rustc_codegen_spirv/linker/
peephole_opts.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
use super::id;
use rspirv::dr::{Function, Instruction, Module, ModuleHeader, Operand};
use rspirv::spirv::{Op, Word};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_middle::bug;

pub fn collect_types(module: &Module) -> FxHashMap<Word, Instruction> {
    module
        .types_global_values
        .iter()
        .filter_map(|inst| Some((inst.result_id?, inst.clone())))
        .collect()
}

fn composite_count(types: &FxHashMap<Word, Instruction>, ty_id: Word) -> Option<usize> {
    let ty = types.get(&ty_id)?;
    match ty.class.opcode {
        Op::TypeStruct => Some(ty.operands.len()),
        Op::TypeVector => Some(ty.operands[1].unwrap_literal_bit32() as usize),
        Op::TypeArray => {
            let length_id = ty.operands[1].unwrap_id_ref();
            let const_inst = types.get(&length_id)?;
            if const_inst.class.opcode != Op::Constant {
                return None;
            }
            let const_ty = types.get(&const_inst.result_type.unwrap())?;
            if const_ty.class.opcode != Op::TypeInt {
                return None;
            }
            let const_value = match const_inst.operands[0] {
                Operand::LiteralBit32(v) => v as usize,
                Operand::LiteralBit64(v) => v as usize,
                _ => bug!(),
            };
            Some(const_value)
        }
        _ => None,
    }
}

/// Given a chain of `OpCompositeInsert` instructions where all slots of the composite are
/// assigned, replace the chain with a single `OpCompositeConstruct`.
pub fn composite_construct(types: &FxHashMap<Word, Instruction>, function: &mut Function) {
    let defs = function
        .all_inst_iter()
        .filter_map(|inst| Some((inst.result_id?, inst.clone())))
        .collect::<FxHashMap<Word, Instruction>>();
    for block in &mut function.blocks {
        for inst in &mut block.instructions {
            if inst.class.opcode != Op::CompositeInsert {
                continue;
            }
            // Get the number of components to expect
            let component_count = match composite_count(types, inst.result_type.unwrap()) {
                Some(c) => c,
                None => continue,
            };
            // Remember a map of index -> value for that index. If any index is missing (None)
            // afterwards, then we know not all slots have been filled in, and we should skip
            // optimizing this chain.
            let mut components = vec![None; component_count];
            let mut cur_inst: &Instruction = inst;
            // Start looping from the current instruction, through each instruction in the chain.
            while cur_inst.class.opcode == Op::CompositeInsert {
                if cur_inst.operands.len() != 3 {
                    // If there's more than one index, skip optimizing this chain.
                    break;
                }
                let value = cur_inst.operands[0].unwrap_id_ref();
                let index = cur_inst.operands[2].unwrap_literal_bit32() as usize;
                if index >= components.len() {
                    // Theoretically shouldn't happen, as it's invalid SPIR-V if the index is out
                    // of bounds, but just stop optimizing instead of panicking here.
                    break;
                }
                if components[index].is_none() {
                    components[index] = Some(value);
                }
                // Follow back one in the chain of OpCompositeInsert
                cur_inst = match defs.get(&cur_inst.operands[1].unwrap_id_ref()) {
                    Some(i) => i,
                    None => break,
                };
            }
            // If all components are filled in (collect() returns Some), replace it with
            // `OpCompositeConstruct`
            if let Some(composite_construct_operands) = components
                .into_iter()
                .map(|v| v.map(Operand::IdRef))
                .collect::<Option<Vec<_>>>()
            {
                // Leave all the other instructions in the chain as dead code for other passes
                // to clean up.
                *inst = Instruction::new(
                    Op::CompositeConstruct,
                    inst.result_type,
                    inst.result_id,
                    composite_construct_operands,
                );
            }
        }
    }
}

#[derive(Debug)]
enum IdentifiedOperand {
    /// The operand to the vectorized operation is a straight-up vector.
    Vector(Word),
    /// The operand to the vectorized operation is a collection of scalars that need to be packed
    /// together with `OpCompositeConstruct` before using the vectorized operation.
    Scalars(Vec<Word>),
    /// The operand to the vectorized operation is some non-value: for example, the `instruction`
    /// operand in `OpExtInst`.
    NonValue(Operand),
}

/// Given an ID ref to a `OpCompositeExtract`, get the vector it's extracting from, and the field
/// index.
fn get_composite_and_index(
    types: &FxHashMap<Word, Instruction>,
    defs: &FxHashMap<Word, Instruction>,
    id: Word,
    vector_width: u32,
) -> Option<(Word, u32)> {
    let inst = defs.get(&id)?;
    if inst.class.opcode != Op::CompositeExtract {
        return None;
    }
    if inst.operands.len() != 2 {
        // If the index is more than one deep, bail.
        return None;
    }
    let composite = inst.operands[0].unwrap_id_ref();
    let index = inst.operands[1].unwrap_literal_bit32();

    let composite_def = defs.get(&composite).or_else(|| types.get(&composite))?;
    let vector_def = types.get(&composite_def.result_type.unwrap())?;

    // Make sure it's a vector and has the width we're expecting.
    // Width mismatch would be doing something like `vec2(a.x + b.x, a.y + b.y)` where `a` is a
    // vec4 - if we optimized it to just `a + b`, it'd be incorrect.
    if vector_def.class.opcode != Op::TypeVector
        || vector_width != vector_def.operands[1].unwrap_literal_bit32()
    {
        return None;
    }

    Some((composite, index))
}

/// Given a bunch of operands (`results[n].operands[operand_index]`), where all those operands
/// refer to an `OpCompositeExtract` of the same vector (with proper indices, etc.), return that
/// vector.
fn match_vector_operand(
    types: &FxHashMap<Word, Instruction>,
    defs: &FxHashMap<Word, Instruction>,
    results: &[&Instruction],
    operand_index: usize,
    vector_width: u32,
) -> Option<Word> {
    let operand_zero = match results[0].operands[operand_index] {
        Operand::IdRef(id) => id,
        _ => {
            return None;
        }
    };
    // Extract the composite used for the first component.
    let composite_zero = match get_composite_and_index(types, defs, operand_zero, vector_width) {
        Some((composite_zero, 0)) => composite_zero,
        _ => {
            return None;
        }
    };
    // Check the same composite is used for every other component (and indices line up)
    for (expected_index, result) in results.iter().enumerate().skip(1) {
        let operand = match result.operands[operand_index] {
            Operand::IdRef(id) => id,
            _ => {
                return None;
            }
        };
        let (composite, actual_index) =
            match get_composite_and_index(types, defs, operand, vector_width) {
                Some(x) => x,
                None => {
                    return None;
                }
            };
        // If the source composite isn't all from the same composite, or the index
        // isn't the right index, break.
        if composite != composite_zero || expected_index != actual_index as usize {
            return None;
        }
    }
    Some(composite_zero)
}

/// Either extract out the vector behind each scalar component (see `match_vector_operand`), or
/// just return the collection of scalars for this operand (to be constructed into a vector via
/// `OpCompositeConstruct`).
fn match_vector_or_scalars_operand(
    types: &FxHashMap<Word, Instruction>,
    defs: &FxHashMap<Word, Instruction>,
    results: &[&Instruction],
    operand_index: usize,
    vector_width: u32,
) -> Option<IdentifiedOperand> {
    if let Some(composite) = match_vector_operand(types, defs, results, operand_index, vector_width)
    {
        Some(IdentifiedOperand::Vector(composite))
    } else {
        let operands = results
            .iter()
            .map(|inst| match inst.operands[operand_index] {
                Operand::IdRef(id) => Some(id),
                _ => None,
            })
            .collect::<Option<Vec<_>>>()?;
        Some(IdentifiedOperand::Scalars(operands))
    }
}

/// Make sure all the operands are the same at this index, and return that operand. This is used
/// in, for example, the `instruction` operand for `OpExtInst`.
fn match_all_same_operand(results: &[&Instruction], operand_index: usize) -> Option<Operand> {
    let operand_zero = &results[0].operands[operand_index];
    if results
        .iter()
        .skip(1)
        .all(|inst| &inst.operands[operand_index] == operand_zero)
    {
        Some(operand_zero.clone())
    } else {
        None
    }
}

/// Find the proper operands for the vectorized operation. This means finding the backing vector
/// for each scalar component, etc.
fn match_operands(
    types: &FxHashMap<Word, Instruction>,
    defs: &FxHashMap<Word, Instruction>,
    results: &[&Instruction],
    vector_width: u32,
) -> Option<Vec<IdentifiedOperand>> {
    let operation_opcode = results[0].class.opcode;
    // Check to make sure they're all the same opcode, and have the same number of arguments.
    if results.iter().skip(1).any(|r| {
        r.class.opcode != operation_opcode || r.operands.len() != results[0].operands.len()
    }) {
        return None;
    }
    // TODO: There are probably other instructions relevant here.
    match operation_opcode {
        Op::IAdd
        | Op::FAdd
        | Op::ISub
        | Op::FSub
        | Op::IMul
        | Op::FMul
        | Op::UDiv
        | Op::SDiv
        | Op::FDiv
        | Op::UMod
        | Op::SRem
        | Op::FRem
        | Op::FMod
        | Op::ShiftRightLogical
        | Op::ShiftRightArithmetic
        | Op::ShiftLeftLogical
        | Op::BitwiseOr
        | Op::BitwiseXor
        | Op::BitwiseAnd => {
            let left = match_vector_or_scalars_operand(types, defs, results, 0, vector_width)?;
            let right = match_vector_or_scalars_operand(types, defs, results, 1, vector_width)?;
            match (left, right) {
                // Style choice: If all arguments are scalars, don't fuse this operation.
                (IdentifiedOperand::Scalars(_), IdentifiedOperand::Scalars(_)) => None,
                (left, right) => Some(vec![left, right]),
            }
        }
        Op::SNegate | Op::FNegate | Op::Not | Op::BitReverse => {
            let value = match_vector_operand(types, defs, results, 0, vector_width)?;
            Some(vec![IdentifiedOperand::Vector(value)])
        }
        Op::ExtInst => {
            let set = match_all_same_operand(results, 0)?;
            let instruction = match_all_same_operand(results, 1)?;
            let parameters = (2..results[0].operands.len())
                .map(|i| match_vector_or_scalars_operand(types, defs, results, i, vector_width));
            // Do some trickery to reduce allocations.
            let operands = IntoIterator::into_iter([
                Some(IdentifiedOperand::NonValue(set)),
                Some(IdentifiedOperand::NonValue(instruction)),
            ])
            .chain(parameters)
            .collect::<Option<Vec<_>>>()?;
            if operands
                .iter()
                .skip(2)
                .all(|p| matches!(p, &IdentifiedOperand::Scalars(_)))
            {
                // Style choice: If all arguments are scalars, don't fuse this operation.
                return None;
            }
            Some(operands)
        }
        _ => None,
    }
}

fn process_instruction(
    header: &mut ModuleHeader,
    types: &FxHashMap<Word, Instruction>,
    defs: &FxHashMap<Word, Instruction>,
    instructions: &mut Vec<Instruction>,
    instruction_index: &mut usize,
) -> Option<Instruction> {
    let inst = &instructions[*instruction_index];
    // Basic sanity checks
    if inst.class.opcode != Op::CompositeConstruct {
        return None;
    }
    let inst_result_id = inst.result_id.unwrap();
    let vector_ty = inst.result_type.unwrap();
    let vector_ty_inst = match types.get(&vector_ty) {
        Some(inst) => inst,
        _ => return None,
    };
    if vector_ty_inst.class.opcode != Op::TypeVector {
        return None;
    }
    let vector_width = vector_ty_inst.operands[1].unwrap_literal_bit32();
    // `results` is the defining instruction for each scalar component of the final result.
    let results = inst
        .operands
        .iter()
        .map(|op| defs.get(&op.unwrap_id_ref()))
        .collect::<Option<Vec<_>>>()?;

    let operation_opcode = results[0].class.opcode;
    // Figure out the operands for the vectorized instruction.
    let composite_arguments = match_operands(types, defs, &results, vector_width)?;

    // Fun little optimization: SPIR-V has a fancy OpVectorTimesScalar instruction. If we have a
    // vector times a collection of scalars, and the scalars are all the same, reduce it!
    if operation_opcode == Op::FMul && composite_arguments.len() == 2 {
        if let (&IdentifiedOperand::Vector(composite), IdentifiedOperand::Scalars(scalars))
        | (IdentifiedOperand::Scalars(scalars), &IdentifiedOperand::Vector(composite)) =
            (&composite_arguments[0], &composite_arguments[1])
        {
            let scalar = scalars[0];
            if scalars.iter().skip(1).all(|&s| s == scalar) {
                return Some(Instruction::new(
                    Op::VectorTimesScalar,
                    inst.result_type,
                    inst.result_id,
                    vec![Operand::IdRef(composite), Operand::IdRef(scalar)],
                ));
            }
        }
    }

    // Map the operands into their concrete representations: vectors and non-values stay as-is, but
    // we need to emit an OpCompositeConstruct instruction for scalar collections.
    let operands = composite_arguments
        .into_iter()
        .map(|operand| match operand {
            IdentifiedOperand::Vector(composite) => Operand::IdRef(composite),
            IdentifiedOperand::NonValue(operand) => operand,
            IdentifiedOperand::Scalars(scalars) => {
                let id = super::id(header);
                // spirv-opt will transform this into an OpConstantComposite if all arguments are
                // constant, so we don't have to worry about that.
                instructions.insert(
                    *instruction_index,
                    Instruction::new(
                        Op::CompositeConstruct,
                        Some(vector_ty),
                        Some(id),
                        scalars.into_iter().map(Operand::IdRef).collect(),
                    ),
                );
                *instruction_index += 1;
                Operand::IdRef(id)
            }
        })
        .collect();

    Some(Instruction::new(
        operation_opcode,
        Some(vector_ty),
        Some(inst_result_id),
        operands,
    ))
}

/// Fuse a sequence of scalar operations into a single vector operation. For example:
/// ```
/// %x_0 = OpCompositeExtract %x 0
/// %x_1 = OpCompositeExtract %x 1
/// %y_0 = OpCompositeExtract %y 0
/// %y_1 = OpCompositeExtract %y 1
/// %r_0 = OpAdd %x_0 %y_0
/// %r_1 = OpAdd %x_1 %y_1
/// %r = OpCompositeConstruct %r_0 %r_1
/// ```
/// into
/// ```
/// %r = OpAdd %x %y
/// ```
/// (We don't remove the intermediate instructions, however, in case they're used elsewhere - we
/// let spirv-opt remove them if they're actually dead)
pub fn vector_ops(
    header: &mut ModuleHeader,
    types: &FxHashMap<Word, Instruction>,
    function: &mut Function,
) {
    let defs = function
        .all_inst_iter()
        .filter_map(|inst| Some((inst.result_id?, inst.clone())))
        .collect::<FxHashMap<Word, Instruction>>();
    for block in &mut function.blocks {
        // It'd be nice to iterate over &mut block.instructions, but there's a weird case: if we
        // have a vector plus a collection of scalars, we want to pack the collection of scalars
        // into a vector and do a vector+vector op. That means we need to insert an extra
        // OpCompositeConstruct into the block, so, we need to manually keep track of the current
        // index and do a while loop.
        let mut instruction_index = 0;
        while instruction_index < block.instructions.len() {
            if let Some(result) = process_instruction(
                header,
                types,
                &defs,
                &mut block.instructions,
                &mut instruction_index,
            ) {
                // Leave all the other instructions in the chain as dead code for other passes
                // to clean up.
                block.instructions[instruction_index] = result;
            }

            instruction_index += 1;
        }
    }
}

fn can_fuse_bool(
    types: &FxHashMap<Word, Instruction>,
    defs: &FxHashMap<Word, (usize, Instruction)>,
    inst: &Instruction,
) -> bool {
    fn constant_value(types: &FxHashMap<Word, Instruction>, val: Word) -> Option<u32> {
        let inst = types.get(&val)?;
        if inst.class.opcode != Op::Constant {
            return None;
        }
        match inst.operands[0] {
            Operand::LiteralBit32(v) => Some(v),
            _ => None,
        }
    }

    fn visit(
        types: &FxHashMap<Word, Instruction>,
        defs: &FxHashMap<Word, (usize, Instruction)>,
        visited: &mut FxHashSet<Word>,
        value: Word,
    ) -> bool {
        if visited.insert(value) {
            let inst = match defs.get(&value) {
                Some((_, inst)) => inst,
                None => return false,
            };
            match inst.class.opcode {
                Op::Select => {
                    constant_value(types, inst.operands[1].unwrap_id_ref()) == Some(1)
                        && constant_value(types, inst.operands[2].unwrap_id_ref()) == Some(0)
                }
                Op::Phi => inst
                    .operands
                    .iter()
                    .step_by(2)
                    .all(|op| visit(types, defs, visited, op.unwrap_id_ref())),
                _ => false,
            }
        } else {
            true
        }
    }

    if inst.class.opcode != Op::INotEqual
        || constant_value(types, inst.operands[1].unwrap_id_ref()) != Some(0)
    {
        return false;
    }
    let int_value = inst.operands[0].unwrap_id_ref();

    visit(types, defs, &mut FxHashSet::default(), int_value)
}

fn fuse_bool(
    header: &mut ModuleHeader,
    defs: &FxHashMap<Word, (usize, Instruction)>,
    phis_to_insert: &mut Vec<(usize, Instruction)>,
    already_mapped: &mut FxHashMap<Word, Word>,
    bool_ty: Word,
    int_value: Word,
) -> Word {
    if let Some(&result) = already_mapped.get(&int_value) {
        return result;
    }
    let (block_of_inst, inst) = defs.get(&int_value).unwrap();
    match inst.class.opcode {
        Op::Select => inst.operands[0].unwrap_id_ref(),
        Op::Phi => {
            let result_id = id(header);
            already_mapped.insert(int_value, result_id);
            let new_phi_args = inst
                .operands
                .chunks(2)
                .flat_map(|arr| {
                    let phi_value = &arr[0];
                    let block = &arr[1];
                    [
                        Operand::IdRef(fuse_bool(
                            header,
                            defs,
                            phis_to_insert,
                            already_mapped,
                            bool_ty,
                            phi_value.unwrap_id_ref(),
                        )),
                        block.clone(),
                    ]
                })
                .collect::<Vec<_>>();
            let inst = Instruction::new(Op::Phi, Some(bool_ty), Some(result_id), new_phi_args);
            phis_to_insert.push((*block_of_inst, inst));
            result_id
        }
        _ => bug!("can_fuse_bool should have prevented this case"),
    }
}

// The compiler generates a lot of code that looks like this:
// %v_int = OpSelect %int %v %const_1 %const_0
// %v2 = OpINotEqual %bool %v_int %const_0
// (This is due to rustc/spirv not supporting bools in memory, and needing to convert to u8, but
// then things get inlined/mem2reg'd)
//
// This pass fuses together those two instructions to strip out the intermediate integer variable.
// The purpose is to make simple code that doesn't actually do memory-stuff with bools not require
// the Int8 capability (and so we can't rely on spirv-opt to do this same pass).
//
// Unfortunately, things get complicated because of phis: the majority of actually useful cases to
// do this pass need to track pseudo-bool ints through phi instructions.
//
// The logic goes like:
// 1) Figure out what we *can* fuse. This means finding OpINotEqual instructions (converting back
//    from int->bool) and tracing the value back recursively through any phis, and making sure each
//    one terminates in either a loop back around to something we've already seen, or an OpSelect
//    (converting from bool->int).
// 2) Do the fusion. Trace back through phis, generating a second bool-typed phi alongside the
//    original int-typed phi, and when hitting an OpSelect, taking the bool value directly.
// 3) DCE the dead OpSelects/int-typed OpPhis (done in a later pass). We don't nuke them here,
//    since they might be used elsewhere, and don't want to accidentally leave a dangling
//    reference.
pub fn bool_fusion(
    header: &mut ModuleHeader,
    types: &FxHashMap<Word, Instruction>,
    function: &mut Function,
) {
    let defs: FxHashMap<Word, (usize, Instruction)> = function
        .blocks
        .iter()
        .enumerate()
        .flat_map(|(block_id, block)| {
            block
                .instructions
                .iter()
                .filter_map(move |inst| Some((inst.result_id?, (block_id, inst.clone()))))
        })
        .collect();
    let mut rewrite_rules = FxHashMap::default();
    let mut phis_to_insert = Default::default();
    let mut already_mapped = Default::default();
    for block in &mut function.blocks {
        for inst in &mut block.instructions {
            if can_fuse_bool(types, &defs, inst) {
                let rewrite_to = fuse_bool(
                    header,
                    &defs,
                    &mut phis_to_insert,
                    &mut already_mapped,
                    inst.result_type.unwrap(),
                    inst.operands[0].unwrap_id_ref(),
                );
                rewrite_rules.insert(inst.result_id.unwrap(), rewrite_to);
                *inst = Instruction::new(Op::Nop, None, None, Vec::new());
            }
        }
    }
    for (block, phi) in phis_to_insert {
        function.blocks[block].instructions.insert(0, phi);
    }
    super::apply_rewrite_rules(&rewrite_rules, &mut function.blocks);
}