rustc_codegen_spirv/linker/inline.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
//! This algorithm is not intended to be an optimization, it is rather for legalization.
//! Specifically, spir-v disallows things like a `StorageClass::Function` pointer to a
//! `StorageClass::Input` pointer. Our frontend definitely allows it, though, this is like taking a
//! `&Input<T>` in a function! So, we inline all functions that take these "illegal" pointers, then
//! run mem2reg (see mem2reg.rs) on the result to "unwrap" the Function pointer.
use super::apply_rewrite_rules;
use super::ipo::CallGraph;
use super::simple_passes::outgoing_edges;
use super::{get_name, get_names};
use crate::custom_insts::{self, CustomInst, CustomOp};
use rspirv::dr::{Block, Function, Instruction, Module, ModuleHeader, Operand};
use rspirv::spirv::{FunctionControl, Op, StorageClass, Word};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::ErrorGuaranteed;
use rustc_session::Session;
use smallvec::SmallVec;
use std::mem::{self, take};
type FunctionMap = FxHashMap<Word, Function>;
// FIXME(eddyb) this is a bit silly, but this keeps being repeated everywhere.
fn next_id(header: &mut ModuleHeader) -> Word {
let result = header.bound;
header.bound += 1;
result
}
pub fn inline(sess: &Session, module: &mut Module) -> super::Result<()> {
// This algorithm gets real sad if there's recursion - but, good news, SPIR-V bans recursion
deny_recursion_in_module(sess, module)?;
let custom_ext_inst_set_import = module
.ext_inst_imports
.iter()
.find(|inst| {
assert_eq!(inst.class.opcode, Op::ExtInstImport);
inst.operands[0].unwrap_literal_string() == &custom_insts::CUSTOM_EXT_INST_SET[..]
})
.map(|inst| inst.result_id.unwrap());
// HACK(eddyb) compute the set of functions that may `Abort` *transitively*,
// which is only needed because of how we inline (sometimes it's outside-in,
// aka top-down, instead of always being inside-out, aka bottom-up).
//
// (inlining is needed in the first place because our custom `Abort`
// instructions get lowered to a simple `OpReturn` in entry-points, but
// that requires that they get inlined all the way up to the entry-points)
let functions_that_may_abort = custom_ext_inst_set_import
.map(|custom_ext_inst_set_import| {
let mut may_abort_by_id = FxHashSet::default();
// FIXME(eddyb) use this `CallGraph` abstraction more during inlining.
let call_graph = CallGraph::collect(module);
for func_idx in call_graph.post_order() {
let func_id = module.functions[func_idx].def_id().unwrap();
let any_callee_may_abort = call_graph.callees[func_idx].iter().any(|&callee_idx| {
may_abort_by_id.contains(&module.functions[callee_idx].def_id().unwrap())
});
if any_callee_may_abort {
may_abort_by_id.insert(func_id);
continue;
}
let may_abort_directly = module.functions[func_idx].blocks.iter().any(|block| {
match &block.instructions[..] {
[.., last_normal_inst, terminator_inst]
if last_normal_inst.class.opcode == Op::ExtInst
&& last_normal_inst.operands[0].unwrap_id_ref()
== custom_ext_inst_set_import
&& CustomOp::decode_from_ext_inst(last_normal_inst)
== CustomOp::Abort =>
{
assert_eq!(terminator_inst.class.opcode, Op::Unreachable);
true
}
_ => false,
}
});
if may_abort_directly {
may_abort_by_id.insert(func_id);
}
}
may_abort_by_id
})
.unwrap_or_default();
let functions = module
.functions
.iter()
.map(|f| (f.def_id().unwrap(), f.clone()))
.collect();
let legal_globals = LegalGlobal::gather_from_module(module);
// Drop all the functions we'll be inlining. (This also means we won't waste time processing
// inlines in functions that will get inlined)
let mut dropped_ids = FxHashSet::default();
let mut inlined_to_legalize_dont_inlines = Vec::new();
module.functions.retain(|f| {
let should_inline_f = should_inline(&legal_globals, &functions_that_may_abort, f, None);
if should_inline_f != Ok(false) {
if should_inline_f == Err(MustInlineToLegalize) && has_dont_inline(f) {
inlined_to_legalize_dont_inlines.push(f.def_id().unwrap());
}
// TODO: We should insert all defined IDs in this function.
dropped_ids.insert(f.def_id().unwrap());
false
} else {
true
}
});
if !inlined_to_legalize_dont_inlines.is_empty() {
let names = get_names(module);
for f in inlined_to_legalize_dont_inlines {
sess.dcx().warn(format!(
"`#[inline(never)]` function `{}` needs to be inlined \
because it has illegal argument or return types",
get_name(&names, f)
));
}
}
let header = module.header.as_mut().unwrap();
// FIXME(eddyb) clippy false positive (separate `map` required for borrowck).
#[allow(clippy::map_unwrap_or)]
let mut inliner = Inliner {
op_type_void_id: module
.types_global_values
.iter()
.find(|inst| inst.class.opcode == Op::TypeVoid)
.map(|inst| inst.result_id.unwrap())
.unwrap_or_else(|| {
let id = next_id(header);
let inst = Instruction::new(Op::TypeVoid, None, Some(id), vec![]);
module.types_global_values.push(inst);
id
}),
custom_ext_inst_set_import: custom_ext_inst_set_import.unwrap_or_else(|| {
let id = next_id(header);
let inst = Instruction::new(Op::ExtInstImport, None, Some(id), vec![
Operand::LiteralString(custom_insts::CUSTOM_EXT_INST_SET.to_string()),
]);
module.ext_inst_imports.push(inst);
id
}),
id_to_name: module
.debug_names
.iter()
.filter(|inst| inst.class.opcode == Op::Name)
.map(|inst| {
(
inst.operands[0].unwrap_id_ref(),
inst.operands[1].unwrap_literal_string(),
)
})
.collect(),
cached_op_strings: FxHashMap::default(),
header,
debug_string_source: &mut module.debug_string_source,
annotations: &mut module.annotations,
types_global_values: &mut module.types_global_values,
functions: &functions,
legal_globals: &legal_globals,
functions_that_may_abort: &functions_that_may_abort,
};
for function in &mut module.functions {
inliner.inline_fn(function);
fuse_trivial_branches(function);
}
// Drop OpName etc. for inlined functions
module.debug_names.retain(|inst| {
!inst
.operands
.iter()
.any(|op| op.id_ref_any().is_some_and(|id| dropped_ids.contains(&id)))
});
Ok(())
}
// https://stackoverflow.com/a/53995651
fn deny_recursion_in_module(sess: &Session, module: &Module) -> super::Result<()> {
let func_to_index: FxHashMap<Word, usize> = module
.functions
.iter()
.enumerate()
.map(|(index, func)| (func.def_id().unwrap(), index))
.collect();
let mut discovered = vec![false; module.functions.len()];
let mut finished = vec![false; module.functions.len()];
let mut has_recursion = None;
for index in 0..module.functions.len() {
if !discovered[index] && !finished[index] {
visit(
sess,
module,
index,
&mut discovered,
&mut finished,
&mut has_recursion,
&func_to_index,
);
}
}
fn visit(
sess: &Session,
module: &Module,
current: usize,
discovered: &mut Vec<bool>,
finished: &mut Vec<bool>,
has_recursion: &mut Option<ErrorGuaranteed>,
func_to_index: &FxHashMap<Word, usize>,
) {
discovered[current] = true;
for next in calls(&module.functions[current], func_to_index) {
if discovered[next] {
let names = get_names(module);
let current_name = get_name(&names, module.functions[current].def_id().unwrap());
let next_name = get_name(&names, module.functions[next].def_id().unwrap());
*has_recursion = Some(sess.dcx().err(format!(
"module has recursion, which is not allowed: `{current_name}` calls `{next_name}`"
)));
break;
}
if !finished[next] {
visit(
sess,
module,
next,
discovered,
finished,
has_recursion,
func_to_index,
);
}
}
discovered[current] = false;
finished[current] = true;
}
fn calls<'a>(
func: &'a Function,
func_to_index: &'a FxHashMap<Word, usize>,
) -> impl Iterator<Item = usize> + 'a {
func.all_inst_iter()
.filter(|inst| inst.class.opcode == Op::FunctionCall)
.map(move |inst| {
*func_to_index
.get(&inst.operands[0].id_ref_any().unwrap())
.unwrap()
})
}
match has_recursion {
Some(err) => Err(err),
None => Ok(()),
}
}
/// Any type/const/global variable, which is "legal" (i.e. can be kept in SPIR-V).
///
/// For the purposes of the inliner, a legal global cannot:
/// - refer to any illegal globals
/// - (if a type) refer to any pointer types
/// - this rules out both pointers in composites, and pointers to pointers
/// (the latter itself *also* rules out variables containing pointers)
enum LegalGlobal {
TypePointer(StorageClass),
TypeNonPointer,
Const,
Variable,
}
impl LegalGlobal {
fn gather_from_module(module: &Module) -> FxHashMap<Word, Self> {
let mut legal_globals = FxHashMap::<_, Self>::default();
for inst in &module.types_global_values {
let global = match inst.class.opcode {
Op::TypePointer => Self::TypePointer(inst.operands[0].unwrap_storage_class()),
Op::Variable => Self::Variable,
op if rspirv::grammar::reflect::is_type(op) => Self::TypeNonPointer,
op if rspirv::grammar::reflect::is_constant(op) => Self::Const,
// FIXME(eddyb) should this be `unreachable!()`?
_ => continue,
};
let legal_result_type = match inst.result_type {
Some(result_type_id) => matches!(
(&global, legal_globals.get(&result_type_id)),
(Self::Variable, Some(Self::TypePointer(_)))
| (Self::Const, Some(Self::TypeNonPointer))
),
None => matches!(global, Self::TypePointer(_) | Self::TypeNonPointer),
};
let legal_operands = inst.operands.iter().all(|operand| match operand {
Operand::IdRef(id) => matches!(
legal_globals.get(id),
Some(Self::TypeNonPointer | Self::Const)
),
// NOTE(eddyb) this assumes non-ID operands are always legal.
_ => operand.id_ref_any().is_none(),
});
if legal_result_type && legal_operands {
legal_globals.insert(inst.result_id.unwrap(), global);
}
}
legal_globals
}
fn legal_as_fn_param_ty(&self) -> bool {
match *self {
Self::TypePointer(storage_class) => matches!(
storage_class,
StorageClass::UniformConstant
| StorageClass::Function
| StorageClass::Private
| StorageClass::Workgroup
| StorageClass::AtomicCounter
),
Self::TypeNonPointer => true,
// FIXME(eddyb) should this be an `unreachable!()`?
Self::Const | Self::Variable => false,
}
}
fn legal_as_fn_ret_ty(&self) -> bool {
#[allow(clippy::match_same_arms)]
match *self {
Self::TypePointer(_) => false,
Self::TypeNonPointer => true,
// FIXME(eddyb) should this be an `unreachable!()`?
Self::Const | Self::Variable => false,
}
}
}
/// Helper type which encapsulates all the information about one specific call.
#[derive(Copy, Clone)]
struct CallSite<'a> {
caller: &'a Function,
call_inst: &'a Instruction,
}
fn has_dont_inline(function: &Function) -> bool {
let def = function.def.as_ref().unwrap();
let control = def.operands[0].unwrap_function_control();
control.contains(FunctionControl::DONT_INLINE)
}
/// Helper error type for `should_inline` (see its doc comment).
#[derive(Copy, Clone, PartialEq, Eq)]
struct MustInlineToLegalize;
/// Returns `Ok(true)`/`Err(MustInlineToLegalize)` if `callee` should/must be
/// inlined (either in general, or specifically from `call_site`, if provided).
///
/// The distinction made is that `Err(MustInlineToLegalize)` is not a heuristic,
/// and inlining is *mandatory* due to an illegal signature/arguments.
fn should_inline(
legal_globals: &FxHashMap<Word, LegalGlobal>,
functions_that_may_abort: &FxHashSet<Word>,
callee: &Function,
call_site: Option<CallSite<'_>>,
) -> Result<bool, MustInlineToLegalize> {
let callee_def = callee.def.as_ref().unwrap();
let callee_control = callee_def.operands[0].unwrap_function_control();
// HACK(eddyb) this "has a call-site" check ensures entry-points don't get
// accidentally removed as "must inline to legalize" function, but can still
// be inlined into other entry-points (if such an unusual situation arises).
if call_site.is_some() && functions_that_may_abort.contains(&callee.def_id().unwrap()) {
return Err(MustInlineToLegalize);
}
let ret_ty = legal_globals
.get(&callee_def.result_type.unwrap())
.ok_or(MustInlineToLegalize)?;
if !ret_ty.legal_as_fn_ret_ty() {
return Err(MustInlineToLegalize);
}
for (i, param) in callee.parameters.iter().enumerate() {
let param_ty = legal_globals
.get(param.result_type.as_ref().unwrap())
.ok_or(MustInlineToLegalize)?;
if !param_ty.legal_as_fn_param_ty() {
return Err(MustInlineToLegalize);
}
// If the call isn't passing a legal pointer argument (a "memory object",
// i.e. an `OpVariable` or one of the caller's `OpFunctionParameters),
// then inlining is required to have a chance at producing legal SPIR-V.
//
// FIXME(eddyb) rewriting away the pointer could be another alternative.
if let (LegalGlobal::TypePointer(_), Some(call_site)) = (param_ty, call_site) {
let ptr_arg = call_site.call_inst.operands[i + 1].unwrap_id_ref();
match legal_globals.get(&ptr_arg) {
Some(LegalGlobal::Variable) => {}
// FIXME(eddyb) should some constants (undef/null) be allowed?
Some(_) => return Err(MustInlineToLegalize),
None => {
let mut caller_param_and_var_ids = call_site
.caller
.parameters
.iter()
.chain(
call_site.caller.blocks[0]
.instructions
.iter()
.filter(|caller_inst| {
// HACK(eddyb) this only avoids scanning the
// whole entry block for `OpVariable`s, so
// it can overapproximate debuginfo insts.
let may_be_debuginfo = matches!(
caller_inst.class.opcode,
Op::Line | Op::NoLine | Op::ExtInst
);
!may_be_debuginfo
})
.take_while(|caller_inst| caller_inst.class.opcode == Op::Variable),
)
.map(|caller_inst| caller_inst.result_id.unwrap());
if !caller_param_and_var_ids.any(|id| ptr_arg == id) {
return Err(MustInlineToLegalize);
}
}
}
}
}
Ok(callee_control.contains(FunctionControl::INLINE))
}
// Steps:
// Move OpVariable decls
// Rewrite return
// Renumber IDs
// Insert blocks
struct Inliner<'m, 'map> {
/// ID of `OpExtInstImport` for our custom "extended instruction set"
/// (see `crate::custom_insts` for more details).
custom_ext_inst_set_import: Word,
op_type_void_id: Word,
/// Pre-collected `OpName`s, that can be used to find any function's name
/// during inlining (to be able to generate debuginfo that uses names).
id_to_name: FxHashMap<Word, &'m str>,
/// `OpString` cache (for deduplicating `OpString`s for the same string).
//
// FIXME(eddyb) currently this doesn't reuse existing `OpString`s, but since
// this is mostly for inlined callee names, it's expected almost no overlap
// exists between existing `OpString`s and new ones, anyway.
cached_op_strings: FxHashMap<&'m str, Word>,
header: &'m mut ModuleHeader,
debug_string_source: &'m mut Vec<Instruction>,
annotations: &'m mut Vec<Instruction>,
types_global_values: &'m mut Vec<Instruction>,
functions: &'map FunctionMap,
legal_globals: &'map FxHashMap<Word, LegalGlobal>,
functions_that_may_abort: &'map FxHashSet<Word>,
// rewrite_rules: FxHashMap<Word, Word>,
}
impl Inliner<'_, '_> {
fn id(&mut self) -> Word {
next_id(self.header)
}
/// Applies all rewrite rules to the decorations in the header.
fn apply_rewrite_for_decorations(&mut self, rewrite_rules: &FxHashMap<Word, Word>) {
// NOTE(siebencorgie): We don't care *what* decoration we rewrite atm.
// AFAIK there is no case where keeping decorations on inline wouldn't be valid.
for annotation_idx in 0..self.annotations.len() {
let inst = &self.annotations[annotation_idx];
if let [Operand::IdRef(target), ..] = inst.operands[..] {
if let Some(&rewritten_target) = rewrite_rules.get(&target) {
// Copy decoration instruction and push it.
let mut cloned_inst = inst.clone();
cloned_inst.operands[0] = Operand::IdRef(rewritten_target);
self.annotations.push(cloned_inst);
}
}
}
}
fn ptr_ty(&mut self, pointee: Word) -> Word {
// TODO: This is horribly slow, fix this
let existing = self.types_global_values.iter().find(|inst| {
inst.class.opcode == Op::TypePointer
&& inst.operands[0].unwrap_storage_class() == StorageClass::Function
&& inst.operands[1].unwrap_id_ref() == pointee
});
if let Some(existing) = existing {
return existing.result_id.unwrap();
}
let inst_id = self.id();
self.types_global_values.push(Instruction::new(
Op::TypePointer,
None,
Some(inst_id),
vec![
Operand::StorageClass(StorageClass::Function),
Operand::IdRef(pointee),
],
));
inst_id
}
fn inline_fn(&mut self, function: &mut Function) {
let mut block_idx = 0;
while block_idx < function.blocks.len() {
// If we successfully inlined a block, then repeat processing on the same block, in
// case the newly inlined block has more inlined calls.
// TODO: This is quadratic
if !self.inline_block(function, block_idx) {
block_idx += 1;
}
}
}
fn inline_block(&mut self, caller: &mut Function, block_idx: usize) -> bool {
// Find the first inlined OpFunctionCall
let call = caller.blocks[block_idx]
.instructions
.iter()
.enumerate()
.filter(|(_, inst)| inst.class.opcode == Op::FunctionCall)
.map(|(index, inst)| {
(
index,
inst,
self.functions
.get(&inst.operands[0].id_ref_any().unwrap())
.unwrap(),
)
})
.find(|(_, inst, f)| {
let call_site = CallSite {
caller,
call_inst: inst,
};
match should_inline(
self.legal_globals,
self.functions_that_may_abort,
f,
Some(call_site),
) {
Ok(inline) => inline,
Err(MustInlineToLegalize) => true,
}
});
let (call_index, call_inst, callee) = match call {
None => return false,
Some(call) => call,
};
let call_result_type = {
let ty = call_inst.result_type.unwrap();
if ty == self.op_type_void_id {
None
} else {
Some(ty)
}
};
let call_result_id = call_inst.result_id.unwrap();
// Get the debuginfo instructions that apply to the call.
let custom_ext_inst_set_import = self.custom_ext_inst_set_import;
let call_debug_insts = caller.blocks[block_idx].instructions[..call_index]
.iter()
.filter(|inst| match inst.class.opcode {
Op::Line | Op::NoLine => true,
Op::ExtInst if inst.operands[0].unwrap_id_ref() == custom_ext_inst_set_import => {
CustomOp::decode_from_ext_inst(inst).is_debuginfo()
}
_ => false,
});
// Rewrite parameters to arguments
let call_arguments = call_inst
.operands
.iter()
.skip(1)
.map(|op| op.id_ref_any().unwrap());
let callee_parameters = callee.parameters.iter().map(|inst| {
assert!(inst.class.opcode == Op::FunctionParameter);
inst.result_id.unwrap()
});
let mut rewrite_rules = callee_parameters.zip(call_arguments).collect();
let return_variable = if call_result_type.is_some() {
Some(self.id())
} else {
None
};
let return_jump = self.id();
// Rewrite OpReturns of the callee.
#[allow(clippy::needless_borrow)]
let (mut inlined_callee_blocks, extra_debug_insts_pre_call, extra_debug_insts_post_call) =
self.get_inlined_blocks(&callee, call_debug_insts, return_variable, return_jump);
// Clone the IDs of the callee, because otherwise they'd be defined multiple times if the
// fn is inlined multiple times.
self.add_clone_id_rules(&mut rewrite_rules, &inlined_callee_blocks);
apply_rewrite_rules(&rewrite_rules, &mut inlined_callee_blocks);
self.apply_rewrite_for_decorations(&rewrite_rules);
// Split the block containing the `OpFunctionCall` into pre-call vs post-call.
let pre_call_block_idx = block_idx;
#[expect(unused)]
let block_idx: usize; // HACK(eddyb) disallowing using the unrenamed variable.
let mut post_call_block_insts = caller.blocks[pre_call_block_idx]
.instructions
.split_off(call_index + 1);
// pop off OpFunctionCall
let call = caller.blocks[pre_call_block_idx]
.instructions
.pop()
.unwrap();
assert!(call.class.opcode == Op::FunctionCall);
// HACK(eddyb) inject the additional debuginfo instructions generated by
// `get_inlined_blocks`, so the inlined call frame "stack" isn't corrupted.
caller.blocks[pre_call_block_idx]
.instructions
.extend(extra_debug_insts_pre_call);
post_call_block_insts.splice(0..0, extra_debug_insts_post_call);
if let Some(call_result_type) = call_result_type {
// Generate the storage space for the return value: Do this *after* the split above,
// because if block_idx=0, inserting a variable here shifts call_index.
insert_opvariables(&mut caller.blocks[0], [Instruction::new(
Op::Variable,
Some(self.ptr_ty(call_result_type)),
Some(return_variable.unwrap()),
vec![Operand::StorageClass(StorageClass::Function)],
)]);
}
// Insert non-entry inlined callee blocks just after the pre-call block.
let non_entry_inlined_callee_blocks = inlined_callee_blocks.drain(1..);
let num_non_entry_inlined_callee_blocks = non_entry_inlined_callee_blocks.len();
caller.blocks.splice(
(pre_call_block_idx + 1)..(pre_call_block_idx + 1),
non_entry_inlined_callee_blocks,
);
if let Some(call_result_type) = call_result_type {
// Add the load of the result value after the inlined function. Note there's guaranteed no
// OpPhi instructions since we just split this block.
post_call_block_insts.insert(
0,
Instruction::new(
Op::Load,
Some(call_result_type),
Some(call_result_id),
vec![Operand::IdRef(return_variable.unwrap())],
),
);
}
// Insert the post-call block, after all the inlined callee blocks.
{
let post_call_block_idx = pre_call_block_idx + num_non_entry_inlined_callee_blocks + 1;
let post_call_block = Block {
label: Some(Instruction::new(Op::Label, None, Some(return_jump), vec![])),
instructions: post_call_block_insts,
};
caller.blocks.insert(post_call_block_idx, post_call_block);
// Adjust any `OpPhi`s in the (caller) targets of the original call block,
// to refer to post-call block (the new source of those CFG edges).
rewrite_phi_sources(
caller.blocks[pre_call_block_idx].label_id().unwrap(),
&mut caller.blocks,
post_call_block_idx,
);
}
// Fuse the inlined callee entry block into the pre-call block.
// This is okay because it's illegal to branch to the first BB in a function.
{
// Return the subsequence of `insts` made from `OpVariable`s, and any
// debuginfo instructions (which may apply to them), while removing
// *only* `OpVariable`s from `insts` (and keeping debuginfo in both).
let mut steal_vars = |insts: &mut Vec<Instruction>| {
let mut vars_and_debuginfo = vec![];
insts.retain_mut(|inst| {
let is_debuginfo = match inst.class.opcode {
Op::Line | Op::NoLine => true,
Op::ExtInst => {
inst.operands[0].unwrap_id_ref() == self.custom_ext_inst_set_import
&& CustomOp::decode_from_ext_inst(inst).is_debuginfo()
}
_ => false,
};
if is_debuginfo {
// NOTE(eddyb) `OpExtInst`s have a result ID,
// even if unused, and it has to be unique.
let mut inst = inst.clone();
if let Some(id) = &mut inst.result_id {
*id = self.id();
}
vars_and_debuginfo.push(inst);
true
} else if inst.class.opcode == Op::Variable {
// HACK(eddyb) we're removing this `Instruction` from
// `inst`, so it doesn't really matter what we use here.
vars_and_debuginfo.push(mem::replace(
inst,
Instruction::new(Op::Nop, None, None, vec![]),
));
false
} else {
true
}
});
vars_and_debuginfo
};
let [mut inlined_callee_entry_block]: [_; 1] =
inlined_callee_blocks.try_into().unwrap();
// Move the `OpVariable`s of the callee to the caller.
insert_opvariables(
&mut caller.blocks[0],
steal_vars(&mut inlined_callee_entry_block.instructions),
);
caller.blocks[pre_call_block_idx]
.instructions
.append(&mut inlined_callee_entry_block.instructions);
// Adjust any `OpPhi`s in the (inlined callee) targets of the
// inlined callee entry block, to refer to the pre-call block
// (the new source of those CFG edges).
rewrite_phi_sources(
inlined_callee_entry_block.label_id().unwrap(),
&mut caller.blocks,
pre_call_block_idx,
);
}
true
}
fn add_clone_id_rules(&mut self, rewrite_rules: &mut FxHashMap<Word, Word>, blocks: &[Block]) {
for block in blocks {
for inst in block.label.iter().chain(&block.instructions) {
if let Some(result_id) = inst.result_id {
let new_id = self.id();
let old = rewrite_rules.insert(result_id, new_id);
assert!(old.is_none());
}
}
}
}
// HACK(eddyb) the second and third return values are additional debuginfo
// instructions that need to be inserted just before/after the callsite.
fn get_inlined_blocks<'a>(
&mut self,
callee: &Function,
call_debug_insts: impl Iterator<Item = &'a Instruction>,
return_variable: Option<Word>,
return_jump: Word,
) -> (
Vec<Block>,
SmallVec<[Instruction; 8]>,
SmallVec<[Instruction; 8]>,
) {
let Self {
custom_ext_inst_set_import,
op_type_void_id,
..
} = *self;
// HACK(eddyb) this is terrible, but we have to deal with it because of
// how this inliner is outside-in, instead of inside-out, meaning that
// context builds up "outside" of the callee blocks, inside the caller.
let mut enclosing_inlined_frames = SmallVec::<[_; 8]>::new();
let mut current_debug_src_loc_inst = None;
for inst in call_debug_insts {
match inst.class.opcode {
Op::Line => current_debug_src_loc_inst = Some(inst),
Op::NoLine => current_debug_src_loc_inst = None,
Op::ExtInst
if inst.operands[0].unwrap_id_ref() == self.custom_ext_inst_set_import =>
{
match CustomOp::decode_from_ext_inst(inst) {
CustomOp::SetDebugSrcLoc => current_debug_src_loc_inst = Some(inst),
CustomOp::ClearDebugSrcLoc => current_debug_src_loc_inst = None,
CustomOp::PushInlinedCallFrame => {
enclosing_inlined_frames
.push((current_debug_src_loc_inst.take(), inst));
}
CustomOp::PopInlinedCallFrame => {
if let Some((callsite_debug_src_loc_inst, _)) =
enclosing_inlined_frames.pop()
{
current_debug_src_loc_inst = callsite_debug_src_loc_inst;
}
}
CustomOp::Abort => {}
}
}
_ => {}
}
}
// Prepare the debuginfo insts to prepend/append to every block.
// FIXME(eddyb) this could be more efficient if we only used one pair of
// `{Push,Pop}InlinedCallFrame` for the whole inlined callee, but there
// is no way to hint the SPIR-T CFG (re)structurizer that it should keep
// the entire callee in one region - a SPIR-T inliner wouldn't have this
// issue, as it would require a fully structured callee.
let callee_name = self
.id_to_name
.get(&callee.def_id().unwrap())
.copied()
.unwrap_or("");
let callee_name_id = *self
.cached_op_strings
.entry(callee_name)
.or_insert_with(|| {
let id = next_id(self.header);
self.debug_string_source
.push(Instruction::new(Op::String, None, Some(id), vec![
Operand::LiteralString(callee_name.to_string()),
]));
id
});
let mut mk_debuginfo_prefix_and_suffix = |include_callee_frame| {
// NOTE(eddyb) `OpExtInst`s have a result ID, even if unused, and
// it has to be unique (same goes for the other instructions below).
let instantiate_debuginfo = |this: &mut Self, inst: &Instruction| {
let mut inst = inst.clone();
if let Some(id) = &mut inst.result_id {
*id = this.id();
}
inst
};
let custom_inst_to_inst = |this: &mut Self, inst: CustomInst<_>| {
Instruction::new(
Op::ExtInst,
Some(op_type_void_id),
Some(this.id()),
[
Operand::IdRef(custom_ext_inst_set_import),
Operand::LiteralExtInstInteger(inst.op() as u32),
]
.into_iter()
.chain(inst.into_operands())
.collect(),
)
};
// FIXME(eddyb) this only allocates to avoid borrow conflicts.
let mut prefix = SmallVec::<[_; 8]>::new();
let mut suffix = SmallVec::<[_; 8]>::new();
for &(callsite_debug_src_loc_inst, push_inlined_call_frame_inst) in
&enclosing_inlined_frames
{
prefix.extend(
callsite_debug_src_loc_inst
.into_iter()
.chain([push_inlined_call_frame_inst])
.map(|inst| instantiate_debuginfo(self, inst)),
);
suffix.push(custom_inst_to_inst(self, CustomInst::PopInlinedCallFrame));
}
prefix.extend(current_debug_src_loc_inst.map(|inst| instantiate_debuginfo(self, inst)));
if include_callee_frame {
prefix.push(custom_inst_to_inst(
self,
CustomInst::PushInlinedCallFrame {
callee_name: Operand::IdRef(callee_name_id),
},
));
suffix.push(custom_inst_to_inst(self, CustomInst::PopInlinedCallFrame));
}
(prefix, suffix)
};
let mut blocks = callee.blocks.clone();
for block in &mut blocks {
let mut terminator = block.instructions.pop().unwrap();
// HACK(eddyb) strip trailing debuginfo (as it can't impact terminators).
while let Some(last) = block.instructions.last() {
let can_remove = match last.class.opcode {
Op::Line | Op::NoLine => true,
Op::ExtInst => {
last.operands[0].unwrap_id_ref() == custom_ext_inst_set_import
&& matches!(
CustomOp::decode_from_ext_inst(last),
CustomOp::SetDebugSrcLoc | CustomOp::ClearDebugSrcLoc
)
}
_ => false,
};
if can_remove {
block.instructions.pop();
} else {
break;
}
}
if let Op::Return | Op::ReturnValue = terminator.class.opcode {
if Op::ReturnValue == terminator.class.opcode {
let return_value = terminator.operands[0].id_ref_any().unwrap();
block
.instructions
.push(Instruction::new(Op::Store, None, None, vec![
Operand::IdRef(return_variable.unwrap()),
Operand::IdRef(return_value),
]));
} else {
assert!(return_variable.is_none());
}
terminator =
Instruction::new(Op::Branch, None, None, vec![Operand::IdRef(return_jump)]);
}
let num_phis = block
.instructions
.iter()
.take_while(|inst| inst.class.opcode == Op::Phi)
.count();
// HACK(eddyb) avoid adding debuginfo to otherwise-empty blocks.
if block.instructions.len() > num_phis {
let (debuginfo_prefix, debuginfo_suffix) = mk_debuginfo_prefix_and_suffix(true);
// Insert the prefix debuginfo instructions after `OpPhi`s,
// which sadly can't be covered by them.
block
.instructions
.splice(num_phis..num_phis, debuginfo_prefix);
// Insert the suffix debuginfo instructions before the terminator,
// which sadly can't be covered by them.
block.instructions.extend(debuginfo_suffix);
}
block.instructions.push(terminator);
}
let (caller_restore_debuginfo_after_call, calleer_reset_debuginfo_before_call) =
mk_debuginfo_prefix_and_suffix(false);
(
blocks,
calleer_reset_debuginfo_before_call,
caller_restore_debuginfo_after_call,
)
}
}
fn insert_opvariables(block: &mut Block, insts: impl IntoIterator<Item = Instruction>) {
let first_non_variable = block
.instructions
.iter()
.position(|inst| inst.class.opcode != Op::Variable);
let i = first_non_variable.unwrap_or(block.instructions.len());
block.instructions.splice(i..i, insts);
}
fn fuse_trivial_branches(function: &mut Function) {
let all_preds = compute_preds(&function.blocks);
'outer: for (dest_block, mut preds) in all_preds.iter().enumerate() {
// Don't fuse branches into blocks with `OpPhi`s.
let any_phis = function.blocks[dest_block]
.instructions
.iter()
.filter(|inst| {
// These are the only instructions that are allowed before `OpPhi`.
!matches!(inst.class.opcode, Op::Line | Op::NoLine)
})
.take_while(|inst| inst.class.opcode == Op::Phi)
.next()
.is_some();
if any_phis {
continue;
}
// if there's two trivial branches in a row, the middle one might get inlined before the
// last one, so when processing the last one, skip through to the first one.
let pred = loop {
if preds.len() != 1 || preds[0] == dest_block {
continue 'outer;
}
let pred = preds[0];
if !function.blocks[pred].instructions.is_empty() {
break pred;
}
preds = &all_preds[pred];
};
let pred_insts = &function.blocks[pred].instructions;
if pred_insts.last().unwrap().class.opcode == Op::Branch {
let mut dest_insts = take(&mut function.blocks[dest_block].instructions);
let pred_insts = &mut function.blocks[pred].instructions;
pred_insts.pop(); // pop the branch
pred_insts.append(&mut dest_insts);
// Adjust any `OpPhi`s in the targets of the original block, to refer
// to the sole predecessor (the new source of those CFG edges).
rewrite_phi_sources(
function.blocks[dest_block].label_id().unwrap(),
&mut function.blocks,
pred,
);
}
}
function.blocks.retain(|b| !b.instructions.is_empty());
}
fn compute_preds(blocks: &[Block]) -> Vec<Vec<usize>> {
let mut result = vec![vec![]; blocks.len()];
for (source_idx, source) in blocks.iter().enumerate() {
for dest_id in outgoing_edges(source) {
let dest_idx = blocks
.iter()
.position(|b| b.label_id().unwrap() == dest_id)
.unwrap();
result[dest_idx].push(source_idx);
}
}
result
}
/// Helper for adjusting `OpPhi` source label IDs, when the terminator of the
/// `original_label_id`-labeled block got moved to `blocks[original_block_idx]`.
fn rewrite_phi_sources(original_label_id: Word, blocks: &mut [Block], new_block_idx: usize) {
let new_label_id = blocks[new_block_idx].label_id().unwrap();
// HACK(eddyb) can't keep `blocks` borrowed, the loop needs mutable access.
let target_ids: SmallVec<[_; 4]> = outgoing_edges(&blocks[new_block_idx]).collect();
for target_id in target_ids {
let target_block = blocks
.iter_mut()
.find(|b| b.label_id().unwrap() == target_id)
.unwrap();
let phis = target_block
.instructions
.iter_mut()
.filter(|inst| {
// These are the only instructions that are allowed before `OpPhi`.
!matches!(inst.class.opcode, Op::Line | Op::NoLine)
})
.take_while(|inst| inst.class.opcode == Op::Phi);
for phi in phis {
for value_and_source_id in phi.operands.chunks_mut(2) {
let source_id = value_and_source_id[1].id_ref_any_mut().unwrap();
if *source_id == original_label_id {
*source_id = new_label_id;
break;
}
}
}
}
}