rustc_codegen_spirv/linker/
specializer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
//! Specialize globals (types, constants and module-scoped variables) and functions,
//! to legalize a SPIR-V module representing a "family" of types with a single type,
//! by treating some globals and functions as "generic", inferring minimal sets
//! of "generic parameters", and "monomorphizing" them (i.e. expanding them into
//! one specialized copy per distinctly parameterized instance required).
//!
//! For now, this is only used for pointer type storage classes, because
//! Rust's pointer/reference types don't have an "address space" distinction,
//! and we also wouldn't want users to annotate every single type anyway.
//!
//! # Future plans
//!
//! Recursive data types (using `OpTypeForwardPointer`) are not supported, but
//! here is an outline of how that could work:
//! * groups of mutually-recursive `OpTypeForwardPointer`s are computed via SCCs
//! * each mutual-recursive group gets a single "generic" parameter count, that all
//!   pointer types in the group will use, and which is the sum of the "generic"
//!   parameters of all the leaves referenced by the pointer types in the group,
//!   ignoring the pointer types in the group themselves
//! * once the pointer types have been assigned their "g"eneric parameter count,
//!   the non-pointer types in each SCC - i.e. (indirectly) referenced by one of
//!   the pointer types in the group, and which in turn (indirectly) references
//!   a pointer type in the group - can have their "generic" parameters computed
//!   as normal, taking care to record where in the combined lists of "generic"
//!   parameters, any of the pointer types in the group show up
//! * each pointer type in the group will "fan out" a copy of its full set of
//!   "generic" parameters to every (indirect) mention of any pointer type in
//!   the group, using an additional parameter remapping, for which `Generic`:
//!   * requires this extra documentation:
//!     ```
//!     /// The one exception are `OpTypePointer`s involved in recursive data types
//!     /// (i.e. they were declared by `OpTypeForwardPointer`s, and their pointees are
//!     /// `OpTypeStruct`s that have the same pointer type as a leaf).
//!     /// As the pointee `OpTypeStruct` has more parameters than the pointer (each leaf
//!     /// use of the same pointer type requires its own copy of the pointer parameters),
//!     /// a mapping (`expand_params`) indicates how to create the flattened list.
//!     ```
//!   * and this extra field:
//!     ```
//!     /// For every entry in the regular flattened list of parameters expected by
//!     /// operands, this contains the parameter index (i.e. `0..self.param_count`)
//!     /// to use for that parameter.
//!     ///
//!     /// For example, to duplicate `5` parameters into `10`, `expand_params`
//!     /// would be `[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]`.
//!     ///
//!     /// See also `Generic` documentation above for why this is needed
//!     /// (i.e. to replicate parameters for recursive data types).
//!     expand_params: Option<Vec<usize>>,
//!     ```

use crate::linker::ipo::CallGraph;
use crate::spirv_type_constraints::{self, InstSig, StorageClassPat, TyListPat, TyPat};
use indexmap::{IndexMap, IndexSet};
use rspirv::dr::{Builder, Function, Instruction, Module, Operand};
use rspirv::spirv::{Op, StorageClass, Word};
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use smallvec::SmallVec;
use std::collections::{BTreeMap, VecDeque};
use std::ops::{Range, RangeTo};
use std::{fmt, io, iter, mem, slice};

// FIXME(eddyb) move this elsewhere.
struct FmtBy<F: Fn(&mut fmt::Formatter<'_>) -> fmt::Result>(F);

impl<F: Fn(&mut fmt::Formatter<'_>) -> fmt::Result> fmt::Debug for FmtBy<F> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.0(f)
    }
}

impl<F: Fn(&mut fmt::Formatter<'_>) -> fmt::Result> fmt::Display for FmtBy<F> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.0(f)
    }
}

pub trait Specialization {
    /// Return `true` if the specializer should replace every occurrence of
    /// `operand` with some other inferred `Operand`.
    fn specialize_operand(&self, operand: &Operand) -> bool;

    /// The operand that should be used to replace unresolved inference variables,
    /// i.e. the uses of operands for which `specialize_operand` returns `true`,
    /// but which none of the instructions in the same SPIR-V function require
    /// any particular concrete value or relate it to the function's signature,
    /// so an arbitrary choice can be made (as long as it's valid SPIR-V etc.).
    fn concrete_fallback(&self) -> Operand;
}

/// Helper to avoid needing an `impl` of `Specialization`, while allowing the rest
/// of this module to use `Specialization` (instead of `Fn(&Operand) -> bool`).
pub struct SimpleSpecialization<SO: Fn(&Operand) -> bool> {
    pub specialize_operand: SO,
    pub concrete_fallback: Operand,
}

impl<SO: Fn(&Operand) -> bool> Specialization for SimpleSpecialization<SO> {
    fn specialize_operand(&self, operand: &Operand) -> bool {
        (self.specialize_operand)(operand)
    }
    fn concrete_fallback(&self) -> Operand {
        self.concrete_fallback.clone()
    }
}

pub fn specialize(
    opts: &super::Options,
    module: Module,
    specialization: impl Specialization,
) -> Module {
    // FIXME(eddyb) use `log`/`tracing` instead.
    let debug = opts.specializer_debug;
    let dump_instances = &opts.specializer_dump_instances;

    let mut debug_names = FxHashMap::default();
    if debug || dump_instances.is_some() {
        debug_names = module
            .debug_names
            .iter()
            .filter(|inst| inst.class.opcode == Op::Name)
            .map(|inst| {
                (
                    inst.operands[0].unwrap_id_ref(),
                    inst.operands[1].unwrap_literal_string().to_string(),
                )
            })
            .collect();
    }

    let mut specializer = Specializer {
        specialization,

        debug,
        debug_names,

        generics: IndexMap::new(),
        int_consts: FxHashMap::default(),
    };

    specializer.collect_generics(&module);

    // "Generic" module-scoped variables can be fully constrained to the point
    // where we could theoretically always add an instance for them, in order
    // to preserve them, even if they would appear to otherwise be unused.
    // We do this here for fully-constrained variables used by `OpEntryPoint`s,
    // in order to avoid a failure in `Expander::expand_module` (see #723).
    let mut interface_concrete_instances = IndexSet::new();
    for inst in &module.entry_points {
        for interface_operand in &inst.operands[3..] {
            let interface_id = interface_operand.unwrap_id_ref();
            if let Some(generic) = specializer.generics.get(&interface_id) {
                if let Some(param_values) = &generic.param_values {
                    if param_values.iter().all(|v| matches!(v, Value::Known(_))) {
                        interface_concrete_instances.insert(Instance {
                            generic_id: interface_id,
                            generic_args: param_values
                                .iter()
                                .copied()
                                .map(|v| match v {
                                    Value::Known(v) => v,
                                    _ => unreachable!(),
                                })
                                .collect(),
                        });
                    }
                }
            }
        }
    }

    let call_graph = CallGraph::collect(&module);
    let mut non_generic_replacements = vec![];
    for func_idx in call_graph.post_order() {
        if let Some(replacements) = specializer.infer_function(&module.functions[func_idx]) {
            non_generic_replacements.push((func_idx, replacements));
        }
    }

    let mut expander = Expander::new(&specializer, module);

    // See comment above on the loop collecting `interface_concrete_instances`.
    for interface_instance in interface_concrete_instances {
        expander.alloc_instance_id(interface_instance);
    }

    // For non-"generic" functions, we can apply `replacements` right away,
    // though not before finishing inference for all functions first
    // (because `expander` needs to borrow `specializer` immutably).
    if debug {
        eprintln!("non-generic replacements:");
    }
    for (func_idx, replacements) in non_generic_replacements {
        let mut func = mem::replace(
            &mut expander.builder.module_mut().functions[func_idx],
            Function::new(),
        );
        if debug {
            let empty = replacements.with_instance.is_empty()
                && replacements.with_concrete_or_param.is_empty();
            if !empty {
                eprintln!("    in %{}:", func.def_id().unwrap());
            }
        }
        for (loc, operand) in
            replacements.to_concrete(&[], |instance| expander.alloc_instance_id(instance))
        {
            if debug {
                eprintln!("        {operand} -> {loc:?}");
            }
            func.index_set(loc, operand.into());
        }
        expander.builder.module_mut().functions[func_idx] = func;
    }
    expander.propagate_instances();

    if let Some(path) = dump_instances {
        expander
            .dump_instances(&mut std::fs::File::create(path).unwrap())
            .unwrap();
    }

    expander.expand_module()
}

// HACK(eddyb) `Copy` version of `Operand` that only includes the cases that
// are relevant to the inference algorithm (and is also smaller).
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
enum CopyOperand {
    IdRef(Word),
    StorageClass(StorageClass),
}

#[derive(Debug)]
struct NotSupportedAsCopyOperand(
    // HACK(eddyb) only exists for `fmt::Debug` in case of error.
    #[allow(dead_code)] Operand,
);

impl TryFrom<&Operand> for CopyOperand {
    type Error = NotSupportedAsCopyOperand;
    fn try_from(operand: &Operand) -> Result<Self, Self::Error> {
        match *operand {
            Operand::IdRef(id) => Ok(Self::IdRef(id)),
            Operand::StorageClass(s) => Ok(Self::StorageClass(s)),
            _ => Err(NotSupportedAsCopyOperand(operand.clone())),
        }
    }
}

impl From<CopyOperand> for Operand {
    fn from(op: CopyOperand) -> Self {
        match op {
            CopyOperand::IdRef(id) => Self::IdRef(id),
            CopyOperand::StorageClass(s) => Self::StorageClass(s),
        }
    }
}

impl fmt::Display for CopyOperand {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::IdRef(id) => write!(f, "%{id}"),
            Self::StorageClass(s) => write!(f, "{s:?}"),
        }
    }
}

/// The "value" of a `Param`/`InferVar`, if we know anything about it.
// FIXME(eddyb) find a more specific name.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
enum Value<T> {
    /// The value of this `Param`/`InferVar` is completely known.
    Unknown,

    /// The value of this `Param`/`InferVar` is known to be a specific `Operand`.
    Known(CopyOperand),

    /// The value of this `Param`/`InferVar` is the same as another `Param`/`InferVar`.
    ///
    /// For consistency, and to allow some `Param` <-> `InferVar` mapping,
    /// all cases of `values[y] == Value::SameAs(x)` should have `x < y`,
    /// i.e. "newer" variables must be redirected to "older" ones.
    SameAs(T),
}

impl<T> Value<T> {
    fn map_var<U>(self, f: impl FnOnce(T) -> U) -> Value<U> {
        match self {
            Value::Unknown => Value::Unknown,
            Value::Known(o) => Value::Known(o),
            Value::SameAs(var) => Value::SameAs(f(var)),
        }
    }
}

/// Newtype'd "generic" parameter index.
// FIXME(eddyb) use `rustc_index` for this instead.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct Param(u32);

impl fmt::Display for Param {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "${}", self.0)
    }
}

impl Param {
    // HACK(eddyb) this works around `Range<Param>` not being iterable
    // because `Param` doesn't implement the (unstable) `Step` trait.
    fn range_iter(range: &Range<Self>) -> impl Iterator<Item = Self> + Clone {
        (range.start.0..range.end.0).map(Self)
    }
}

/// A specific instance of a "generic" global/function.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct Instance<GA> {
    generic_id: Word,
    generic_args: GA,
}

impl<GA> Instance<GA> {
    fn as_ref(&self) -> Instance<&GA> {
        Instance {
            generic_id: self.generic_id,
            generic_args: &self.generic_args,
        }
    }

    fn map_generic_args<T, U, GA2>(self, f: impl FnMut(T) -> U) -> Instance<GA2>
    where
        GA: IntoIterator<Item = T>,
        GA2: std::iter::FromIterator<U>,
    {
        Instance {
            generic_id: self.generic_id,
            generic_args: self.generic_args.into_iter().map(f).collect(),
        }
    }

    // FIXME(eddyb) implement `Step` for `Param` and `InferVar` instead.
    fn display<'a, T: fmt::Display, GAI: Iterator<Item = T> + Clone>(
        &'a self,
        f: impl FnOnce(&'a GA) -> GAI,
    ) -> impl fmt::Display {
        let &Self {
            generic_id,
            ref generic_args,
        } = self;
        let generic_args_iter = f(generic_args);
        FmtBy(move |f| {
            write!(f, "%{generic_id}<")?;
            for (i, arg) in generic_args_iter.clone().enumerate() {
                if i != 0 {
                    write!(f, ", ")?;
                }
                write!(f, "{arg}")?;
            }
            write!(f, ">")
        })
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum InstructionLocation {
    Module,
    FnParam(usize),
    FnBody {
        /// Block index within a function.
        block_idx: usize,

        /// Instruction index within the block with index `block_idx`.
        inst_idx: usize,
    },
}

trait OperandIndexGetSet<I> {
    // FIXME(eddyb) how come this isn't used? (is iteration preferred?)
    #[allow(dead_code)]
    fn index_get(&self, index: I) -> Operand;
    fn index_set(&mut self, index: I, operand: Operand);
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum OperandIdx {
    ResultType,
    Input(usize),
}

impl OperandIndexGetSet<OperandIdx> for Instruction {
    fn index_get(&self, idx: OperandIdx) -> Operand {
        match idx {
            OperandIdx::ResultType => Operand::IdRef(self.result_type.unwrap()),
            OperandIdx::Input(i) => self.operands[i].clone(),
        }
    }
    fn index_set(&mut self, idx: OperandIdx, operand: Operand) {
        match idx {
            OperandIdx::ResultType => self.result_type = Some(operand.unwrap_id_ref()),
            OperandIdx::Input(i) => self.operands[i] = operand,
        }
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
struct OperandLocation {
    inst_loc: InstructionLocation,
    operand_idx: OperandIdx,
}

impl OperandIndexGetSet<OperandLocation> for Instruction {
    fn index_get(&self, loc: OperandLocation) -> Operand {
        assert_eq!(loc.inst_loc, InstructionLocation::Module);
        self.index_get(loc.operand_idx)
    }
    fn index_set(&mut self, loc: OperandLocation, operand: Operand) {
        assert_eq!(loc.inst_loc, InstructionLocation::Module);
        self.index_set(loc.operand_idx, operand);
    }
}

impl OperandIndexGetSet<OperandLocation> for Function {
    fn index_get(&self, loc: OperandLocation) -> Operand {
        let inst = match loc.inst_loc {
            InstructionLocation::Module => self.def.as_ref().unwrap(),
            InstructionLocation::FnParam(i) => &self.parameters[i],
            InstructionLocation::FnBody {
                block_idx,
                inst_idx,
            } => &self.blocks[block_idx].instructions[inst_idx],
        };
        inst.index_get(loc.operand_idx)
    }
    fn index_set(&mut self, loc: OperandLocation, operand: Operand) {
        let inst = match loc.inst_loc {
            InstructionLocation::Module => self.def.as_mut().unwrap(),
            InstructionLocation::FnParam(i) => &mut self.parameters[i],
            InstructionLocation::FnBody {
                block_idx,
                inst_idx,
            } => &mut self.blocks[block_idx].instructions[inst_idx],
        };
        inst.index_set(loc.operand_idx, operand);
    }
}

// FIXME(eddyb) this is a bit like `Value<Param>` but more explicit,
// and the name isn't too nice, but at least it's very clear.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
enum ConcreteOrParam {
    Concrete(CopyOperand),
    Param(Param),
}

impl ConcreteOrParam {
    /// Replace `Param(i)` with `generic_args[i]` while preserving `Concrete`.
    fn apply_generic_args(self, generic_args: &[CopyOperand]) -> CopyOperand {
        match self {
            Self::Concrete(x) => x,
            Self::Param(Param(i)) => generic_args[i as usize],
        }
    }
}

#[derive(Debug)]
struct Replacements {
    /// Operands that need to be replaced with instances of "generic" globals.
    /// Keyed by instance to optimize for few instances used many times.
    // FIXME(eddyb) fine-tune the length of `SmallVec<[_; 4]>` here.
    with_instance: IndexMap<Instance<SmallVec<[ConcreteOrParam; 4]>>, Vec<OperandLocation>>,

    /// Operands that need to be replaced with a concrete operand or a parameter.
    with_concrete_or_param: Vec<(OperandLocation, ConcreteOrParam)>,
}

impl Replacements {
    /// Apply `generic_args` to all the `ConcreteOrParam`s in this `Replacements`
    /// (i.e. replacing `Param(i)` with `generic_args[i]`), producing a stream of
    /// "replace the operand at `OperandLocation` with this concrete `CopyOperand`".
    /// The `concrete_instance_id` closure should look up and/or allocate an ID
    /// for a specific concrete `Instance`.
    fn to_concrete<'a>(
        &'a self,
        generic_args: &'a [CopyOperand],
        mut concrete_instance_id: impl FnMut(Instance<SmallVec<[CopyOperand; 4]>>) -> Word + 'a,
    ) -> impl Iterator<Item = (OperandLocation, CopyOperand)> + 'a {
        self.with_instance
            .iter()
            .flat_map(move |(instance, locations)| {
                let concrete = CopyOperand::IdRef(concrete_instance_id(
                    instance
                        .as_ref()
                        .map_generic_args(|x| x.apply_generic_args(generic_args)),
                ));
                locations.iter().map(move |&loc| (loc, concrete))
            })
            .chain(
                self.with_concrete_or_param
                    .iter()
                    .map(move |&(loc, x)| (loc, x.apply_generic_args(generic_args))),
            )
    }
}

/// Computed "generic" shape for a SPIR-V global/function. In the interest of efficient
/// representation, the parameters of operands that are themselves "generic",
/// are concatenated by default, i.e. parameters come from disjoint leaves.
///
/// As an example, for `%T = OpTypeStruct %A %B`, if `%A` and `%B` have 2 and 3
/// parameters, respectively, `%T` will have `A0, A1, B0, B1, B2` as parameters.
struct Generic {
    param_count: u32,

    /// Defining instruction for this global (`OpType...`, `OpConstant...`, etc.)
    /// or function (`OpFunction`).
    // FIXME(eddyb) consider using `SmallVec` for the operands, or converting
    // the operands into something more like `InferOperand`, but that would
    // complicate `InferOperandList`, which has to be able to iterate them.
    def: Instruction,

    /// `param_values[p]` constrains what "generic" args `Param(p)` could take.
    /// This is only present if any constraints were inferred from the defining
    /// instruction of a global, or the body of a function. Inference performed
    /// after `collect_generics` (e.g. from instructions in function bodies) is
    /// monotonic, i.e. it may only introduce more constraints, not remove any.
    // FIXME(eddyb) use `rustc_index`'s `IndexVec` for this.
    param_values: Option<Vec<Value<Param>>>,

    /// Operand replacements that need to be performed on the defining instruction
    /// of a global, or an entire function (including all instructions in its body),
    /// in order to expand an instance of it.
    replacements: Replacements,
}

struct Specializer<S: Specialization> {
    specialization: S,

    // FIXME(eddyb) use `log`/`tracing` instead.
    debug: bool,

    // HACK(eddyb) if debugging is requested, this is used to quickly get `OpName`s.
    debug_names: FxHashMap<Word, String>,

    // FIXME(eddyb) compact SPIR-V IDs to allow flatter maps.
    generics: IndexMap<Word, Generic>,

    /// Integer `OpConstant`s (i.e. containing a `LiteralBit32`), to be used
    /// for interpreting `TyPat::IndexComposite` (such as for `OpAccessChain`).
    int_consts: FxHashMap<Word, u32>,
}

impl<S: Specialization> Specializer<S> {
    /// Returns the number of "generic" parameters `operand` "takes", either
    /// because it's specialized by, or it refers to a "generic" global/function.
    /// In the latter case, the `&Generic` for that global/function is also returned.
    fn params_needed_by(&self, operand: &Operand) -> (u32, Option<&Generic>) {
        if self.specialization.specialize_operand(operand) {
            // Each operand we specialize by is one leaf "generic" parameter.
            (1, None)
        } else if let Operand::IdRef(id) = operand {
            self.generics
                .get(id)
                .map_or((0, None), |generic| (generic.param_count, Some(generic)))
        } else {
            (0, None)
        }
    }

    fn collect_generics(&mut self, module: &Module) {
        // Process all defining instructions for globals (types, constants,
        // and module-scoped variables), and functions' `OpFunction` instructions,
        // but note that for `OpFunction`s only the signature is considered,
        // actual inference based on bodies happens later, in `infer_function`.
        let types_global_values_and_functions = module
            .types_global_values
            .iter()
            .chain(module.functions.iter().filter_map(|f| f.def.as_ref()));

        let mut forward_declared_pointers = FxHashSet::default();
        for inst in types_global_values_and_functions {
            let result_id = if inst.class.opcode == Op::TypeForwardPointer {
                forward_declared_pointers.insert(inst.operands[0].unwrap_id_ref());
                inst.operands[0].unwrap_id_ref()
            } else {
                let result_id = inst.result_id.unwrap_or_else(|| {
                    unreachable!(
                        "Op{:?} is in `types_global_values` but not have a result ID",
                        inst.class.opcode
                    );
                });
                if forward_declared_pointers.remove(&result_id) {
                    // HACK(eddyb) this is a forward-declared pointer, pretend
                    // it's not "generic" at all to avoid breaking the rest of
                    // the logic - see module-level docs for how this should be
                    // handled in the future to support recursive data types.
                    assert_eq!(inst.class.opcode, Op::TypePointer);
                    continue;
                }
                result_id
            };

            // Record all integer `OpConstant`s (used for `IndexComposite`).
            if inst.class.opcode == Op::Constant {
                if let Operand::LiteralBit32(x) = inst.operands[0] {
                    self.int_consts.insert(result_id, x);
                }
            }

            // Instantiate `inst` in a fresh inference context, to determine
            // how many parameters it needs, and how they might be constrained.
            let (param_count, param_values, replacements) = {
                let mut infer_cx = InferCx::new(self);
                infer_cx.instantiate_instruction(inst, InstructionLocation::Module);

                let param_count = infer_cx.infer_var_values.len() as u32;

                // FIXME(eddyb) dedup this with `infer_function`.
                let param_values = infer_cx
                    .infer_var_values
                    .iter()
                    .map(|v| v.map_var(|InferVar(i)| Param(i)));
                // Only allocate `param_values` if they constrain parameters.
                let param_values = if param_values.clone().any(|v| v != Value::Unknown) {
                    Some(param_values.collect())
                } else {
                    None
                };

                (
                    param_count,
                    param_values,
                    infer_cx.into_replacements(..Param(param_count)),
                )
            };

            // Inference variables become "generic" parameters.
            if param_count > 0 {
                self.generics.insert(result_id, Generic {
                    param_count,
                    def: inst.clone(),
                    param_values,
                    replacements,
                });
            }
        }
    }

    /// Perform inference across the entire definition of `func`, including all
    /// the instructions in its body, and either store the resulting `Replacements`
    /// in its `Generic` (if `func` is "generic"), or return them otherwise.
    fn infer_function(&mut self, func: &Function) -> Option<Replacements> {
        let func_id = func.def_id().unwrap();

        let param_count = self
            .generics
            .get(&func_id)
            .map_or(0, |generic| generic.param_count);

        let (param_values, replacements) = {
            let mut infer_cx = InferCx::new(self);
            infer_cx.instantiate_function(func);

            // FIXME(eddyb) dedup this with `collect_generics`.
            let param_values = infer_cx.infer_var_values[..param_count as usize]
                .iter()
                .map(|v| v.map_var(|InferVar(i)| Param(i)));
            // Only allocate `param_values` if they constrain parameters.
            let param_values = if param_values.clone().any(|v| v != Value::Unknown) {
                Some(param_values.collect())
            } else {
                None
            };

            (
                param_values,
                infer_cx.into_replacements(..Param(param_count)),
            )
        };

        if let Some(generic) = self.generics.get_mut(&func_id) {
            // All constraints `func` could have from `collect_generics`
            // would have to come from its `OpTypeFunction`, but types don't have
            // internal constraints like e.g. `OpConstant*` and `OpVariable` do.
            assert!(generic.param_values.is_none());

            generic.param_values = param_values;
            generic.replacements = replacements;

            None
        } else {
            Some(replacements)
        }
    }
}

/// Newtype'd inference variable index.
// FIXME(eddyb) use `rustc_index` for this instead.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct InferVar(u32);

impl fmt::Display for InferVar {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "?{}", self.0)
    }
}

impl InferVar {
    // HACK(eddyb) this works around `Range<InferVar>` not being iterable
    // because `InferVar` doesn't implement the (unstable) `Step` trait.
    fn range_iter(range: &Range<Self>) -> impl Iterator<Item = Self> + Clone {
        (range.start.0..range.end.0).map(Self)
    }
}

struct InferCx<'a, S: Specialization> {
    specializer: &'a Specializer<S>,

    /// `infer_var_values[i]` holds the current state of `InferVar(i)`.
    /// Each inference variable starts out as `Unknown`, may become `SameAs`
    /// pointing to another inference variable, but eventually inference must
    /// result in `Known` values (i.e. concrete `Operand`s).
    // FIXME(eddyb) use `rustc_index`'s `IndexVec` for this.
    infer_var_values: Vec<Value<InferVar>>,

    /// Instantiated *Result Type* of each instruction that has any `InferVar`s,
    /// used when an instruction's result is an input to a later instruction.
    ///
    /// Note that for consistency, for `OpFunction` this contains *Function Type*
    /// instead of *Result Type*, which is inexplicably specified as:
    /// > *Result Type* must be the same as the *Return Type* declared in *Function Type*
    type_of_result: IndexMap<Word, InferOperand>,

    /// Operands that need to be replaced with instances of "generic" globals/functions
    /// (taking as "generic" arguments the results of inference).
    instantiated_operands: Vec<(OperandLocation, Instance<Range<InferVar>>)>,

    /// Operands that need to be replaced with results of inference.
    inferred_operands: Vec<(OperandLocation, InferVar)>,
}

impl<'a, S: Specialization> InferCx<'a, S> {
    fn new(specializer: &'a Specializer<S>) -> Self {
        InferCx {
            specializer,

            infer_var_values: vec![],
            type_of_result: IndexMap::new(),
            instantiated_operands: vec![],
            inferred_operands: vec![],
        }
    }
}

#[derive(Clone, Debug, PartialEq, Eq)]
enum InferOperand {
    Unknown,
    Var(InferVar),
    Concrete(CopyOperand),
    Instance(Instance<Range<InferVar>>),
}

impl InferOperand {
    /// Construct an `InferOperand` based on whether `operand` refers to some
    /// "generic" definition, or we're specializing by it.
    /// Also returns the remaining inference variables, not used by this operand.
    fn from_operand_and_generic_args(
        operand: &Operand,
        generic_args: Range<InferVar>,
        cx: &InferCx<'_, impl Specialization>,
    ) -> (Self, Range<InferVar>) {
        let (needed, generic) = cx.specializer.params_needed_by(operand);
        let split = InferVar(generic_args.start.0 + needed);
        let (generic_args, rest) = (generic_args.start..split, split..generic_args.end);
        (
            if generic.is_some() {
                Self::Instance(Instance {
                    generic_id: operand.unwrap_id_ref(),
                    generic_args,
                })
            } else if needed == 0 {
                CopyOperand::try_from(operand).map_or(Self::Unknown, Self::Concrete)
            } else {
                assert_eq!(needed, 1);
                Self::Var(generic_args.start)
            },
            rest,
        )
    }

    fn display_with_infer_var_values<'a>(
        &'a self,
        infer_var_value: impl Fn(InferVar) -> Value<InferVar> + Copy + 'a,
    ) -> impl fmt::Display + '_ {
        FmtBy(move |f| {
            let var_with_value = |v| {
                FmtBy(move |f| {
                    write!(f, "{v}")?;
                    match infer_var_value(v) {
                        Value::Unknown => Ok(()),
                        Value::Known(o) => write!(f, " = {o}"),
                        Value::SameAs(v) => write!(f, " = {v}"),
                    }
                })
            };
            match self {
                Self::Unknown => write!(f, "_"),
                Self::Var(v) => write!(f, "{}", var_with_value(*v)),
                Self::Concrete(o) => write!(f, "{o}"),
                Self::Instance(instance) => write!(
                    f,
                    "{}",
                    instance.display(|generic_args| {
                        InferVar::range_iter(generic_args).map(var_with_value)
                    })
                ),
            }
        })
    }

    fn display_with_infer_cx<'a>(
        &'a self,
        cx: &'a InferCx<'_, impl Specialization>,
    ) -> impl fmt::Display + '_ {
        self.display_with_infer_var_values(move |v| {
            // HACK(eddyb) can't use `resolve_infer_var` because that mutates
            // `InferCx` (for the "path compression" union-find optimization).
            let get = |v: InferVar| cx.infer_var_values[v.0 as usize];
            let mut value = get(v);
            while let Value::SameAs(v) = value {
                let next = get(v);
                if next == Value::Unknown {
                    break;
                }
                value = next;
            }
            value
        })
    }
}

impl fmt::Display for InferOperand {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.display_with_infer_var_values(|_| Value::Unknown)
            .fmt(f)
    }
}

/// How to filter and/or map the operands in an `InferOperandList`, while iterating.
///
/// Having this in `InferOperandList` itself, instead of using iterator combinators,
/// allows storing `InferOperandList`s directly in `Match`, for `TyPatList` matches.
#[derive(Copy, Clone, PartialEq, Eq)]
enum InferOperandListTransform {
    /// The list is the result of keeping only ID operands, and mapping them to
    /// their types (or `InferOperand::Unknown` for non-value operands, or
    /// value operands which don't have a "generic" type).
    ///
    /// This is used to match against the `inputs` `TyListPat` of `InstSig`.
    TypeOfId,
}

#[derive(Clone, PartialEq)]
struct InferOperandList<'a> {
    operands: &'a [Operand],

    /// Joined ranges of all `InferVar`s needed by individual `Operand`s,
    /// either for `InferOperand::Instance` or `InferOperand::Var`.
    all_generic_args: Range<InferVar>,

    transform: Option<InferOperandListTransform>,
}

impl<'a> InferOperandList<'a> {
    fn split_first(
        &self,
        cx: &InferCx<'_, impl Specialization>,
    ) -> Option<(InferOperand, InferOperandList<'a>)> {
        let mut list = self.clone();
        loop {
            let (first_operand, rest) = list.operands.split_first()?;
            list.operands = rest;

            let (first, rest_args) = InferOperand::from_operand_and_generic_args(
                first_operand,
                list.all_generic_args.clone(),
                cx,
            );
            list.all_generic_args = rest_args;

            // Maybe filter this operand, but only *after* consuming the "generic" args for it.
            match self.transform {
                None => {}

                // Skip a non-ID operand.
                Some(InferOperandListTransform::TypeOfId) => {
                    if first_operand.id_ref_any().is_none() {
                        continue;
                    }
                }
            }

            // Maybe replace this operand with a different one.
            let first = match self.transform {
                None => first,

                // Map `first` to its type.
                Some(InferOperandListTransform::TypeOfId) => match first {
                    InferOperand::Concrete(CopyOperand::IdRef(id)) => cx
                        .type_of_result
                        .get(&id)
                        .cloned()
                        .unwrap_or(InferOperand::Unknown),
                    InferOperand::Unknown | InferOperand::Var(_) | InferOperand::Concrete(_) => {
                        InferOperand::Unknown
                    }
                    InferOperand::Instance(instance) => {
                        let generic = &cx.specializer.generics[&instance.generic_id];

                        // HACK(eddyb) work around the inexplicable fact that `OpFunction` is
                        // specified with a *Result Type* that isn't the type of its *Result*:
                        // > *Result Type* must be the same as the *Return Type* declared in *Function Type*
                        // So we use *Function Type* instead as the type of its *Result*, and
                        // we are helped by `instantiate_instruction`, which ensures that the
                        // "generic" args we have are specifically meant for *Function Type*.
                        let type_of_result = match generic.def.class.opcode {
                            Op::Function => Some(generic.def.operands[1].unwrap_id_ref()),
                            _ => generic.def.result_type,
                        };

                        match type_of_result {
                            Some(type_of_result) => {
                                InferOperand::from_operand_and_generic_args(
                                    &Operand::IdRef(type_of_result),
                                    instance.generic_args,
                                    cx,
                                )
                                .0
                            }
                            None => InferOperand::Unknown,
                        }
                    }
                },
            };

            return Some((first, list));
        }
    }

    fn iter<'b>(
        &self,
        cx: &'b InferCx<'_, impl Specialization>,
    ) -> impl Iterator<Item = InferOperand> + 'b
    where
        'a: 'b,
    {
        let mut list = self.clone();
        iter::from_fn(move || {
            let (next, rest) = list.split_first(cx)?;
            list = rest;
            Some(next)
        })
    }

    fn display_with_infer_cx<'b>(
        &'b self,
        cx: &'b InferCx<'a, impl Specialization>,
    ) -> impl fmt::Display + '_ {
        FmtBy(move |f| {
            f.debug_list()
                .entries(self.iter(cx).map(|operand| {
                    FmtBy(move |f| write!(f, "{}", operand.display_with_infer_cx(cx)))
                }))
                .finish()
        })
    }
}

/// `SmallVec<A>` with a map interface.
#[derive(Default)]
struct SmallIntMap<A: smallvec::Array>(SmallVec<A>);

impl<A: smallvec::Array> SmallIntMap<A> {
    fn get(&self, i: usize) -> Option<&A::Item> {
        self.0.get(i)
    }

    fn get_mut_or_default(&mut self, i: usize) -> &mut A::Item
    where
        A::Item: Default,
    {
        let needed = i + 1;
        if self.0.len() < needed {
            self.0.resize_with(needed, Default::default);
        }
        &mut self.0[i]
    }
}

impl<A: smallvec::Array> IntoIterator for SmallIntMap<A> {
    type Item = (usize, A::Item);
    type IntoIter = iter::Enumerate<smallvec::IntoIter<A>>;
    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter().enumerate()
    }
}

impl<'a, A: smallvec::Array> IntoIterator for &'a mut SmallIntMap<A> {
    type Item = (usize, &'a mut A::Item);
    type IntoIter = iter::Enumerate<slice::IterMut<'a, A::Item>>;
    fn into_iter(self) -> Self::IntoIter {
        self.0.iter_mut().enumerate()
    }
}

#[derive(PartialEq)]
struct IndexCompositeMatch<'a> {
    /// *Indexes* `Operand`s (see `TyPat::IndexComposite`'s doc comment for details).
    indices: &'a [Operand],

    /// The result of indexing the composite type with all `indices`.
    leaf: InferOperand,
}

/// Inference success (e.g. type matched type pattern).
#[must_use]
#[derive(Default)]
struct Match<'a> {
    /// Whether this success isn't guaranteed, because of missing information
    /// (such as the defining instructions of non-"generic" types).
    ///
    /// If there are other alternatives, they will be attempted as well,
    /// and merged using `Match::or` (if they don't result in `Unapplicable`).
    ambiguous: bool,

    // FIXME(eddyb) create some type for these that allows providing common methods
    //
    /// `storage_class_var_found[i][..]` holds all the `InferOperand`s matched by
    /// `StorageClassPat::Var(i)` (currently `i` is always `0`, aka `StorageClassPat::S`).
    storage_class_var_found: SmallIntMap<[SmallVec<[InferOperand; 2]>; 1]>,

    /// `ty_var_found[i][..]` holds all the `InferOperand`s matched by
    /// `TyPat::Var(i)` (currently `i` is always `0`, aka `TyPat::T`).
    ty_var_found: SmallIntMap<[SmallVec<[InferOperand; 4]>; 1]>,

    /// `index_composite_found[i][..]` holds all the `InferOperand`s matched by
    /// `TyPat::IndexComposite(TyPat::Var(i))` (currently `i` is always `0`, aka `TyPat::T`).
    index_composite_ty_var_found: SmallIntMap<[SmallVec<[IndexCompositeMatch<'a>; 1]>; 1]>,

    /// `ty_list_var_found[i][..]` holds all the `InferOperandList`s matched by
    /// `TyListPat::Var(i)` (currently `i` is always `0`, aka `TyListPat::TS`).
    ty_list_var_found: SmallIntMap<[SmallVec<[InferOperandList<'a>; 2]>; 1]>,
}

impl<'a> Match<'a> {
    /// Combine two `Match`es such that the result implies both of them apply,
    /// i.e. contains the union of their constraints.
    fn and(mut self, other: Self) -> Self {
        let Match {
            ambiguous,
            storage_class_var_found,
            ty_var_found,
            index_composite_ty_var_found,
            ty_list_var_found,
        } = &mut self;

        *ambiguous |= other.ambiguous;
        for (i, other_found) in other.storage_class_var_found {
            storage_class_var_found
                .get_mut_or_default(i)
                .extend(other_found);
        }
        for (i, other_found) in other.ty_var_found {
            ty_var_found.get_mut_or_default(i).extend(other_found);
        }
        for (i, other_found) in other.index_composite_ty_var_found {
            index_composite_ty_var_found
                .get_mut_or_default(i)
                .extend(other_found);
        }
        for (i, other_found) in other.ty_list_var_found {
            ty_list_var_found.get_mut_or_default(i).extend(other_found);
        }
        self
    }

    /// Combine two `Match`es such that the result allows for either applying,
    /// i.e. contains the intersection of their constraints.
    fn or(mut self, other: Self) -> Self {
        let Match {
            ambiguous,
            storage_class_var_found,
            ty_var_found,
            index_composite_ty_var_found,
            ty_list_var_found,
        } = &mut self;

        *ambiguous |= other.ambiguous;
        for (i, self_found) in storage_class_var_found {
            let other_found = other
                .storage_class_var_found
                .get(i)
                .map_or(&[][..], |xs| &xs[..]);
            self_found.retain(|x| other_found.contains(x));
        }
        for (i, self_found) in ty_var_found {
            let other_found = other.ty_var_found.get(i).map_or(&[][..], |xs| &xs[..]);
            self_found.retain(|x| other_found.contains(x));
        }
        for (i, self_found) in index_composite_ty_var_found {
            let other_found = other
                .index_composite_ty_var_found
                .get(i)
                .map_or(&[][..], |xs| &xs[..]);
            self_found.retain(|x| other_found.contains(x));
        }
        for (i, self_found) in ty_list_var_found {
            let other_found = other.ty_list_var_found.get(i).map_or(&[][..], |xs| &xs[..]);
            self_found.retain(|x| other_found.contains(x));
        }
        self
    }

    fn debug_with_infer_cx<'b>(
        &'b self,
        cx: &'b InferCx<'a, impl Specialization>,
    ) -> impl fmt::Debug + Captures<'a> + '_ {
        fn debug_var_found<'a, A: smallvec::Array<Item = T> + 'a, T: 'a, TD: fmt::Display>(
            var_found: &'a SmallIntMap<impl smallvec::Array<Item = SmallVec<A>>>,
            display: &'a impl Fn(&'a T) -> TD,
        ) -> impl Iterator<Item = impl fmt::Debug + 'a> + 'a {
            var_found
                .0
                .iter()
                .filter(|found| !found.is_empty())
                .map(move |found| {
                    FmtBy(move |f| {
                        let mut found = found.iter().map(display);
                        write!(f, "{}", found.next().unwrap())?;
                        for x in found {
                            write!(f, " = {x}")?;
                        }
                        Ok(())
                    })
                })
        }
        FmtBy(move |f| {
            let Self {
                ambiguous,
                storage_class_var_found,
                ty_var_found,
                index_composite_ty_var_found,
                ty_list_var_found,
            } = self;
            write!(f, "Match{} ", if *ambiguous { " (ambiguous)" } else { "" })?;
            let mut list = f.debug_list();
            list.entries(debug_var_found(storage_class_var_found, &move |operand| {
                operand.display_with_infer_cx(cx)
            }));
            list.entries(debug_var_found(ty_var_found, &move |operand| {
                operand.display_with_infer_cx(cx)
            }));
            list.entries(
                index_composite_ty_var_found
                    .0
                    .iter()
                    .enumerate()
                    .filter(|(_, found)| !found.is_empty())
                    .flat_map(|(i, found)| found.iter().map(move |x| (i, x)))
                    .map(move |(i, IndexCompositeMatch { indices, leaf })| {
                        FmtBy(move |f| {
                            match ty_var_found.get(i) {
                                Some(found) if found.len() == 1 => {
                                    write!(f, "{}", found[0].display_with_infer_cx(cx))?;
                                }
                                found => {
                                    let found = found.map_or(&[][..], |xs| &xs[..]);
                                    write!(f, "(")?;
                                    for (j, operand) in found.iter().enumerate() {
                                        if j != 0 {
                                            write!(f, " = ")?;
                                        }
                                        write!(f, "{}", operand.display_with_infer_cx(cx))?;
                                    }
                                    write!(f, ")")?;
                                }
                            }
                            for operand in &indices[..] {
                                // Show the value for literals and IDs pointing to
                                // known `OpConstant`s (e.g. struct field indices).
                                let maybe_idx = match operand {
                                    Operand::IdRef(id) => cx.specializer.int_consts.get(id),
                                    Operand::LiteralBit32(idx) => Some(idx),
                                    _ => None,
                                };
                                match maybe_idx {
                                    Some(idx) => write!(f, ".{idx}")?,
                                    None => write!(f, "[{operand}]")?,
                                }
                            }
                            write!(f, " = {}", leaf.display_with_infer_cx(cx))
                        })
                    }),
            );
            list.entries(debug_var_found(ty_list_var_found, &move |list| {
                list.display_with_infer_cx(cx)
            }));
            list.finish()
        })
    }
}

/// Pattern-matching failure, returned by `match_*` when the pattern doesn't apply.
struct Unapplicable;

impl<'a, S: Specialization> InferCx<'a, S> {
    /// Match `storage_class` against `pat`, returning a `Match` with found `Var`s.
    #[allow(clippy::unused_self)] // TODO: remove?
    fn match_storage_class_pat(
        &self,
        pat: &StorageClassPat,
        storage_class: InferOperand,
    ) -> Match<'a> {
        match pat {
            StorageClassPat::Any => Match::default(),
            StorageClassPat::Var(i) => {
                let mut m = Match::default();
                m.storage_class_var_found
                    .get_mut_or_default(*i)
                    .push(storage_class);
                m
            }
        }
    }

    /// Match `ty` against `pat`, returning a `Match` with found `Var`s.
    fn match_ty_pat(&self, pat: &TyPat<'_>, ty: InferOperand) -> Result<Match<'a>, Unapplicable> {
        match pat {
            TyPat::Any => Ok(Match::default()),
            TyPat::Var(i) => {
                let mut m = Match::default();
                m.ty_var_found.get_mut_or_default(*i).push(ty);
                Ok(m)
            }
            TyPat::Either(a, b) => match self.match_ty_pat(a, ty.clone()) {
                Ok(m) if !m.ambiguous => Ok(m),
                a_result => match (a_result, self.match_ty_pat(b, ty)) {
                    (Ok(ma), Ok(mb)) => Ok(ma.or(mb)),
                    (Ok(m), _) | (_, Ok(m)) => Ok(m),
                    (Err(Unapplicable), Err(Unapplicable)) => Err(Unapplicable),
                },
            },
            TyPat::IndexComposite(composite_pat) => match composite_pat {
                TyPat::Var(i) => {
                    let mut m = Match::default();
                    m.index_composite_ty_var_found.get_mut_or_default(*i).push(
                        IndexCompositeMatch {
                            // HACK(eddyb) leave empty `indices` in here for
                            // `match_inst_sig` to fill in, as it has access
                            // to the whole `Instruction` but we don't.
                            indices: &[],
                            leaf: ty,
                        },
                    );
                    Ok(m)
                }
                _ => unreachable!(
                    "`IndexComposite({:?})` isn't supported, only type variable
                     patterns are (for the composite type), e.g. `IndexComposite(T)`",
                    composite_pat
                ),
            },
            _ => {
                let instance = match ty {
                    InferOperand::Unknown | InferOperand::Concrete(_) => {
                        return Ok(Match {
                            ambiguous: true,
                            ..Match::default()
                        });
                    }
                    InferOperand::Var(_) => return Err(Unapplicable),
                    InferOperand::Instance(instance) => instance,
                };
                let generic = &self.specializer.generics[&instance.generic_id];

                let ty_operands = InferOperandList {
                    operands: &generic.def.operands,
                    all_generic_args: instance.generic_args,
                    transform: None,
                };
                let simple = |op, inner_pat| {
                    if generic.def.class.opcode == op {
                        self.match_ty_pat(inner_pat, ty_operands.split_first(self).unwrap().0)
                    } else {
                        Err(Unapplicable)
                    }
                };
                match pat {
                    TyPat::Any | TyPat::Var(_) | TyPat::Either(..) | TyPat::IndexComposite(_) => {
                        unreachable!()
                    }

                    // HACK(eddyb) `TyPat::Void` can't be observed because it's
                    // not "generic", so it would return early as ambiguous.
                    TyPat::Void => unreachable!(),

                    TyPat::Pointer(storage_class_pat, pointee_pat) => {
                        let mut ty_operands = ty_operands.iter(self);
                        let (storage_class, pointee_ty) =
                            (ty_operands.next().unwrap(), ty_operands.next().unwrap());
                        Ok(self
                            .match_storage_class_pat(storage_class_pat, storage_class)
                            .and(self.match_ty_pat(pointee_pat, pointee_ty)?))
                    }
                    TyPat::Array(pat) => simple(Op::TypeArray, pat),
                    TyPat::Vector(pat) => simple(Op::TypeVector, pat),
                    TyPat::Vector4(pat) => match ty_operands.operands {
                        [_, Operand::LiteralBit32(4)] => simple(Op::TypeVector, pat),
                        _ => Err(Unapplicable),
                    },
                    TyPat::Matrix(pat) => simple(Op::TypeMatrix, pat),
                    TyPat::Image(pat) => simple(Op::TypeImage, pat),
                    TyPat::Pipe(_pat) => {
                        if generic.def.class.opcode == Op::TypePipe {
                            Ok(Match::default())
                        } else {
                            Err(Unapplicable)
                        }
                    }
                    TyPat::SampledImage(pat) => simple(Op::TypeSampledImage, pat),
                    TyPat::Struct(fields_pat) => {
                        if generic.def.class.opcode == Op::TypeStruct {
                            self.match_ty_list_pat(fields_pat, ty_operands)
                        } else {
                            Err(Unapplicable)
                        }
                    }
                    TyPat::Function(ret_pat, params_pat) => {
                        let (ret_ty, params_ty_list) = ty_operands.split_first(self).unwrap();
                        Ok(self
                            .match_ty_pat(ret_pat, ret_ty)?
                            .and(self.match_ty_list_pat(params_pat, params_ty_list)?))
                    }
                }
            }
        }
    }

    /// Match `ty_list` against `pat`, returning a `Match` with found `Var`s.
    fn match_ty_list_pat(
        &self,
        mut list_pat: &TyListPat<'_>,
        mut ty_list: InferOperandList<'a>,
    ) -> Result<Match<'a>, Unapplicable> {
        let mut m = Match::default();

        while let TyListPat::Cons { first: pat, suffix } = list_pat {
            list_pat = suffix;

            let (ty, rest) = ty_list.split_first(self).ok_or(Unapplicable)?;
            ty_list = rest;

            m = m.and(self.match_ty_pat(pat, ty)?);
        }

        match list_pat {
            TyListPat::Cons { .. } => unreachable!(),

            TyListPat::Any => {}
            TyListPat::Var(i) => {
                m.ty_list_var_found.get_mut_or_default(*i).push(ty_list);
            }
            TyListPat::Repeat(repeat_list_pat) => {
                let mut tys = ty_list.iter(self).peekable();
                loop {
                    let mut list_pat = repeat_list_pat;
                    while let TyListPat::Cons { first: pat, suffix } = list_pat {
                        m = m.and(self.match_ty_pat(pat, tys.next().ok_or(Unapplicable)?)?);
                        list_pat = suffix;
                    }
                    assert!(matches!(list_pat, TyListPat::Nil));
                    if tys.peek().is_none() {
                        break;
                    }
                }
            }
            TyListPat::Nil => {
                if ty_list.split_first(self).is_some() {
                    return Err(Unapplicable);
                }
            }
        }

        Ok(m)
    }

    /// Match `inst`'s input operands (with `inputs_generic_args` as "generic" args),
    /// and `result_type`, against `sig`, returning a `Match` with found `Var`s.
    fn match_inst_sig(
        &self,
        sig: &InstSig<'_>,
        inst: &'a Instruction,
        inputs_generic_args: Range<InferVar>,
        result_type: Option<InferOperand>,
    ) -> Result<Match<'a>, Unapplicable> {
        let mut m = Match::default();

        if let Some(pat) = sig.storage_class {
            // FIXME(eddyb) going through all the operands to find the one that
            // is a storage class is inefficient, storage classes should be part
            // of a single unified list of operand patterns.
            let all_operands = InferOperandList {
                operands: &inst.operands,
                all_generic_args: inputs_generic_args.clone(),
                transform: None,
            };
            let storage_class = all_operands
                .iter(self)
                .zip(&inst.operands)
                .filter(|(_, original)| matches!(original, Operand::StorageClass(_)))
                .map(|(operand, _)| operand)
                .next()
                .ok_or(Unapplicable)?;
            m = m.and(self.match_storage_class_pat(pat, storage_class));
        }

        let input_ty_list = InferOperandList {
            operands: &inst.operands,
            all_generic_args: inputs_generic_args,
            transform: Some(InferOperandListTransform::TypeOfId),
        };

        m = m.and(self.match_ty_list_pat(sig.input_types, input_ty_list.clone())?);

        match (sig.output_type, result_type) {
            (Some(pat), Some(result_type)) => {
                m = m.and(self.match_ty_pat(pat, result_type)?);
            }
            (None, None) => {}
            _ => return Err(Unapplicable),
        }

        if !m.index_composite_ty_var_found.0.is_empty() {
            let composite_indices = {
                // Drain the `input_types` prefix (everything before `..`).
                let mut ty_list = input_ty_list;
                let mut list_pat = sig.input_types;
                while let TyListPat::Cons { first: _, suffix } = list_pat {
                    list_pat = suffix;
                    ty_list = ty_list.split_first(self).ok_or(Unapplicable)?.1;
                }

                assert_eq!(
                    list_pat,
                    &TyListPat::Any,
                    "`IndexComposite` must have input types end in `..`"
                );

                // Extract the underlying remaining `operands` - while iterating on
                // the `TypeOfId` list would skip over non-ID operands, and replace
                // ID operands with their types, the `operands` slice is still a
                // subslice of `inst.operands` (minus the prefix we drained above).
                ty_list.operands
            };

            // Fill in all the `indices` fields left empty by `match_ty_pat`.
            for (_, found) in &mut m.index_composite_ty_var_found {
                for index_composite_match in found {
                    let empty = mem::replace(&mut index_composite_match.indices, composite_indices);
                    assert_eq!(empty, &[]);
                }
            }
        }

        Ok(m)
    }

    /// Match `inst`'s input operands (with `inputs_generic_args` as "generic" args),
    /// and `result_type`, against `sigs`, returning a `Match` with found `Var`s.
    fn match_inst_sigs(
        &self,
        sigs: &[InstSig<'_>],
        inst: &'a Instruction,
        inputs_generic_args: Range<InferVar>,
        result_type: Option<InferOperand>,
    ) -> Result<Match<'a>, Unapplicable> {
        let mut result = Err(Unapplicable);
        for sig in sigs {
            result = match (
                result,
                self.match_inst_sig(sig, inst, inputs_generic_args.clone(), result_type.clone()),
            ) {
                (Err(Unapplicable), Ok(m)) if !m.ambiguous => return Ok(m),
                (Ok(a), Ok(b)) => Ok(a.or(b)),
                (Ok(m), _) | (_, Ok(m)) => Ok(m),
                (Err(Unapplicable), Err(Unapplicable)) => Err(Unapplicable),
            };
        }
        result
    }
}

enum InferError {
    /// Mismatch between operands, returned by `equate_*(a, b)` when `a != b`.
    // FIXME(eddyb) track where the mismatched operands come from.
    Conflict(InferOperand, InferOperand),
}

impl InferError {
    fn report(self, inst: &Instruction) {
        // FIXME(eddyb) better error reporting than this.
        match self {
            Self::Conflict(a, b) => {
                eprintln!("inference conflict: {a:?} vs {b:?}");
            }
        }
        eprint!("    in ");
        // FIXME(eddyb) deduplicate this with other instruction printing logic.
        if let Some(result_id) = inst.result_id {
            eprint!("%{result_id} = ");
        }
        eprint!("Op{:?}", inst.class.opcode);
        for operand in inst
            .result_type
            .map(Operand::IdRef)
            .iter()
            .chain(inst.operands.iter())
        {
            eprint!(" {operand}");
        }
        eprintln!();

        std::process::exit(1);
    }
}

impl<'a, S: Specialization> InferCx<'a, S> {
    /// Traverse `SameAs` chains starting at `x` and return the first `InferVar`
    /// that isn't `SameAs` (i.e. that is `Unknown` or `Known`).
    /// This corresponds to `find(v)` from union-find.
    fn resolve_infer_var(&mut self, v: InferVar) -> InferVar {
        match self.infer_var_values[v.0 as usize] {
            Value::Unknown | Value::Known(_) => v,
            Value::SameAs(next) => {
                let resolved = self.resolve_infer_var(next);
                if resolved != next {
                    // Update the `SameAs` entry for faster lookup next time
                    // (also known as "path compression" in union-find).
                    self.infer_var_values[v.0 as usize] = Value::SameAs(resolved);
                }
                resolved
            }
        }
    }

    /// Enforce that `a = b`, returning a combined `InferVar`, if successful.
    /// This corresponds to `union(a, b)` from union-find.
    fn equate_infer_vars(&mut self, a: InferVar, b: InferVar) -> Result<InferVar, InferError> {
        let (a, b) = (self.resolve_infer_var(a), self.resolve_infer_var(b));

        if a == b {
            return Ok(a);
        }

        // Maintain the invariant that "newer" variables are redirected to "older" ones.
        let (older, newer) = (a.min(b), a.max(b));
        let newer_value = mem::replace(
            &mut self.infer_var_values[newer.0 as usize],
            Value::SameAs(older),
        );
        match (self.infer_var_values[older.0 as usize], newer_value) {
            // Guaranteed by `resolve_infer_var`.
            (Value::SameAs(_), _) | (_, Value::SameAs(_)) => unreachable!(),

            // Both `newer` and `older` had a `Known` value, they must match.
            (Value::Known(x), Value::Known(y)) => {
                if x != y {
                    return Err(InferError::Conflict(
                        InferOperand::Concrete(x),
                        InferOperand::Concrete(y),
                    ));
                }
            }

            // Move the `Known` value from `newer` to `older`.
            (Value::Unknown, Value::Known(_)) => {
                self.infer_var_values[older.0 as usize] = newer_value;
            }

            (_, Value::Unknown) => {}
        }

        Ok(older)
    }

    /// Enforce that `a = b`, returning a combined `Range<InferVar>`, if successful.
    fn equate_infer_var_ranges(
        &mut self,
        a: Range<InferVar>,
        b: Range<InferVar>,
    ) -> Result<Range<InferVar>, InferError> {
        if a == b {
            return Ok(a);
        }

        assert_eq!(a.end.0 - a.start.0, b.end.0 - b.start.0);

        for (a, b) in InferVar::range_iter(&a).zip(InferVar::range_iter(&b)) {
            self.equate_infer_vars(a, b)?;
        }

        // Pick the "oldest" range to maintain the invariant that "newer" variables
        // are redirected to "older" ones, while keeping a contiguous range
        // (instead of splitting it into individual variables), for performance.
        Ok(if a.start < b.start { a } else { b })
    }

    /// Enforce that `a = b`, returning a combined `InferOperand`, if successful.
    fn equate_infer_operands(
        &mut self,
        a: InferOperand,
        b: InferOperand,
    ) -> Result<InferOperand, InferError> {
        if a == b {
            return Ok(a);
        }

        #[allow(clippy::match_same_arms)]
        Ok(match (a.clone(), b.clone()) {
            // Instances of "generic" globals/functions must be of the same ID,
            // and their `generic_args` inference variables must be unified.
            (
                InferOperand::Instance(Instance {
                    generic_id: a_id,
                    generic_args: a_args,
                }),
                InferOperand::Instance(Instance {
                    generic_id: b_id,
                    generic_args: b_args,
                }),
            ) => {
                if a_id != b_id {
                    return Err(InferError::Conflict(a, b));
                }
                InferOperand::Instance(Instance {
                    generic_id: a_id,
                    generic_args: self.equate_infer_var_ranges(a_args, b_args)?,
                })
            }

            // Instances of "generic" globals/functions can never equal anything else.
            (InferOperand::Instance(_), _) | (_, InferOperand::Instance(_)) => {
                return Err(InferError::Conflict(a, b));
            }

            // Inference variables must be unified.
            (InferOperand::Var(a), InferOperand::Var(b)) => {
                InferOperand::Var(self.equate_infer_vars(a, b)?)
            }

            // An inference variable can be assigned a concrete value.
            (InferOperand::Var(v), InferOperand::Concrete(new))
            | (InferOperand::Concrete(new), InferOperand::Var(v)) => {
                let v = self.resolve_infer_var(v);
                match &mut self.infer_var_values[v.0 as usize] {
                    // Guaranteed by `resolve_infer_var`.
                    Value::SameAs(_) => unreachable!(),

                    &mut Value::Known(old) => {
                        if new != old {
                            return Err(InferError::Conflict(
                                InferOperand::Concrete(old),
                                InferOperand::Concrete(new),
                            ));
                        }
                    }

                    value @ Value::Unknown => *value = Value::Known(new),
                }
                InferOperand::Var(v)
            }

            // Concrete `Operand`s must simply match.
            (InferOperand::Concrete(_), InferOperand::Concrete(_)) => {
                // Success case is handled by `if a == b` early return above.
                return Err(InferError::Conflict(a, b));
            }

            // Unknowns can be ignored in favor of non-`Unknown`.
            // NOTE(eddyb) `x` cannot be `Instance`, that is handled above.
            (InferOperand::Unknown, x) | (x, InferOperand::Unknown) => x,
        })
    }

    /// Compute the result ("leaf") type for a `TyPat::IndexComposite` pattern,
    /// by applying each index in `indices` to `composite_ty`, extracting the
    /// element type (for `OpType{Array,RuntimeArray,Vector,Matrix}`), or the
    /// field type for `OpTypeStruct`, where `indices` contains the field index.
    fn index_composite(&self, composite_ty: InferOperand, indices: &[Operand]) -> InferOperand {
        let mut ty = composite_ty;
        for idx in indices {
            let instance = match ty {
                InferOperand::Unknown | InferOperand::Concrete(_) | InferOperand::Var(_) => {
                    return InferOperand::Unknown;
                }
                InferOperand::Instance(instance) => instance,
            };
            let generic = &self.specializer.generics[&instance.generic_id];

            let ty_opcode = generic.def.class.opcode;
            let ty_operands = InferOperandList {
                operands: &generic.def.operands,
                all_generic_args: instance.generic_args,
                transform: None,
            };

            let ty_operands_idx = match ty_opcode {
                Op::TypeArray | Op::TypeRuntimeArray | Op::TypeVector | Op::TypeMatrix => 0,
                Op::TypeStruct => match idx {
                    Operand::IdRef(id) => {
                        *self.specializer.int_consts.get(id).unwrap_or_else(|| {
                            unreachable!("non-constant `OpTypeStruct` field index {}", id);
                        })
                    }
                    &Operand::LiteralBit32(i) => i,
                    _ => {
                        unreachable!("invalid `OpTypeStruct` field index operand {:?}", idx);
                    }
                },
                _ => unreachable!("indexing non-composite type `Op{:?}`", ty_opcode),
            };

            ty = ty_operands
                .iter(self)
                .nth(ty_operands_idx as usize)
                .unwrap_or_else(|| {
                    unreachable!(
                        "out of bounds index {} for `Op{:?}`",
                        ty_operands_idx, ty_opcode
                    );
                });
        }
        ty
    }

    /// Enforce that all the `InferOperand`/`InferOperandList`s found for the
    /// same pattern variable (i.e. `*Pat::Var(i)` with the same `i`), are equal.
    fn equate_match_findings(&mut self, m: Match<'_>) -> Result<(), InferError> {
        let Match {
            ambiguous: _,

            storage_class_var_found,
            ty_var_found,
            index_composite_ty_var_found,
            ty_list_var_found,
        } = m;

        for (_, found) in storage_class_var_found {
            let mut found = found.into_iter();
            if let Some(first) = found.next() {
                found.try_fold(first, |a, b| self.equate_infer_operands(a, b))?;
            }
        }

        for (i, found) in ty_var_found {
            let mut found = found.into_iter();
            if let Some(first) = found.next() {
                let equated_ty = found.try_fold(first, |a, b| self.equate_infer_operands(a, b))?;

                // Apply any `IndexComposite(Var(i))`'s indices to `equated_ty`,
                // and equate the resulting "leaf" type with the found "leaf" type.
                let index_composite_found = index_composite_ty_var_found
                    .get(i)
                    .map_or(&[][..], |xs| &xs[..]);
                for IndexCompositeMatch { indices, leaf } in index_composite_found {
                    let indexing_result_ty = self.index_composite(equated_ty.clone(), indices);
                    self.equate_infer_operands(indexing_result_ty, leaf.clone())?;
                }
            }
        }

        for (_, mut found) in ty_list_var_found {
            if let Some((first_list, other_lists)) = found.split_first_mut() {
                // Advance all the lists in lock-step so that we don't have to
                // allocate state proportional to list length and/or `found.len()`.
                while let Some((first, rest)) = first_list.split_first(self) {
                    *first_list = rest;

                    other_lists.iter_mut().try_fold(first, |a, b_list| {
                        let (b, rest) = b_list
                            .split_first(self)
                            .expect("list length mismatch (invalid SPIR-V?)");
                        *b_list = rest;
                        self.equate_infer_operands(a, b)
                    })?;
                }

                for other_list in other_lists {
                    assert!(
                        other_list.split_first(self).is_none(),
                        "list length mismatch (invalid SPIR-V?)"
                    );
                }
            }
        }

        Ok(())
    }

    /// Track an instantiated operand, to be included in the `Replacements`
    /// (produced by `into_replacements`), if it has any `InferVar`s at all.
    fn record_instantiated_operand(&mut self, loc: OperandLocation, operand: InferOperand) {
        match operand {
            InferOperand::Var(v) => {
                self.inferred_operands.push((loc, v));
            }
            InferOperand::Instance(instance) => {
                self.instantiated_operands.push((loc, instance));
            }
            InferOperand::Unknown | InferOperand::Concrete(_) => {}
        }
    }

    /// Instantiate all of `inst`'s operands (and *Result Type*) that refer to
    /// "generic" globals/functions, or we need to specialize by, with fresh
    /// inference variables, and enforce any inference constraints applicable.
    fn instantiate_instruction(&mut self, inst: &'a Instruction, inst_loc: InstructionLocation) {
        let mut all_generic_args = {
            let next_infer_var = InferVar(self.infer_var_values.len().try_into().unwrap());
            next_infer_var..next_infer_var
        };

        // HACK(eddyb) work around the inexplicable fact that `OpFunction` is
        // specified with a *Result Type* that isn't the type of its *Result*:
        // > *Result Type* must be the same as the *Return Type* declared in *Function Type*
        // Specifically, we don't instantiate *Result Type* (to avoid ending
        // up with redundant `InferVar`s), and instead overlap its "generic" args
        // with that of the *Function Type*, for `instantiations.
        let (instantiate_result_type, record_fn_ret_ty, type_of_result) = match inst.class.opcode {
            Op::Function => (
                None,
                inst.result_type,
                Some(inst.operands[1].unwrap_id_ref()),
            ),
            _ => (inst.result_type, None, inst.result_type),
        };

        for (operand_idx, operand) in instantiate_result_type
            .map(Operand::IdRef)
            .iter()
            .map(|o| (OperandIdx::ResultType, o))
            .chain(
                inst.operands
                    .iter()
                    .enumerate()
                    .map(|(i, o)| (OperandIdx::Input(i), o)),
            )
        {
            // HACK(eddyb) use `v..InferVar(u32::MAX)` as an open-ended range of sorts.
            let (operand, rest) = InferOperand::from_operand_and_generic_args(
                operand,
                all_generic_args.end..InferVar(u32::MAX),
                self,
            );
            let generic_args = all_generic_args.end..rest.start;
            all_generic_args.end = generic_args.end;

            let generic = match &operand {
                InferOperand::Instance(instance) => {
                    Some(&self.specializer.generics[&instance.generic_id])
                }
                _ => None,
            };

            // Initialize the new inference variables (for `operand`'s "generic" args)
            // with either `generic.param_values` (if present) or all `Unknown`s.
            match generic {
                Some(Generic {
                    param_values: Some(values),
                    ..
                }) => self.infer_var_values.extend(
                    values
                        .iter()
                        .map(|v| v.map_var(|Param(p)| InferVar(generic_args.start.0 + p))),
                ),

                _ => {
                    self.infer_var_values
                        .extend(InferVar::range_iter(&generic_args).map(|_| Value::Unknown));
                }
            }

            self.record_instantiated_operand(
                OperandLocation {
                    inst_loc,
                    operand_idx,
                },
                operand,
            );
        }

        // HACK(eddyb) workaround for `OpFunction`, see earlier HACK comment.
        if let Some(ret_ty) = record_fn_ret_ty {
            let (ret_ty, _) = InferOperand::from_operand_and_generic_args(
                &Operand::IdRef(ret_ty),
                all_generic_args.clone(),
                self,
            );
            self.record_instantiated_operand(
                OperandLocation {
                    inst_loc,
                    operand_idx: OperandIdx::ResultType,
                },
                ret_ty,
            );
        }

        // *Result Type* comes first in `all_generic_args`, extract it back out.
        let (type_of_result, inputs_generic_args) = match type_of_result {
            Some(type_of_result) => {
                let (type_of_result, rest) = InferOperand::from_operand_and_generic_args(
                    &Operand::IdRef(type_of_result),
                    all_generic_args.clone(),
                    self,
                );
                (
                    Some(type_of_result),
                    // HACK(eddyb) workaround for `OpFunction`, see earlier HACK comment.
                    match inst.class.opcode {
                        Op::Function => all_generic_args,
                        _ => rest,
                    },
                )
            }
            None => (None, all_generic_args),
        };

        let debug_dump_if_enabled = |cx: &Self, prefix| {
            if cx.specializer.debug {
                let result_type = match inst.class.opcode {
                    // HACK(eddyb) workaround for `OpFunction`, see earlier HACK comment.
                    Op::Function => Some(
                        InferOperand::from_operand_and_generic_args(
                            &Operand::IdRef(inst.result_type.unwrap()),
                            inputs_generic_args.clone(),
                            cx,
                        )
                        .0,
                    ),
                    _ => type_of_result.clone(),
                };
                let inputs = InferOperandList {
                    operands: &inst.operands,
                    all_generic_args: inputs_generic_args.clone(),
                    transform: None,
                };

                if inst_loc != InstructionLocation::Module {
                    eprint!("    ");
                }
                eprint!("{prefix}");
                if let Some(result_id) = inst.result_id {
                    eprint!("%{result_id} = ");
                }
                eprint!("Op{:?}", inst.class.opcode);
                for operand in result_type.into_iter().chain(inputs.iter(cx)) {
                    eprint!(" {}", operand.display_with_infer_cx(cx));
                }
                eprintln!();
            }
        };

        // If we have some instruction signatures for `inst`, enforce them.
        if let Some(sigs) = spirv_type_constraints::instruction_signatures(inst.class.opcode) {
            // HACK(eddyb) workaround for `OpFunction`, see earlier HACK comment.
            // (specifically, `type_of_result` isn't *Result Type* for `OpFunction`)
            assert_ne!(inst.class.opcode, Op::Function);

            debug_dump_if_enabled(self, " -> ");

            let m = match self.match_inst_sigs(
                sigs,
                inst,
                inputs_generic_args.clone(),
                type_of_result.clone(),
            ) {
                Ok(m) => m,

                // While this could be an user error *in theory*, we haven't really
                // unified any of the `InferOperand`s found by pattern match variables,
                // at this point, so the only the possible error case is that `inst`
                // doesn't match the *shapes* specified in `sigs`, i.e. this is likely
                // a bug in `spirv_type_constraints`, not some kind of inference conflict.
                Err(Unapplicable) => unreachable!(
                    "spirv_type_constraints(Op{:?}) = `{:?}` doesn't match `{:?}`",
                    inst.class.opcode, sigs, inst
                ),
            };

            if self.specializer.debug {
                if inst_loc != InstructionLocation::Module {
                    eprint!("    ");
                }
                eprintln!("    found {:?}", m.debug_with_infer_cx(self));
            }

            if let Err(e) = self.equate_match_findings(m) {
                e.report(inst);
            }

            debug_dump_if_enabled(self, " <- ");
        } else {
            debug_dump_if_enabled(self, "");
        }

        if let Some(type_of_result) = type_of_result {
            // Keep the (instantiated) *Result Type*, for future instructions to use
            // (but only if it has any `InferVar`s at all).
            match type_of_result {
                InferOperand::Var(_) | InferOperand::Instance(_) => {
                    self.type_of_result
                        .insert(inst.result_id.unwrap(), type_of_result);
                }
                InferOperand::Unknown | InferOperand::Concrete(_) => {}
            }
        }
    }

    /// Instantiate `func`'s definition and all instructions in its body,
    /// effectively performing inference across the entire function body.
    fn instantiate_function(&mut self, func: &'a Function) {
        let func_id = func.def_id().unwrap();

        if self.specializer.debug {
            eprintln!();
            eprint!("specializer::instantiate_function(%{func_id}");
            if let Some(name) = self.specializer.debug_names.get(&func_id) {
                eprint!(" {name}");
            }
            eprintln!("):");
        }

        // Instantiate the defining `OpFunction` first, so that the first
        // inference variables match the parameters from the `Generic`
        // (if the `OpTypeFunction` is "generic", that is).
        assert!(self.infer_var_values.is_empty());
        self.instantiate_instruction(func.def.as_ref().unwrap(), InstructionLocation::Module);

        if self.specializer.debug {
            eprintln!("infer body {{");
        }

        // If the `OpTypeFunction` is indeed "generic", we have to extract the
        // return / parameter types for `OpReturnValue` and `OpFunctionParameter`.
        let ret_ty = match self.type_of_result.get(&func_id).cloned() {
            Some(InferOperand::Instance(instance)) => {
                let generic = &self.specializer.generics[&instance.generic_id];
                assert_eq!(generic.def.class.opcode, Op::TypeFunction);

                let (ret_ty, mut params_ty_list) = InferOperandList {
                    operands: &generic.def.operands,
                    all_generic_args: instance.generic_args,
                    transform: None,
                }
                .split_first(self)
                .unwrap();

                // HACK(eddyb) manual iteration to avoid borrowing `self`.
                let mut params = func.parameters.iter().enumerate();
                while let Some((param_ty, rest)) = params_ty_list.split_first(self) {
                    params_ty_list = rest;

                    let (i, param) = params.next().unwrap();
                    assert_eq!(param.class.opcode, Op::FunctionParameter);

                    if self.specializer.debug {
                        eprintln!(
                            "    %{} = Op{:?} {}",
                            param.result_id.unwrap(),
                            param.class.opcode,
                            param_ty.display_with_infer_cx(self)
                        );
                    }

                    self.record_instantiated_operand(
                        OperandLocation {
                            inst_loc: InstructionLocation::FnParam(i),
                            operand_idx: OperandIdx::ResultType,
                        },
                        param_ty.clone(),
                    );
                    match param_ty {
                        InferOperand::Var(_) | InferOperand::Instance(_) => {
                            self.type_of_result
                                .insert(param.result_id.unwrap(), param_ty);
                        }
                        InferOperand::Unknown | InferOperand::Concrete(_) => {}
                    }
                }
                assert_eq!(params.next(), None);

                Some(ret_ty)
            }

            _ => None,
        };

        for (block_idx, block) in func.blocks.iter().enumerate() {
            for (inst_idx, inst) in block.instructions.iter().enumerate() {
                // Manually handle `OpReturnValue`/`OpReturn` because there's no
                // way to inject `ret_ty` into `spirv_type_constraints` rules.
                match inst.class.opcode {
                    Op::ReturnValue => {
                        let ret_val_id = inst.operands[0].unwrap_id_ref();
                        if let (Some(expected), Some(found)) = (
                            ret_ty.clone(),
                            self.type_of_result.get(&ret_val_id).cloned(),
                        ) {
                            if let Err(e) = self.equate_infer_operands(expected, found) {
                                e.report(inst);
                            }
                        }
                    }

                    Op::Return => {}

                    _ => self.instantiate_instruction(inst, InstructionLocation::FnBody {
                        block_idx,
                        inst_idx,
                    }),
                }
            }
        }

        if self.specializer.debug {
            eprint!("}}");
            if let Some(func_ty) = self.type_of_result.get(&func_id) {
                eprint!(" -> %{}: {}", func_id, func_ty.display_with_infer_cx(self));
            }
            eprintln!();
        }
    }

    /// Helper for `into_replacements`, that computes a single `ConcreteOrParam`.
    /// For all `Param(p)` in `generic_params`, inference variables that resolve
    /// to `InferVar(p)` are replaced with `Param(p)`, whereas other inference
    /// variables are considered unconstrained, and are instead replaced with
    /// `S::concrete_fallback()` (which is chosen by the specialization).
    fn resolve_infer_var_to_concrete_or_param(
        &mut self,
        v: InferVar,
        generic_params: RangeTo<Param>,
    ) -> ConcreteOrParam {
        let v = self.resolve_infer_var(v);
        let InferVar(i) = v;
        match self.infer_var_values[i as usize] {
            // Guaranteed by `resolve_infer_var`.
            Value::SameAs(_) => unreachable!(),

            Value::Unknown => {
                if i < generic_params.end.0 {
                    ConcreteOrParam::Param(Param(i))
                } else {
                    ConcreteOrParam::Concrete(
                        CopyOperand::try_from(&self.specializer.specialization.concrete_fallback())
                            .unwrap(),
                    )
                }
            }
            Value::Known(x) => ConcreteOrParam::Concrete(x),
        }
    }

    /// Consume the `InferCx` and return a set of replacements that need to be
    /// performed to instantiate the global/function inferred with this `InferCx`.
    /// See `resolve_infer_var_to_concrete_or_param` for how inference variables
    /// are handled (using `generic_params` and `S::concrete_fallback()`).
    fn into_replacements(mut self, generic_params: RangeTo<Param>) -> Replacements {
        let mut with_instance: IndexMap<_, Vec<_>> = IndexMap::new();
        for (loc, instance) in mem::take(&mut self.instantiated_operands) {
            with_instance
                .entry(Instance {
                    generic_id: instance.generic_id,
                    generic_args: InferVar::range_iter(&instance.generic_args)
                        .map(|v| self.resolve_infer_var_to_concrete_or_param(v, generic_params))
                        .collect(),
                })
                .or_default()
                .push(loc);
        }

        let with_concrete_or_param = mem::take(&mut self.inferred_operands)
            .into_iter()
            .map(|(loc, v)| {
                (
                    loc,
                    self.resolve_infer_var_to_concrete_or_param(v, generic_params),
                )
            })
            .collect();

        Replacements {
            with_instance,
            with_concrete_or_param,
        }
    }
}

// HACK(eddyb) this state could live in `Specializer` except for the fact that
// it's commonly mutated at the same time as parts of `Specializer` are read,
// and in particular this arrangement allows calling `&mut self` methods on
// `Expander` while (immutably) iterating over data inside the `Specializer`.
struct Expander<'a, S: Specialization> {
    specializer: &'a Specializer<S>,

    builder: Builder,

    /// All the instances of "generic" globals/functions that need to be expanded,
    /// and their cached IDs (which are allocated as-needed, before expansion).
    // NOTE(eddyb) this relies on `BTreeMap` so that `all_instances_of` can use
    // `BTreeMap::range` to get all `Instances` that share a certain ID.
    // FIXME(eddyb) fine-tune the length of `SmallVec<[_; 4]>` here.
    instances: BTreeMap<Instance<SmallVec<[CopyOperand; 4]>>, Word>,

    /// Instances of "generic" globals/functions that have yet to have had their
    /// own `replacements` analyzed in order to fully collect all instances.
    // FIXME(eddyb) fine-tune the length of `SmallVec<[_; 4]>` here.
    propagate_instances_queue: VecDeque<Instance<SmallVec<[CopyOperand; 4]>>>,
}

impl<'a, S: Specialization> Expander<'a, S> {
    fn new(specializer: &'a Specializer<S>, module: Module) -> Self {
        Expander {
            specializer,

            builder: Builder::new_from_module(module),

            instances: BTreeMap::new(),
            propagate_instances_queue: VecDeque::new(),
        }
    }

    /// Return the subset of `instances` that have `generic_id`.
    /// This is efficiently implemented via `BTreeMap::range`, taking advantage
    /// of the derived `Ord` on `Instance`, which orders by `generic_id` first,
    /// resulting in `instances` being grouped by `generic_id`.
    fn all_instances_of(
        &self,
        generic_id: Word,
    ) -> std::collections::btree_map::Range<'_, Instance<SmallVec<[CopyOperand; 4]>>, Word> {
        let first_instance_of = |generic_id| Instance {
            generic_id,
            generic_args: SmallVec::new(),
        };
        self.instances
            .range(first_instance_of(generic_id)..first_instance_of(generic_id + 1))
    }

    /// Allocate a new ID for `instance`, or return a cached one if it exists.
    /// If a new ID is created, `instance` is added to `propagate_instances_queue`,
    /// so that `propagate_instances` can later find all transitive dependencies.
    fn alloc_instance_id(&mut self, instance: Instance<SmallVec<[CopyOperand; 4]>>) -> Word {
        use std::collections::btree_map::Entry;

        match self.instances.entry(instance) {
            Entry::Occupied(entry) => *entry.get(),
            Entry::Vacant(entry) => {
                // Get the `Instance` back from the map key, to avoid having to
                // clone it earlier when calling `self.instances.entry(instance)`.
                let instance = entry.key().clone();

                self.propagate_instances_queue.push_back(instance);
                *entry.insert(self.builder.id())
            }
        }
    }

    /// Process all instances seen (by `alloc_instance_id`) up until this point,
    /// to find the full set of instances (transitively) needed by the module.
    ///
    /// **Warning**: calling `alloc_instance_id` later, without another call to
    /// `propagate_instances`, will potentially result in missed instances, i.e.
    /// that are added to `propagate_instances_queue` but never processed.
    fn propagate_instances(&mut self) {
        while let Some(instance) = self.propagate_instances_queue.pop_back() {
            // Drain the iterator to generate all the `alloc_instance_id` calls.
            for _ in self.specializer.generics[&instance.generic_id]
                .replacements
                .to_concrete(&instance.generic_args, |i| self.alloc_instance_id(i))
            {}
        }
    }

    /// Expand every "generic" global/function, and `OpName`/decorations applied
    /// to them, to their respective full set of instances, treating the original
    /// "generic" definition and its inferred `Replacements` as a template.
    fn expand_module(mut self) -> Module {
        // From here on out we assume all instances are known, so ensure there
        // aren't any left unpropagated.
        self.propagate_instances();

        // HACK(eddyb) steal `Vec`s so that we can still call methods on `self` below.
        let module = self.builder.module_mut();
        let mut entry_points = mem::take(&mut module.entry_points);
        let debug_names = mem::take(&mut module.debug_names);
        let annotations = mem::take(&mut module.annotations);
        let types_global_values = mem::take(&mut module.types_global_values);
        let functions = mem::take(&mut module.functions);

        // Adjust `OpEntryPoint ...` in-place to use the new IDs for *Interface*
        // module-scoped `OpVariable`s (which should each have one instance).
        for inst in &mut entry_points {
            let func_id = inst.operands[1].unwrap_id_ref();
            assert!(
                !self.specializer.generics.contains_key(&func_id),
                "entry-point %{func_id} shouldn't be \"generic\""
            );

            for interface_operand in &mut inst.operands[3..] {
                let interface_id = interface_operand.unwrap_id_ref();
                let mut instances = self.all_instances_of(interface_id);
                match (instances.next(), instances.next()) {
                    (None, _) => unreachable!(
                        "entry-point %{} has overly-\"generic\" \
                         interface variable %{}, with no instances",
                        func_id, interface_id
                    ),
                    (Some(_), Some(_)) => unreachable!(
                        "entry-point %{} has overly-\"generic\" \
                         interface variable %{}, with too many instances: {:?}",
                        func_id,
                        interface_id,
                        FmtBy(|f| f
                            .debug_list()
                            .entries(self.all_instances_of(interface_id).map(
                                |(instance, _)| FmtBy(move |f| write!(
                                    f,
                                    "{}",
                                    instance.display(|generic_args| generic_args.iter().copied())
                                ))
                            ))
                            .finish())
                    ),
                    (Some((_, &instance_id)), None) => {
                        *interface_operand = Operand::IdRef(instance_id);
                    }
                }
            }
        }

        // FIXME(eddyb) bucket `instances` into global vs function, and count
        // annotations separately, so that we can know exact capacities below.

        // Expand `Op* %target ...` when `target` is "generic".
        let expand_debug_or_annotation = |insts: Vec<Instruction>| {
            let mut expanded_insts = Vec::with_capacity(insts.len().next_power_of_two());
            for inst in insts {
                if let [Operand::IdRef(target), ..] = inst.operands[..] {
                    if self.specializer.generics.contains_key(&target) {
                        expanded_insts.extend(self.all_instances_of(target).map(
                            |(_, &instance_id)| {
                                let mut expanded_inst = inst.clone();
                                expanded_inst.operands[0] = Operand::IdRef(instance_id);
                                expanded_inst
                            },
                        ));
                        continue;
                    }
                }
                expanded_insts.push(inst);
            }
            expanded_insts
        };

        // Expand `Op(Member)Name %target ...` when `target` is "generic".
        let expanded_debug_names = expand_debug_or_annotation(debug_names);

        // Expand `Op(Member)Decorate* %target ...`, when `target` is "generic".
        let mut expanded_annotations = expand_debug_or_annotation(annotations);

        // Expand "generic" globals (types, constants and module-scoped variables).
        let mut expanded_types_global_values =
            Vec::with_capacity(types_global_values.len().next_power_of_two());
        for inst in types_global_values {
            if let Some(result_id) = inst.result_id {
                if let Some(generic) = self.specializer.generics.get(&result_id) {
                    expanded_types_global_values.extend(self.all_instances_of(result_id).map(
                        |(instance, &instance_id)| {
                            let mut expanded_inst = inst.clone();
                            expanded_inst.result_id = Some(instance_id);
                            for (loc, operand) in generic
                                .replacements
                                .to_concrete(&instance.generic_args, |i| self.instances[&i])
                            {
                                expanded_inst.index_set(loc, operand.into());
                            }
                            expanded_inst
                        },
                    ));
                    continue;
                }
            }
            expanded_types_global_values.push(inst);
        }

        // Expand "generic" functions.
        let mut expanded_functions = Vec::with_capacity(functions.len().next_power_of_two());
        for func in functions {
            let func_id = func.def_id().unwrap();
            if let Some(generic) = self.specializer.generics.get(&func_id) {
                let old_expanded_functions_len = expanded_functions.len();
                expanded_functions.extend(self.all_instances_of(func_id).map(
                    |(instance, &instance_id)| {
                        let mut expanded_func = func.clone();
                        expanded_func.def.as_mut().unwrap().result_id = Some(instance_id);
                        for (loc, operand) in generic
                            .replacements
                            .to_concrete(&instance.generic_args, |i| self.instances[&i])
                        {
                            expanded_func.index_set(loc, operand.into());
                        }
                        expanded_func
                    },
                ));

                // Renumber all of the IDs defined within the function itself,
                // to avoid conflicts between all the expanded copies.
                // While some passes (such as inlining) may handle IDs reuse
                // between different function bodies (mostly because they do
                // their own renumbering), it's better not to tempt fate here.
                // FIXME(eddyb) use compact IDs for more efficient renumbering.
                let newly_expanded_functions =
                    &mut expanded_functions[old_expanded_functions_len..];
                if newly_expanded_functions.len() > 1 {
                    // NOTE(eddyb) this is defined outside the loop to avoid
                    // allocating it for every expanded copy of the function.
                    let mut rewrite_rules = FxHashMap::default();

                    for func in newly_expanded_functions {
                        rewrite_rules.clear();

                        rewrite_rules.extend(func.parameters.iter_mut().map(|param| {
                            let old_id = param.result_id.unwrap();
                            let new_id = self.builder.id();

                            // HACK(eddyb) this is only needed because we're using
                            // `apply_rewrite_rules` and that only works on `Block`s,
                            // it should be generalized to handle `Function`s too.
                            param.result_id = Some(new_id);

                            (old_id, new_id)
                        }));
                        rewrite_rules.extend(
                            func.blocks
                                .iter()
                                .flat_map(|b| b.label.iter().chain(b.instructions.iter()))
                                .filter_map(|inst| inst.result_id)
                                .map(|old_id| (old_id, self.builder.id())),
                        );

                        super::apply_rewrite_rules(&rewrite_rules, &mut func.blocks);

                        // HACK(eddyb) this duplicates similar logic from `inline`.
                        for annotation_idx in 0..expanded_annotations.len() {
                            let inst = &expanded_annotations[annotation_idx];
                            if let [Operand::IdRef(target), ..] = inst.operands[..] {
                                if let Some(&rewritten_target) = rewrite_rules.get(&target) {
                                    let mut expanded_inst = inst.clone();
                                    expanded_inst.operands[0] = Operand::IdRef(rewritten_target);
                                    expanded_annotations.push(expanded_inst);
                                }
                            }
                        }
                    }
                }

                continue;
            }
            expanded_functions.push(func);
        }

        // No new instances should've been found during expansion - they would've
        // panicked while attempting to get `self.instances[&instance]` anyway.
        assert!(self.propagate_instances_queue.is_empty());

        let module = self.builder.module_mut();
        module.entry_points = entry_points;
        module.debug_names = expanded_debug_names;
        module.annotations = expanded_annotations;
        module.types_global_values = expanded_types_global_values;
        module.functions = expanded_functions;

        self.builder.module()
    }

    fn dump_instances(&self, w: &mut impl io::Write) -> io::Result<()> {
        writeln!(w, "; All specializer \"generic\"s and their instances:")?;
        writeln!(w)?;

        // FIXME(eddyb) maybe dump (transitive) dependencies? could use a def-use graph.
        for (&generic_id, generic) in &self.specializer.generics {
            if let Some(name) = self.specializer.debug_names.get(&generic_id) {
                writeln!(w, "; {name}")?;
            }

            write!(
                w,
                "{} = Op{:?}",
                Instance {
                    generic_id,
                    generic_args: Param(0)..Param(generic.param_count)
                }
                .display(Param::range_iter),
                generic.def.class.opcode
            )?;
            let mut next_param = Param(0);
            for operand in generic
                .def
                .result_type
                .map(Operand::IdRef)
                .iter()
                .chain(generic.def.operands.iter())
            {
                write!(w, " ")?;
                let (needed, used_generic) = self.specializer.params_needed_by(operand);
                let params = next_param..Param(next_param.0 + needed);

                // NOTE(eddyb) see HACK comment in `instantiate_instruction`.
                if generic.def.class.opcode != Op::Function {
                    next_param = params.end;
                }

                if used_generic.is_some() {
                    write!(
                        w,
                        "{}",
                        Instance {
                            generic_id: operand.unwrap_id_ref(),
                            generic_args: params
                        }
                        .display(Param::range_iter)
                    )?;
                } else if needed == 1 {
                    write!(w, "{}", params.start)?;
                } else {
                    write!(w, "{operand}")?;
                }
            }
            writeln!(w)?;

            if let Some(param_values) = &generic.param_values {
                write!(w, "        where")?;
                for (i, v) in param_values.iter().enumerate() {
                    let p = Param(i as u32);
                    match v {
                        Value::Unknown => {}
                        Value::Known(o) => write!(w, " {p} = {o},")?,
                        Value::SameAs(q) => write!(w, " {p} = {q},")?,
                    }
                }
                writeln!(w)?;
            }

            for (instance, instance_id) in self.all_instances_of(generic_id) {
                assert_eq!(instance.generic_id, generic_id);
                writeln!(
                    w,
                    "    %{} = {}",
                    instance_id,
                    instance.display(|generic_args| generic_args.iter().copied())
                )?;
            }

            writeln!(w)?;
        }
        Ok(())
    }
}