any(|&callee_idx| {
                    may_abort_by_id.contains(&module.functions[callee_idx].def_id().unwrap())
                });
                if any_callee_may_abort {
                    may_abort_by_id.insert(func_id);
                    continue;
                }

                let may_abort_directly = module.functions[func_idx].blocks.iter().any(|block| {
                    match &block.instructions[..] {
                        [.., last_normal_inst, terminator_inst]
                            if last_normal_inst.class.opcode == Op::ExtInst
                                && last_normal_inst.operands[0].unwrap_id_ref()
                                    == custom_ext_inst_set_import
                                && CustomOp::decode_from_ext_inst(last_normal_inst)
                                    == CustomOp::Abort =>
                        {
                            assert_eq!(terminator_inst.class.opcode, Op::Unreachable);
                            true
                        }

                        _ => false,
                    }
                });
                if may_abort_directly {
                    may_abort_by_id.insert(func_id);
                }
            }

            may_abort_by_id
        })
        .unwrap_or_default();

    let functions = module
        .functions
        .iter()
        .map(|f| (f.def_id().unwrap(), f.clone()))
        .collect();
    let legal_globals = LegalGlobal::gather_from_module(module);

    // Drop all the functions we'll be inlining. (This also means we won't waste time processing
    // inlines in functions that will get inlined)
    let mut dropped_ids = FxHashSet::default();
    let mut inlined_to_legalize_dont_inlines = Vec::new();
    module.functions.retain(|f| {
        let should_inline_f = should_inline(&legal_globals, &functions_that_may_abort, f, None);
        if should_inline_f != Ok(false) {
            if should_inline_f == Err(MustInlineToLegalize) && has_dont_inline(f) {
                inlined_to_legalize_dont_inlines.push(f.def_id().unwrap());
            }
            // TODO: We should insert all defined IDs in this function.
            dropped_ids.insert(f.def_id().unwrap());
            false
        } else {
            true
        }
    });

    if !inlined_to_legalize_dont_inlines.is_empty() {
        let names = get_names(module);
        for f in inlined_to_legalize_dont_inlines {
            sess.dcx().warn(format!(
                "`#[inline(never)]` function `{}` needs to be inlined \
                 because it has illegal argument or return types",
                get_name(&names, f)
            ));
        }
    }

    let header = module.header.as_mut().unwrap();
    // FIXME(eddyb) clippy false positive (separate `map` required for borrowck).
    #[allow(clippy::map_unwrap_or)]
    let mut inliner = Inliner {
        op_type_void_id: module
            .types_global_values
            .iter()
            .find(|inst| inst.class.opcode == Op::TypeVoid)
            .map(|inst| inst.result_id.unwrap())
            .unwrap_or_else(|| {
                let id = next_id(header);
                let inst = Instruction::new(Op::TypeVoid, None, Some(id), vec![]);
                module.types_global_values.push(inst);
                id
            }),

        custom_ext_inst_set_import: custom_ext_inst_set_import.unwrap_or_else(|| {
            let id = next_id(header);
            let inst = Instruction::new(Op::ExtInstImport, None, Some(id), vec![
                Operand::LiteralString(custom_insts::CUSTOM_EXT_INST_SET.to_string()),
            ]);
            module.ext_inst_imports.push(inst);
            id
        }),

        id_to_name: module
            .debug_names
            .iter()
            .filter(|inst| inst.class.opcode == Op::Name)
            .map(|inst| {
                (
                    inst.operands[0].unwrap_id_ref(),
                    inst.operands[1].unwrap_literal_string(),
                )
            })
            .collect(),

        cached_op_strings: FxHashMap::default(),

        header,
        debug_string_source: &mut module.debug_string_source,
        annotations: &mut module.annotations,
        types_global_values: &mut module.types_global_values,

        functions: &functions,
        legal_globals: &legal_globals,
        functions_that_may_abort: &functions_that_may_abort,
    };
    for function in &mut module.functions {
        inliner.inline_fn(function);
        fuse_trivial_branches(function);
    }

    // Drop OpName etc. for inlined functions
    module.debug_names.retain(|inst| {
        !inst
            .operands
            .iter()
            .any(|op| op.id_ref_any().is_some_and(|id| dropped_ids.contains(&id)))
    });

    Ok(())
}

// https://stackoverflow.com/a/53995651
fn deny_recursion_in_module(sess: &Session, module: &Module) -> super::Result<()> {
    let func_to_index: FxHashMap<Word, usize> = module
        .functions
        .iter()
        .enumerate()
        .map(|(index, func)| (func.def_id().unwrap(), index))
        .collect();
    let mut discovered = vec![false; module.functions.len()];
    let mut finished = vec![false; module.functions.len()];
    let mut has_recursion = None;
    for index in 0..module.functions.len() {
        if !discovered[index] && !finished[index] {
            visit(
                sess,
                module,
                index,
                &mut discovered,
                &mut finished,
                &mut has_recursion,
                &func_to_index,
            );
        }
    }

    fn visit(
        sess: &Session,
        module: &Module,
        current: usize,
        discovered: &mut Vec<bool>,
        finished: &mut Vec<bool>,
        has_recursion: &mut Option<ErrorGuaranteed>,
        func_to_index: &FxHashMap<Word, usize>,
    ) {
        discovered[current] = true;

        for next in calls(&module.functions[current], func_to_index) {
            if discovered[next] {
                let names = get_names(module);
                let current_name = get_name(&names, module.functions[current].def_id().unwrap());
                let next_name = get_name(&names, module.functions[next].def_id().unwrap());
                *has_recursion = Some(sess.dcx().err(format!(
                    "module has recursion, which is not allowed: `{current_name}` calls `{next_name}`"
                )));
                break;
            }

            if !finished[next] {
                visit(
                    sess,
                    module,
                    next,
                    discovered,
                    finished,
                    has_recursion,
                    func_to_index,
                );
            }
        }

        discovered[current] = false;
        finished[current] = true;
    }

    fn calls<'a>(
        func: &'a Function,
        func_to_index: &'a FxHashMap<Word, usize>,
    ) -> impl Iterator<Item = usize> + 'a {
        func.all_inst_iter()
            .filter(|inst| inst.class.opcode == Op::FunctionCall)
            .map(move |inst| {
                *func_to_index
                    .get(&inst.operands[0].id_ref_any().unwrap())
                    .unwrap()
            })
    }

    match has_recursion {
        Some(err) => Err(err),
        None => Ok(()),
    }
}

/// Any type/const/global variable, which is "legal" (i.e. can be kept in SPIR-V).
///
/// For the purposes of the inliner, a legal global cannot:
/// - refer to any illegal globals
/// - (if a type) refer to any pointer types
///   - this rules out both pointers in composites, and pointers to pointers
///     (the latter itself *also* rules out variables containing pointers)
enum LegalGlobal {
    TypePointer(StorageClass),
    TypeNonPointer,
    Const,
    Variable,
}

impl LegalGlobal {
    fn gather_from_module(module: &Module) -> FxHashMap<Word, Self> {
        let mut legal_globals = FxHashMap::<_, Self>::default();
        for inst in &module.types_global_values {
            let global = match inst.class.opcode {
                Op::TypePointer => Self::TypePointer(inst.operands[0].unwrap_storage_class()),
                Op::Variable => Self::Variable,
                op if rspirv::grammar::reflect::is_type(op) => Self::TypeNonPointer,
                op if rspirv::grammar::reflect::is_constant(op) => Self::Const,

                // FIXME(eddyb) should this be `unreachable!()`?
                _ => continue,
            };
            let legal_result_type = match inst.result_type {
                Some(result_type_id) => matches!(
                    (&global, legal_globals.get(&result_type_id)),
                    (Self::Variable, Some(Self::TypePointer(_)))
                        | (Self::Const, Some(Self::TypeNonPointer))
                ),
                None => matches!(global, Self::TypePointer(_) | Self::TypeNonPointer),
            };
            let legal_operands = inst.operands.iter().all(|operand| match operand {
                Operand::IdRef(id) => matches!(
                    legal_globals.get(id),
                    Some(Self::TypeNonPointer | Self::Const)
                ),

                // NOTE(eddyb) this assumes non-ID operands are always legal.
                _ => operand.id_ref_any().is_none(),
            });
            if legal_result_type && legal_operands {
                legal_globals.insert(inst.result_id.unwrap(), global);
            }
        }
        legal_globals
    }

    fn legal_as_fn_param_ty(&self) -> bool {
        match *self {
            Self::TypePointer(storage_class) => matches!(
                storage_class,
                StorageClass::UniformConstant
                    | StorageClass::Function
                    | StorageClass::Private
                    | StorageClass::Workgroup
                    | StorageClass::AtomicCounter
            ),
            Self::TypeNonPointer => true,

            // FIXME(eddyb) should this be an `unreachable!()`?
            Self::Const | Self::Variable => false,
        }
    }

    fn legal_as_fn_ret_ty(&self) -> bool {
        #[allow(clippy::match_same_arms)]
        match *self {
            Self::TypePointer(_) => false,
            Self::TypeNonPointer => true,

            // FIXME(eddyb) should this be an `unreachable!()`?
            Self::Const | Self::Variable => false,
        }
    }
}

/// Helper type which encapsulates all the information about one specific call.
#[derive(Copy, Clone)]
struct CallSite<'a> {
    caller: &'a Function,
    call_inst: &'a Instruction,
}

fn has_dont_inline(function: &Function) -> bool {
    let def = function.def.as_ref().unwrap();
    let control = def.operands[0].unwrap_function_control();
    control.contains(FunctionControl::DONT_INLINE)
}

/// Helper error type for `should_inline` (see its doc comment).
#[derive(Copy, Clone, PartialEq, Eq)]
struct MustInlineToLegalize;

/// Returns `Ok(true)`/`Err(MustInlineToLegalize)` if `callee` should/must be
/// inlined (either in general, or specifically from `call_site`, if provided).
///
/// The distinction made is that `Err(MustInlineToLegalize)` is not a heuristic,
/// and inlining is *mandatory* due to an illegal signature/arguments.
fn should_inline(
    legal_globals: &FxHashMap<Word, LegalGlobal>,
    functions_that_may_abort: &FxHashSet<Word>,
    callee: &Function,
    call_site: Option<CallSite<'_>>,
) -> Result<bool, MustInlineToLegalize> {
    let callee_def = callee.def.as_ref().unwrap();
    let callee_control = callee_def.operands[0].unwrap_function_control();

    // HACK(eddyb) this "has a call-site" check ensures entry-points don't get
    // accidentally removed as "must inline to legalize" function, but can still
    // be inlined into other entry-points (if such an unusual situation arises).
    if call_site.is_some() && functions_that_may_abort.contains(&callee.def_id().unwrap()) {
        return Err(MustInlineToLegalize);
    }

    let ret_ty = legal_globals
        .get(&callee_def.result_type.unwrap())
        .ok_or(MustInlineToLegalize)?;
    if !ret_ty.legal_as_fn_ret_ty() {
        return Err(MustInlineToLegalize);
    }

    for (i, param) in callee.parameters.iter().enumerate() {
        let param_ty = legal_globals
            .get(param.result_type.as_ref().unwrap())
            .ok_or(MustInlineToLegalize)?;
        if !param_ty.legal_as_fn_param_ty() {
            return Err(MustInlineToLegalize);
        }

        // If the call isn't passing a legal pointer argument (a "memory object",
        // i.e. an `OpVariable` or one of the caller's `OpFunctionParameters),
        // then inlining is required to have a chance at producing legal SPIR-V.
        //
        // FIXME(eddyb) rewriting away the pointer could be another alternative.
        if let (LegalGlobal::TypePointer(_), Some(call_site)) = (param_ty, call_site) {
            let ptr_arg = call_site.call_inst.operands[i + 1].unwrap_id_ref();
            match legal_globals.get(&ptr_arg) {
                Some(LegalGlobal::Variable) => {}

                // FIXME(eddyb) should some constants (undef/null) be allowed?
                Some(_) => return Err(MustInlineToLegalize),

                None => {
                    let mut caller_param_and_var_ids = call_site
                        .caller
                        .parameters
                        .iter()
                        .chain(
                            call_site.caller.blocks[0]
                                .instructions
                                .iter()
                                .filter(|caller_inst| {
                                    // HACK(eddyb) this only avoids scanning the
                                    // whole entry block for `OpVariable`s, so
                                    // it can overapproximate debuginfo insts.
                                    let may_be_debuginfo = matches!(
                                        caller_inst.class.opcode,
                                        Op::Line | Op::NoLine | Op::ExtInst
                                    );
                                    !may_be_debuginfo
                                })
                                .take_while(|caller_inst| caller_inst.class.opcode == Op::Variable),
                        )
                        .map(|caller_inst| caller_inst.result_id.unwrap());

                    if !caller_param_and_var_ids.any(|id| ptr_arg == id) {
                        return Err(MustInlineToLegalize);
                    }
                }
            }
        }
    }

    Ok(callee_control.contains(FunctionControl::INLINE))
}

// Steps:
// Move OpVariable decls
// Rewrite return
// Renumber IDs
// Insert blocks

struct Inliner<'m, 'map> {
    /// ID of `OpExtInstImport` for our custom "extended instruction set"
    /// (see `crate::custom_insts` for more details).
    custom_ext_inst_set_import: Word,

    op_type_void_id: Word,

    /// Pre-collected `OpName`s, that can be used to find any function's name
    /// during inlining (to be able to generate debuginfo that uses names).
    id_to_name: FxHashMap<Word, &'m str>,

    /// `OpString` cache (for deduplicating `OpString`s for the same string).
    //
    // FIXME(eddyb) currently this doesn't reuse existing `OpString`s, but since
    // this is mostly for inlined callee names, it's expected almost no overlap
    // exists between existing `OpString`s and new ones, anyway.
    cached_op_strings: FxHashMap<&'m str, Word>,

    header: &'m mut ModuleHeader,
    debug_string_source: &'m mut Vec<Instruction>,
    annotations: &'m mut Vec<Instruction>,
    types_global_values: &'m mut Vec<Instruction>,

    functions: &'map FunctionMap,
    legal_globals: &'map FxHashMap<Word, LegalGlobal>,
    functions_that_may_abort: &'map FxHashSet<Word>,
    // rewrite_rules: FxHashMap<Word, Word>,
}

impl Inliner<'_, '_> {
    fn id(&mut self) -> Word {
        next_id(self.header)
    }

    /// Applies all rewrite rules to the decorations in the header.
    fn apply_rewrite_for_decorations(&mut self, rewrite_rules: &FxHashMap<Word, Word>) {
        // NOTE(siebencorgie): We don't care *what* decoration we rewrite atm.
        // AFAIK there is no case where keeping decorations on inline wouldn't be valid.
        for annotation_idx in 0..self.annotations.len() {
            let inst = &self.annotations[annotation_idx];
            if let [Operand::IdRef(target), ..] = inst.operands[..] {
                if let Some(&rewritten_target) = rewrite_rules.get(&target) {
                    // Copy decoration instruction and push it.
                    let mut cloned_inst = inst.clone();
                    cloned_inst.operands[0] = Operand::IdRef(rewritten_target);
                    self.annotations.push(cloned_inst);
                }
            }
        }
    }

    fn ptr_ty(&mut self, pointee: Word) -> Word {
        // TODO: This is horribly slow, fix this
        let existing = self.types_global_values.iter().find(|inst| {
            inst.class.opcode == Op::TypePointer
                && inst.operands[0].unwrap_storage_class() == StorageClass::Function
                && inst.operands[1].unwrap_id_ref() == pointee
        });
        if let Some(existing) = existing {
            return existing.result_id.unwrap();
        }
        let inst_id = self.id();
        self.types_global_values.push(Instruction::new(
            Op::TypePointer,
            None,
            Some(inst_id),
            vec![
                Operand::StorageClass(StorageClass::Function),
                Operand::IdRef(pointee),
            ],
        ));
        inst_id
    }

    fn inline_fn(&mut self, function: &mut Function) {
        let mut block_idx = 0;
        while block_idx < function.blocks.len() {
            // If we successfully inlined a block, then repeat processing on the same block, in
            // case the newly inlined block has more inlined calls.
            // TODO: This is quadratic
            if !self.inline_block(function, block_idx) {
                block_idx += 1;
            }
        }
    }

    fn inline_block(&mut self, caller: &mut Function, block_idx: usize) -> bool {
        // Find the first inlined OpFunctionCall
        let call = caller.blocks[block_idx]
            .instructions
            .iter()
            .enumerate()
            .filter(|(_, inst)| inst.class.opcode == Op::FunctionCall)
            .map(|(index, inst)| {
                (
                    index,
                    inst,
                    self.functions
                        .get(&inst.operands[0].id_ref_any().unwrap())
                        .unwrap(),
                )
            })
            .find(|(_, inst, f)| {
                let call_site = CallSite {
                    caller,
                    call_inst: inst,
                };
                match should_inline(
                    self.legal_globals,
                    self.functions_that_may_abort,
                    f,
                    Some(call_site),
                ) {
                    Ok(inline) => inline,
                    Err(MustInlineToLegalize) => true,
                }
            });
        let (call_index, call_inst, callee) = match call {
            None => return false,
            Some(call) => call,
        };
        let call_result_type = {
            let ty = call_inst.result_type.unwrap();
            if ty == self.op_type_void_id {
                None
            } else {
                Some(ty)
            }
        };
        let call_result_id = call_inst.result_id.unwrap();

        // Get the debuginfo instructions that apply to the call.
        let custom_ext_inst_set_import = self.custom_ext_inst_set_import;
        let call_debug_insts = caller.blocks[block_idx].instructions[..call_index]
            .iter()
            .filter(|inst| match inst.class.opcode {
                Op::Line | Op::NoLine => true,
                Op::ExtInst if inst.operands[0].unwrap_id_ref() == custom_ext_inst_set_import => {
                    CustomOp::decode_from_ext_inst(inst).is_debuginfo()
                }
                _ => false,
            });

        // Rewrite parameters to arguments
        let call_arguments = call_inst
            .operands
            .iter()
            .skip(1)
            .map(|op| op.id_ref_any().unwrap());
        let callee_parameters = callee.parameters.iter().map(|inst| {
            assert!(inst.class.opcode == Op::FunctionParameter);
            inst.result_id.unwrap()
        });
        let mut rewrite_rules = callee_parameters.zip(call_arguments).collect();

        let return_variable = if call_result_type.is_some() {
            Some(self.id())
        } else {
            None
        };
        let return_jump = self.id();
        // Rewrite OpReturns of the callee.
        #[allow(clippy::needless_borrow)]
        let (mut inlined_callee_blocks, extra_debug_insts_pre_call, extra_debug_insts_post_call) =
            self.get_inlined_blocks(&callee, call_debug_insts, return_variable, return_jump);
        // Clone the IDs of the callee, because otherwise they'd be defined multiple times if the
        // fn is inlined multiple times.
        self.add_clone_id_rules(&mut rewrite_rules, &inlined_callee_blocks);
        apply_rewrite_rules(&rewrite_rules, &mut inlined_callee_blocks);
        self.apply_rewrite_for_decorations(&rewrite_rules);

        // Split the block containing the `OpFunctionCall` into pre-call vs post-call.
        let pre_call_block_idx = block_idx;
        #[expect(unused)]
        let block_idx: usize; // HACK(eddyb) disallowing using the unrenamed variable.
        let mut post_call_block_insts = caller.blocks[pre_call_block_idx]
            .instructions
            .split_off(call_index + 1);

        // pop off OpFunctionCall
        let call = caller.blocks[pre_call_block_idx]
            .instructions
            .pop()
            .unwrap();
        assert!(call.class.opcode == Op::FunctionCall);

        // HACK(eddyb) inject the additional debuginfo instructions generated by
        // `get_inlined_blocks`, so the inlined call frame "stack" isn't corrupted.
        caller.blocks[pre_call_block_idx]
            .instructions
            .extend(extra_debug_insts_pre_call);
        post_call_block_insts.splice(0..0, extra_debug_insts_post_call);

        if let Some(call_result_type) = call_result_type {
            // Generate the storage space for the return value: Do this *after* the split above,
            // because if block_idx=0, inserting a variable here shifts call_index.
            insert_opvariables(&mut caller.blocks[0], [Instruction::new(
                Op::Variable,
                Some(self.ptr_ty(call_result_type)),
                Some(return_variable.unwrap()),
                vec![Operand::StorageClass(StorageClass::Function)],
            )]);
        }

        // Insert non-entry inlined callee blocks just after the pre-call block.
        let non_entry_inlined_callee_blocks = inlined_callee_blocks.drain(1..);
        let num_non_entry_inlined_callee_blocks = non_entry_inlined_callee_blocks.len();
        caller.blocks.splice(
            (pre_call_block_idx + 1)..(pre_call_block_idx + 1),
            non_entry_inlined_callee_blocks,
        );

        if let Some(call_result_type) = call_result_type {
            // Add the load of the result value after the inlined function. Note there's guaranteed no
            // OpPhi instructions since we just split this block.
            post_call_block_insts.insert(
                0,
                Instruction::new(
                    Op::Load,
                    Some(call_result_type),
                    Some(call_result_id),
                    vec![Operand::IdRef(return_variable.unwrap())],
                ),
            );
        }

        // Insert the post-call block, after all the inlined callee blocks.
        {
            let post_call_block_idx = pre_call_block_idx + num_non_entry_inlined_callee_blocks + 1;
            let post_call_block = Block {
                label: Some(Instruction::new(Op::Label, None, Some(return_jump), vec![])),
                instructions: post_call_block_insts,
            };
            caller.blocks.insert(post_call_block_idx, post_call_block);

            // Adjust any `OpPhi`s in the (caller) targets of the original call block,
            // to refer to post-call block (the new source of those CFG edges).
            rewrite_phi_sources(
                caller.blocks[pre_call_block_idx].label_id().unwrap(),
                &mut caller.blocks,
                post_call_block_idx,
            );
        }

        // Fuse the inlined callee entry block into the pre-call block.
        // This is okay because it's illegal to branch to the first BB in a function.
        {
            // Return the subsequence of `insts` made from `OpVariable`s, and any
            // debuginfo instructions (which may apply to them), while removing
            // *only* `OpVariable`s from `insts` (and keeping debuginfo in both).
            let mut steal_vars = |insts: &mut Vec<Instruction>| {
                let mut vars_and_debuginfo = vec![];
                insts.retain_mut(|inst| {
                    let is_debuginfo = match inst.class.opcode {
                        Op::Line | Op::NoLine => true,
                        Op::ExtInst => {
                            inst.operands[0].unwrap_id_ref() == self.custom_ext_inst_set_import
                                && CustomOp::decode_from_ext_inst(inst).is_debuginfo()
                        }
                        _ => false,
                    };
                    if is_debuginfo {
                        // NOTE(eddyb) `OpExtInst`s have a result ID,
                        // even if unused, and it has to be unique.
                        let mut inst = inst.clone();
                        if let Some(id) = &mut inst.result_id {
                            *id = self.id();
                        }
                        vars_and_debuginfo.push(inst);
                        true
                    } else if inst.class.opcode == Op::Variable {
                        // HACK(eddyb) we're removing this `Instruction` from
                        // `inst`, so it doesn't really matter what we use here.
                        vars_and_debuginfo.push(mem::replace(
                            inst,
                            Instruction::new(Op::Nop, None, None, vec![]),
                        ));
                        false
                    } else {
                        true
                    }
                });
                vars_and_debuginfo
            };

            let [mut inlined_callee_entry_block]: [_; 1] =
                inlined_callee_blocks.try_into().unwrap();

            // Move the `OpVariable`s of the callee to the caller.
            insert_opvariables(
                &mut caller.blocks[0],
                steal_vars(&mut inlined_callee_entry_block.instructions),
            );

            caller.blocks[pre_call_block_idx]
                .instructions
                .append(&mut inlined_callee_entry_block.instructions);

            // Adjust any `OpPhi`s in the (inlined callee) targets of the
            // inlined callee entry block, to refer to the pre-call block
            // (the new source of those CFG edges).
            rewrite_phi_sources(
                inlined_callee_entry_block.label_id().unwrap(),
                &mut caller.blocks,
                pre_call_block_idx,
            );
        }

        true
    }

    fn add_clone_id_rules(&mut self, rewrite_rules: &mut FxHashMap<Word, Word>, blocks: &[Block]) {
        for block in blocks {
            for inst in block.label.iter().chain(&block.instructions) {
                if let Some(result_id) = inst.result_id {
                    let new_id = self.id();
                    let old = rewrite_rules.insert(result_id, new_id);
                    assert!(old.is_none());
                }
            }
        }
    }

    // HACK(eddyb) the second and third return values are additional debuginfo
    // instructions that need to be inserted just before/after the callsite.
    fn get_inlined_blocks<'a>(
        &mut self,
        callee: &Function,
        call_debug_insts: impl Iterator<Item = &'a Instruction>,
        return_variable: Option<Word>,
        return_jump: Word,
    ) -> (
        Vec<Block>,
        SmallVec<[Instruction; 8]>,
        SmallVec<[Instruction; 8]>,
    ) {
        let Self {
            custom_ext_inst_set_import,
            op_type_void_id,
            ..
        } = *self;

        // HACK(eddyb) this is terrible, but we have to deal with it because of
        // how this inliner is outside-in, instead of inside-out, meaning that
        // context builds up "outside" of the callee blocks, inside the caller.
        let mut enclosing_inlined_frames = SmallVec::<[_; 8]>::new();
        let mut current_debug_src_loc_inst = None;
        for inst in call_debug_insts {
            match inst.class.opcode {
                Op::Line => current_debug_src_loc_inst = Some(inst),
                Op::NoLine => current_debug_src_loc_inst = None,
                Op::ExtInst
                    if inst.operands[0].unwrap_id_ref() == self.custom_ext_inst_set_import =>
                {
                    match CustomOp::decode_from_ext_inst(inst) {
                        CustomOp::SetDebugSrcLoc => current_debug_src_loc_inst = Some(inst),
                        CustomOp::ClearDebugSrcLoc => current_debug_src_loc_inst = None,
                        CustomOp::PushInlinedCallFrame => {
                            enclosing_inlined_frames
                                .push((current_debug_src_loc_inst.take(), inst));
                        }
                        CustomOp::PopInlinedCallFrame => {
                            if let Some((callsite_debug_src_loc_inst, _)) =
                                enclosing_inlined_frames.pop()
                            {
                                current_debug_src_loc_inst = callsite_debug_src_loc_inst;
                            }
                        }
                        CustomOp::Abort => {}
                    }
                }
                _ => {}
            }
        }

        // Prepare the debuginfo insts to prepend/append to every block.
        // FIXME(eddyb) this could be more efficient if we only used one pair of
        // `{Push,Pop}InlinedCallFrame` for the whole inlined callee, but there
        // is no way to hint the SPIR-T CFG (re)structurizer that it should keep
        // the entire callee in one region - a SPIR-T inliner wouldn't have this
        // issue, as it would require a fully structured callee.
        let callee_name = self
            .id_to_name
            .get(&callee.def_id().unwrap())
            .copied()
            .unwrap_or("");
        let callee_name_id = *self
            .cached_op_strings
            .entry(callee_name)
            .or_insert_with(|| {
                let id = next_id(self.header);
                self.debug_string_source
                    .push(Instruction::new(Op::String, None, Some(id), vec![
                        Operand::LiteralString(callee_name.to_string()),
                    ]));
                id
            });
        let mut mk_debuginfo_prefix_and_suffix = |include_callee_frame| {
            // NOTE(eddyb) `OpExtInst`s have a result ID, even if unused, and
            // it has to be unique (same goes for the other instructions below).
            let instantiate_debuginfo = |this: &mut Self, inst: &Instruction| {
                let mut inst = inst.clone();
                if let Some(id) = &mut inst.result_id {
                    *id = this.id();
                }
                inst
            };
            let custom_inst_to_inst = |this: &mut Self, inst: CustomInst<_>| {
                Instruction::new(
                    Op::ExtInst,
                    Some(op_type_void_id),
                    Some(this.id()),
                    [
                        Operand::IdRef(custom_ext_inst_set_import),
                        Operand::LiteralExtInstInteger(inst.op() as u32),
                    ]
                    .into_iter()
                    .chain(inst.into_operands())
                    .collect(),
                )
            };
            // FIXME(eddyb) this only allocates to avoid borrow conflicts.
            let mut prefix = SmallVec::<[_; 8]>::new();
            let mut suffix = SmallVec::<[_; 8]>::new();
            for &(callsite_debug_src_loc_inst, push_inlined_call_frame_inst) in
                &enclosing_inlined_frames
            {
                prefix.extend(
                    callsite_debug_src_loc_inst
                        .into_iter()
                        .chain([push_inlined_call_frame_inst])
                        .map(|inst| instantiate_debuginfo(self, inst)),
                );
                suffix.push(custom_inst_to_inst(self, CustomInst::PopInlinedCallFrame));
            }
            prefix.extend(current_debug_src_loc_inst.map(|inst| instantiate_debuginfo(self, inst)));

            if include_callee_frame {
                prefix.push(custom_inst_to_inst(
                    self,
                    CustomInst::PushInlinedCallFrame {
                        callee_name: Operand::IdRef(callee_name_id),
                    },
                ));
                suffix.push(custom_inst_to_inst(self, CustomInst::PopInlinedCallFrame));
            }

            (prefix, suffix)
        };

        let mut blocks = callee.blocks.clone();
        for block in &mut blocks {
            let mut terminator = block.instructions.pop().unwrap();

            // HACK(eddyb) strip trailing debuginfo (as it can't impact terminators).
            while let Some(last) = block.instructions.last() {
                let can_remove = match last.class.opcode {
                    Op::Line | Op::NoLine => true,
                    Op::ExtInst => {
                        last.operands[0].unwrap_id_ref() == custom_ext_inst_set_import
                            && matches!(
                                CustomOp::decode_from_ext_inst(last),
                                CustomOp::SetDebugSrcLoc | CustomOp::ClearDebugSrcLoc
                            )
                    }
                    _ => false,
                };
                if can_remove {
                    block.instructions.pop();
                } else {
                    break;
                }
            }

            if let Op::Return | Op::ReturnValue = terminator.class.opcode {
                if Op::ReturnValue == terminator.class.opcode {
                    let return_value = terminator.operands[0].id_ref_any().unwrap();
                    block
                        .instructions
                        .push(Instruction::new(Op::Store, None, None, vec![
                            Operand::IdRef(return_variable.unwrap()),
                            Operand::IdRef(return_value),
                        ]));
                } else {
                    assert!(return_variable.is_none());
                }
                terminator =
                    Instruction::new(Op::Branch, None, None, vec![Operand::IdRef(return_jump)]);
            }

            let num_phis = block
                .instructions
                .iter()
                .take_while(|inst| inst.class.opcode == Op::Phi)
                .count();

            // HACK(eddyb) avoid adding debuginfo to otherwise-empty blocks.
            if block.instructions.len() > num_phis {
                let (debuginfo_prefix, debuginfo_suffix) = mk_debuginfo_prefix_and_suffix(true);
                // Insert the prefix debuginfo instructions after `OpPhi`s,
                // which sadly can't be covered by them.
                block
                    .instructions
                    .splice(num_phis..num_phis, debuginfo_prefix);
                // Insert the suffix debuginfo instructions before the terminator,
                // which sadly can't be covered by them.
                block.instructions.extend(debuginfo_suffix);
            }

            block.instructions.push(terminator);
        }

        let (caller_restore_debuginfo_after_call, calleer_reset_debuginfo_before_call) =
            mk_debuginfo_prefix_and_suffix(false);
        (
            blocks,
            calleer_reset_debuginfo_before_call,
            caller_restore_debuginfo_after_call,
        )
    }
}

fn insert_opvariables(block: &mut Block, insts: impl IntoIterator<Item = Instruction>) {
    let first_non_variable = block
        .instructions
        .iter()
        .position(|inst| inst.class.opcode != Op::Variable);
    let i = first_non_variable.unwrap_or(block.instructions.len());
    block.instructions.splice(i..i, insts);
}

fn fuse_trivial_branches(function: &mut Function) {
    let all_preds = compute_preds(&function.blocks);
    'outer: for (dest_block, mut preds) in all_preds.iter().enumerate() {
        // Don't fuse branches into blocks with `OpPhi`s.
        let any_phis = function.blocks[dest_block]
            .instructions
            .iter()
            .filter(|inst| {
                // These are the only instructions that are allowed before `OpPhi`.
                !matches!(inst.class.opcode, Op::Line | Op::NoLine)
            })
            .take_while(|inst| inst.class.opcode == Op::Phi)
            .next()
            .is_some();
        if any_phis {
            continue;
        }

        // if there's two trivial branches in a row, the middle one might get inlined before the
        // last one, so when processing the last one, skip through to the first one.
        let pred = loop {
            if preds.len() != 1 || preds[0] == dest_block {
                continue 'outer;
            }
            let pred = preds[0];
            if !function.blocks[pred].instructions.is_empty() {
                break pred;
            }
            preds = &all_preds[pred];
        };
        let pred_insts = &function.blocks[pred].instructions;
        if pred_insts.last().unwrap().class.opcode == Op::Branch {
            let mut dest_insts = take(&mut function.blocks[dest_block].instructions);
            let pred_insts = &mut function.blocks[pred].instructions;
            pred_insts.pop(); // pop the branch
            pred_insts.append(&mut dest_insts);

            // Adjust any `OpPhi`s in the targets of the original block, to refer
            // to the sole predecessor (the new source of those CFG edges).
            rewrite_phi_sources(
                function.blocks[dest_block].label_id().unwrap(),
                &mut function.blocks,
                pred,
            );
        }
    }
    function.blocks.retain(|b| !b.instructions.is_empty());
}

fn compute_preds(blocks: &[Block]) -> Vec<Vec<usize>> {
    let mut result = vec![vec![]; blocks.len()];
    for (source_idx, source) in blocks.iter().enumerate() {
        for dest_id in outgoing_edges(source) {
            let dest_idx = blocks
                .iter()
                .position(|b| b.label_id().unwrap() == dest_id)
                .unwrap();
            result[dest_idx].push(source_idx);
        }
    }
    result
}

/// Helper for adjusting `OpPhi` source label IDs, when the terminator of the
/// `original_label_id`-labeled block got moved to `blocks[original_block_idx]`.
fn rewrite_phi_sources(original_label_id: Word, blocks: &mut [Block], new_block_idx: usize) {
    let new_label_id = blocks[new_block_idx].label_id().unwrap();

    // HACK(eddyb) can't keep `blocks` borrowed, the loop needs mutable access.
    let target_ids: SmallVec<[_; 4]> = outgoing_edges(&blocks[new_block_idx]).collect();

    for target_id in target_ids {
        let target_block = blocks
            .iter_mut()
            .find(|b| b.label_id().unwrap() == target_id)
            .unwrap();
        let phis = target_block
            .instructions
            .iter_mut()
            .filter(|inst| {
                // These are the only instructions that are allowed before `OpPhi`.
                !matches!(inst.class.opcode, Op::Line | Op::NoLine)
            })
            .take_while(|inst| inst.class.opcode == Op::Phi);
        for phi in phis {
            for value_and_source_id in phi.operands.chunks_mut(2) {
                let source_id = value_and_source_id[1].id_ref_any_mut().unwrap();
                if *source_id == original_label_id {
                    *source_id = new_label_id;
                    break;
                }
            }
        }
    }
}