rustc_codegen_spirv/linker/peephole_opts.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
use super::id;
use rspirv::dr::{Function, Instruction, Module, ModuleHeader, Operand};
use rspirv::spirv::{Op, Word};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_middle::bug;
pub fn collect_types(module: &Module) -> FxHashMap<Word, Instruction> {
module
.types_global_values
.iter()
.filter_map(|inst| Some((inst.result_id?, inst.clone())))
.collect()
}
fn composite_count(types: &FxHashMap<Word, Instruction>, ty_id: Word) -> Option<usize> {
let ty = types.get(&ty_id)?;
match ty.class.opcode {
Op::TypeStruct => Some(ty.operands.len()),
Op::TypeVector => Some(ty.operands[1].unwrap_literal_bit32() as usize),
Op::TypeArray => {
let length_id = ty.operands[1].unwrap_id_ref();
let const_inst = types.get(&length_id)?;
if const_inst.class.opcode != Op::Constant {
return None;
}
let const_ty = types.get(&const_inst.result_type.unwrap())?;
if const_ty.class.opcode != Op::TypeInt {
return None;
}
let const_value = match const_inst.operands[0] {
Operand::LiteralBit32(v) => v as usize,
Operand::LiteralBit64(v) => v as usize,
_ => bug!(),
};
Some(const_value)
}
_ => None,
}
}
/// Given a chain of `OpCompositeInsert` instructions where all slots of the composite are
/// assigned, replace the chain with a single `OpCompositeConstruct`.
pub fn composite_construct(types: &FxHashMap<Word, Instruction>, function: &mut Function) {
let defs = function
.all_inst_iter()
.filter_map(|inst| Some((inst.result_id?, inst.clone())))
.collect::<FxHashMap<Word, Instruction>>();
for block in &mut function.blocks {
for inst in &mut block.instructions {
if inst.class.opcode != Op::CompositeInsert {
continue;
}
// Get the number of components to expect
let component_count = match composite_count(types, inst.result_type.unwrap()) {
Some(c) => c,
None => continue,
};
// Remember a map of index -> value for that index. If any index is missing (None)
// afterwards, then we know not all slots have been filled in, and we should skip
// optimizing this chain.
let mut components = vec![None; component_count];
let mut cur_inst: &Instruction = inst;
// Start looping from the current instruction, through each instruction in the chain.
while cur_inst.class.opcode == Op::CompositeInsert {
if cur_inst.operands.len() != 3 {
// If there's more than one index, skip optimizing this chain.
break;
}
let value = cur_inst.operands[0].unwrap_id_ref();
let index = cur_inst.operands[2].unwrap_literal_bit32() as usize;
if index >= components.len() {
// Theoretically shouldn't happen, as it's invalid SPIR-V if the index is out
// of bounds, but just stop optimizing instead of panicking here.
break;
}
if components[index].is_none() {
components[index] = Some(value);
}
// Follow back one in the chain of OpCompositeInsert
cur_inst = match defs.get(&cur_inst.operands[1].unwrap_id_ref()) {
Some(i) => i,
None => break,
};
}
// If all components are filled in (collect() returns Some), replace it with
// `OpCompositeConstruct`
if let Some(composite_construct_operands) = components
.into_iter()
.map(|v| v.map(Operand::IdRef))
.collect::<Option<Vec<_>>>()
{
// Leave all the other instructions in the chain as dead code for other passes
// to clean up.
*inst = Instruction::new(
Op::CompositeConstruct,
inst.result_type,
inst.result_id,
composite_construct_operands,
);
}
}
}
}
#[derive(Debug)]
enum IdentifiedOperand {
/// The operand to the vectorized operation is a straight-up vector.
Vector(Word),
/// The operand to the vectorized operation is a collection of scalars that need to be packed
/// together with `OpCompositeConstruct` before using the vectorized operation.
Scalars(Vec<Word>),
/// The operand to the vectorized operation is some non-value: for example, the `instruction`
/// operand in `OpExtInst`.
NonValue(Operand),
}
/// Given an ID ref to a `OpCompositeExtract`, get the vector it's extracting from, and the field
/// index.
fn get_composite_and_index(
types: &FxHashMap<Word, Instruction>,
defs: &FxHashMap<Word, Instruction>,
id: Word,
vector_width: u32,
) -> Option<(Word, u32)> {
let inst = defs.get(&id)?;
if inst.class.opcode != Op::CompositeExtract {
return None;
}
if inst.operands.len() != 2 {
// If the index is more than one deep, bail.
return None;
}
let composite = inst.operands[0].unwrap_id_ref();
let index = inst.operands[1].unwrap_literal_bit32();
let composite_def = defs.get(&composite).or_else(|| types.get(&composite))?;
let vector_def = types.get(&composite_def.result_type.unwrap())?;
// Make sure it's a vector and has the width we're expecting.
// Width mismatch would be doing something like `vec2(a.x + b.x, a.y + b.y)` where `a` is a
// vec4 - if we optimized it to just `a + b`, it'd be incorrect.
if vector_def.class.opcode != Op::TypeVector
|| vector_width != vector_def.operands[1].unwrap_literal_bit32()
{
return None;
}
Some((composite, index))
}
/// Given a bunch of operands (`results[n].operands[operand_index]`), where all those operands
/// refer to an `OpCompositeExtract` of the same vector (with proper indices, etc.), return that
/// vector.
fn match_vector_operand(
types: &FxHashMap<Word, Instruction>,
defs: &FxHashMap<Word, Instruction>,
results: &[&Instruction],
operand_index: usize,
vector_width: u32,
) -> Option<Word> {
let operand_zero = match results[0].operands[operand_index] {
Operand::IdRef(id) => id,
_ => {
return None;
}
};
// Extract the composite used for the first component.
let composite_zero = match get_composite_and_index(types, defs, operand_zero, vector_width) {
Some((composite_zero, 0)) => composite_zero,
_ => {
return None;
}
};
// Check the same composite is used for every other component (and indices line up)
for (expected_index, result) in results.iter().enumerate().skip(1) {
let operand = match result.operands[operand_index] {
Operand::IdRef(id) => id,
_ => {
return None;
}
};
let (composite, actual_index) =
match get_composite_and_index(types, defs, operand, vector_width) {
Some(x) => x,
None => {
return None;
}
};
// If the source composite isn't all from the same composite, or the index
// isn't the right index, break.
if composite != composite_zero || expected_index != actual_index as usize {
return None;
}
}
Some(composite_zero)
}
/// Either extract out the vector behind each scalar component (see `match_vector_operand`), or
/// just return the collection of scalars for this operand (to be constructed into a vector via
/// `OpCompositeConstruct`).
fn match_vector_or_scalars_operand(
types: &FxHashMap<Word, Instruction>,
defs: &FxHashMap<Word, Instruction>,
results: &[&Instruction],
operand_index: usize,
vector_width: u32,
) -> Option<IdentifiedOperand> {
if let Some(composite) = match_vector_operand(types, defs, results, operand_index, vector_width)
{
Some(IdentifiedOperand::Vector(composite))
} else {
let operands = results
.iter()
.map(|inst| match inst.operands[operand_index] {
Operand::IdRef(id) => Some(id),
_ => None,
})
.collect::<Option<Vec<_>>>()?;
Some(IdentifiedOperand::Scalars(operands))
}
}
/// Make sure all the operands are the same at this index, and return that operand. This is used
/// in, for example, the `instruction` operand for `OpExtInst`.
fn match_all_same_operand(results: &[&Instruction], operand_index: usize) -> Option<Operand> {
let operand_zero = &results[0].operands[operand_index];
if results
.iter()
.skip(1)
.all(|inst| &inst.operands[operand_index] == operand_zero)
{
Some(operand_zero.clone())
} else {
None
}
}
/// Find the proper operands for the vectorized operation. This means finding the backing vector
/// for each scalar component, etc.
fn match_operands(
types: &FxHashMap<Word, Instruction>,
defs: &FxHashMap<Word, Instruction>,
results: &[&Instruction],
vector_width: u32,
) -> Option<Vec<IdentifiedOperand>> {
let operation_opcode = results[0].class.opcode;
// Check to make sure they're all the same opcode, and have the same number of arguments.
if results.iter().skip(1).any(|r| {
r.class.opcode != operation_opcode || r.operands.len() != results[0].operands.len()
}) {
return None;
}
// TODO: There are probably other instructions relevant here.
match operation_opcode {
Op::IAdd
| Op::FAdd
| Op::ISub
| Op::FSub
| Op::IMul
| Op::FMul
| Op::UDiv
| Op::SDiv
| Op::FDiv
| Op::UMod
| Op::SRem
| Op::FRem
| Op::FMod
| Op::ShiftRightLogical
| Op::ShiftRightArithmetic
| Op::ShiftLeftLogical
| Op::BitwiseOr
| Op::BitwiseXor
| Op::BitwiseAnd => {
let left = match_vector_or_scalars_operand(types, defs, results, 0, vector_width)?;
let right = match_vector_or_scalars_operand(types, defs, results, 1, vector_width)?;
match (left, right) {
// Style choice: If all arguments are scalars, don't fuse this operation.
(IdentifiedOperand::Scalars(_), IdentifiedOperand::Scalars(_)) => None,
(left, right) => Some(vec![left, right]),
}
}
Op::SNegate | Op::FNegate | Op::Not | Op::BitReverse => {
let value = match_vector_operand(types, defs, results, 0, vector_width)?;
Some(vec![IdentifiedOperand::Vector(value)])
}
Op::ExtInst => {
let set = match_all_same_operand(results, 0)?;
let instruction = match_all_same_operand(results, 1)?;
let parameters = (2..results[0].operands.len())
.map(|i| match_vector_or_scalars_operand(types, defs, results, i, vector_width));
// Do some trickery to reduce allocations.
let operands = IntoIterator::into_iter([
Some(IdentifiedOperand::NonValue(set)),
Some(IdentifiedOperand::NonValue(instruction)),
])
.chain(parameters)
.collect::<Option<Vec<_>>>()?;
if operands
.iter()
.skip(2)
.all(|p| matches!(p, &IdentifiedOperand::Scalars(_)))
{
// Style choice: If all arguments are scalars, don't fuse this operation.
return None;
}
Some(operands)
}
_ => None,
}
}
fn process_instruction(
header: &mut ModuleHeader,
types: &FxHashMap<Word, Instruction>,
defs: &FxHashMap<Word, Instruction>,
instructions: &mut Vec<Instruction>,
instruction_index: &mut usize,
) -> Option<Instruction> {
let inst = &instructions[*instruction_index];
// Basic sanity checks
if inst.class.opcode != Op::CompositeConstruct {
return None;
}
let inst_result_id = inst.result_id.unwrap();
let vector_ty = inst.result_type.unwrap();
let vector_ty_inst = match types.get(&vector_ty) {
Some(inst) => inst,
_ => return None,
};
if vector_ty_inst.class.opcode != Op::TypeVector {
return None;
}
let vector_width = vector_ty_inst.operands[1].unwrap_literal_bit32();
// `results` is the defining instruction for each scalar component of the final result.
let results = inst
.operands
.iter()
.map(|op| defs.get(&op.unwrap_id_ref()))
.collect::<Option<Vec<_>>>()?;
let operation_opcode = results[0].class.opcode;
// Figure out the operands for the vectorized instruction.
let composite_arguments = match_operands(types, defs, &results, vector_width)?;
// Fun little optimization: SPIR-V has a fancy OpVectorTimesScalar instruction. If we have a
// vector times a collection of scalars, and the scalars are all the same, reduce it!
if operation_opcode == Op::FMul && composite_arguments.len() == 2 {
if let (&IdentifiedOperand::Vector(composite), IdentifiedOperand::Scalars(scalars))
| (IdentifiedOperand::Scalars(scalars), &IdentifiedOperand::Vector(composite)) =
(&composite_arguments[0], &composite_arguments[1])
{
let scalar = scalars[0];
if scalars.iter().skip(1).all(|&s| s == scalar) {
return Some(Instruction::new(
Op::VectorTimesScalar,
inst.result_type,
inst.result_id,
vec![Operand::IdRef(composite), Operand::IdRef(scalar)],
));
}
}
}
// Map the operands into their concrete representations: vectors and non-values stay as-is, but
// we need to emit an OpCompositeConstruct instruction for scalar collections.
let operands = composite_arguments
.into_iter()
.map(|operand| match operand {
IdentifiedOperand::Vector(composite) => Operand::IdRef(composite),
IdentifiedOperand::NonValue(operand) => operand,
IdentifiedOperand::Scalars(scalars) => {
let id = super::id(header);
// spirv-opt will transform this into an OpConstantComposite if all arguments are
// constant, so we don't have to worry about that.
instructions.insert(
*instruction_index,
Instruction::new(
Op::CompositeConstruct,
Some(vector_ty),
Some(id),
scalars.into_iter().map(Operand::IdRef).collect(),
),
);
*instruction_index += 1;
Operand::IdRef(id)
}
})
.collect();
Some(Instruction::new(
operation_opcode,
Some(vector_ty),
Some(inst_result_id),
operands,
))
}
/// Fuse a sequence of scalar operations into a single vector operation. For example:
/// ```
/// %x_0 = OpCompositeExtract %x 0
/// %x_1 = OpCompositeExtract %x 1
/// %y_0 = OpCompositeExtract %y 0
/// %y_1 = OpCompositeExtract %y 1
/// %r_0 = OpAdd %x_0 %y_0
/// %r_1 = OpAdd %x_1 %y_1
/// %r = OpCompositeConstruct %r_0 %r_1
/// ```
/// into
/// ```
/// %r = OpAdd %x %y
/// ```
/// (We don't remove the intermediate instructions, however, in case they're used elsewhere - we
/// let spirv-opt remove them if they're actually dead)
pub fn vector_ops(
header: &mut ModuleHeader,
types: &FxHashMap<Word, Instruction>,
function: &mut Function,
) {
let defs = function
.all_inst_iter()
.filter_map(|inst| Some((inst.result_id?, inst.clone())))
.collect::<FxHashMap<Word, Instruction>>();
for block in &mut function.blocks {
// It'd be nice to iterate over &mut block.instructions, but there's a weird case: if we
// have a vector plus a collection of scalars, we want to pack the collection of scalars
// into a vector and do a vector+vector op. That means we need to insert an extra
// OpCompositeConstruct into the block, so, we need to manually keep track of the current
// index and do a while loop.
let mut instruction_index = 0;
while instruction_index < block.instructions.len() {
if let Some(result) = process_instruction(
header,
types,
&defs,
&mut block.instructions,
&mut instruction_index,
) {
// Leave all the other instructions in the chain as dead code for other passes
// to clean up.
block.instructions[instruction_index] = result;
}
instruction_index += 1;
}
}
}
fn can_fuse_bool(
types: &FxHashMap<Word, Instruction>,
defs: &FxHashMap<Word, (usize, Instruction)>,
inst: &Instruction,
) -> bool {
fn constant_value(types: &FxHashMap<Word, Instruction>, val: Word) -> Option<u32> {
let inst = types.get(&val)?;
if inst.class.opcode != Op::Constant {
return None;
}
match inst.operands[0] {
Operand::LiteralBit32(v) => Some(v),
_ => None,
}
}
fn visit(
types: &FxHashMap<Word, Instruction>,
defs: &FxHashMap<Word, (usize, Instruction)>,
visited: &mut FxHashSet<Word>,
value: Word,
) -> bool {
if visited.insert(value) {
let inst = match defs.get(&value) {
Some((_, inst)) => inst,
None => return false,
};
match inst.class.opcode {
Op::Select => {
constant_value(types, inst.operands[1].unwrap_id_ref()) == Some(1)
&& constant_value(types, inst.operands[2].unwrap_id_ref()) == Some(0)
}
Op::Phi => inst
.operands
.iter()
.step_by(2)
.all(|op| visit(types, defs, visited, op.unwrap_id_ref())),
_ => false,
}
} else {
true
}
}
if inst.class.opcode != Op::INotEqual
|| constant_value(types, inst.operands[1].unwrap_id_ref()) != Some(0)
{
return false;
}
let int_value = inst.operands[0].unwrap_id_ref();
visit(types, defs, &mut FxHashSet::default(), int_value)
}
fn fuse_bool(
header: &mut ModuleHeader,
defs: &FxHashMap<Word, (usize, Instruction)>,
phis_to_insert: &mut Vec<(usize, Instruction)>,
already_mapped: &mut FxHashMap<Word, Word>,
bool_ty: Word,
int_value: Word,
) -> Word {
if let Some(&result) = already_mapped.get(&int_value) {
return result;
}
let (block_of_inst, inst) = defs.get(&int_value).unwrap();
match inst.class.opcode {
Op::Select => inst.operands[0].unwrap_id_ref(),
Op::Phi => {
let result_id = id(header);
already_mapped.insert(int_value, result_id);
let new_phi_args = inst
.operands
.chunks(2)
.flat_map(|arr| {
let phi_value = &arr[0];
let block = &arr[1];
[
Operand::IdRef(fuse_bool(
header,
defs,
phis_to_insert,
already_mapped,
bool_ty,
phi_value.unwrap_id_ref(),
)),
block.clone(),
]
})
.collect::<Vec<_>>();
let inst = Instruction::new(Op::Phi, Some(bool_ty), Some(result_id), new_phi_args);
phis_to_insert.push((*block_of_inst, inst));
result_id
}
_ => bug!("can_fuse_bool should have prevented this case"),
}
}
// The compiler generates a lot of code that looks like this:
// %v_int = OpSelect %int %v %const_1 %const_0
// %v2 = OpINotEqual %bool %v_int %const_0
// (This is due to rustc/spirv not supporting bools in memory, and needing to convert to u8, but
// then things get inlined/mem2reg'd)
//
// This pass fuses together those two instructions to strip out the intermediate integer variable.
// The purpose is to make simple code that doesn't actually do memory-stuff with bools not require
// the Int8 capability (and so we can't rely on spirv-opt to do this same pass).
//
// Unfortunately, things get complicated because of phis: the majority of actually useful cases to
// do this pass need to track pseudo-bool ints through phi instructions.
//
// The logic goes like:
// 1) Figure out what we *can* fuse. This means finding OpINotEqual instructions (converting back
// from int->bool) and tracing the value back recursively through any phis, and making sure each
// one terminates in either a loop back around to something we've already seen, or an OpSelect
// (converting from bool->int).
// 2) Do the fusion. Trace back through phis, generating a second bool-typed phi alongside the
// original int-typed phi, and when hitting an OpSelect, taking the bool value directly.
// 3) DCE the dead OpSelects/int-typed OpPhis (done in a later pass). We don't nuke them here,
// since they might be used elsewhere, and don't want to accidentally leave a dangling
// reference.
pub fn bool_fusion(
header: &mut ModuleHeader,
types: &FxHashMap<Word, Instruction>,
function: &mut Function,
) {
let defs: FxHashMap<Word, (usize, Instruction)> = function
.blocks
.iter()
.enumerate()
.flat_map(|(block_id, block)| {
block
.instructions
.iter()
.filter_map(move |inst| Some((inst.result_id?, (block_id, inst.clone()))))
})
.collect();
let mut rewrite_rules = FxHashMap::default();
let mut phis_to_insert = Default::default();
let mut already_mapped = Default::default();
for block in &mut function.blocks {
for inst in &mut block.instructions {
if can_fuse_bool(types, &defs, inst) {
let rewrite_to = fuse_bool(
header,
&defs,
&mut phis_to_insert,
&mut already_mapped,
inst.result_type.unwrap(),
inst.operands[0].unwrap_id_ref(),
);
rewrite_rules.insert(inst.result_id.unwrap(), rewrite_to);
*inst = Instruction::new(Op::Nop, None, None, Vec::new());
}
}
}
for (block, phi) in phis_to_insert {
function.blocks[block].instructions.insert(0, phi);
}
super::apply_rewrite_rules(&rewrite_rules, &mut function.blocks);
}