rustc_codegen_spirv/linker/specializer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
//! Specialize globals (types, constants and module-scoped variables) and functions,
//! to legalize a SPIR-V module representing a "family" of types with a single type,
//! by treating some globals and functions as "generic", inferring minimal sets
//! of "generic parameters", and "monomorphizing" them (i.e. expanding them into
//! one specialized copy per distinctly parameterized instance required).
//!
//! For now, this is only used for pointer type storage classes, because
//! Rust's pointer/reference types don't have an "address space" distinction,
//! and we also wouldn't want users to annotate every single type anyway.
//!
//! # Future plans
//!
//! Recursive data types (using `OpTypeForwardPointer`) are not supported, but
//! here is an outline of how that could work:
//! * groups of mutually-recursive `OpTypeForwardPointer`s are computed via SCCs
//! * each mutual-recursive group gets a single "generic" parameter count, that all
//! pointer types in the group will use, and which is the sum of the "generic"
//! parameters of all the leaves referenced by the pointer types in the group,
//! ignoring the pointer types in the group themselves
//! * once the pointer types have been assigned their "g"eneric parameter count,
//! the non-pointer types in each SCC - i.e. (indirectly) referenced by one of
//! the pointer types in the group, and which in turn (indirectly) references
//! a pointer type in the group - can have their "generic" parameters computed
//! as normal, taking care to record where in the combined lists of "generic"
//! parameters, any of the pointer types in the group show up
//! * each pointer type in the group will "fan out" a copy of its full set of
//! "generic" parameters to every (indirect) mention of any pointer type in
//! the group, using an additional parameter remapping, for which `Generic`:
//! * requires this extra documentation:
//! ```
//! /// The one exception are `OpTypePointer`s involved in recursive data types
//! /// (i.e. they were declared by `OpTypeForwardPointer`s, and their pointees are
//! /// `OpTypeStruct`s that have the same pointer type as a leaf).
//! /// As the pointee `OpTypeStruct` has more parameters than the pointer (each leaf
//! /// use of the same pointer type requires its own copy of the pointer parameters),
//! /// a mapping (`expand_params`) indicates how to create the flattened list.
//! ```
//! * and this extra field:
//! ```
//! /// For every entry in the regular flattened list of parameters expected by
//! /// operands, this contains the parameter index (i.e. `0..self.param_count`)
//! /// to use for that parameter.
//! ///
//! /// For example, to duplicate `5` parameters into `10`, `expand_params`
//! /// would be `[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]`.
//! ///
//! /// See also `Generic` documentation above for why this is needed
//! /// (i.e. to replicate parameters for recursive data types).
//! expand_params: Option<Vec<usize>>,
//! ```
use crate::linker::ipo::CallGraph;
use crate::spirv_type_constraints::{self, InstSig, StorageClassPat, TyListPat, TyPat};
use indexmap::{IndexMap, IndexSet};
use rspirv::dr::{Builder, Function, Instruction, Module, Operand};
use rspirv::spirv::{Op, StorageClass, Word};
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use smallvec::SmallVec;
use std::collections::{BTreeMap, VecDeque};
use std::ops::{Range, RangeTo};
use std::{fmt, io, iter, mem, slice};
// FIXME(eddyb) move this elsewhere.
struct FmtBy<F: Fn(&mut fmt::Formatter<'_>) -> fmt::Result>(F);
impl<F: Fn(&mut fmt::Formatter<'_>) -> fmt::Result> fmt::Debug for FmtBy<F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0(f)
}
}
impl<F: Fn(&mut fmt::Formatter<'_>) -> fmt::Result> fmt::Display for FmtBy<F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0(f)
}
}
pub trait Specialization {
/// Return `true` if the specializer should replace every occurrence of
/// `operand` with some other inferred `Operand`.
fn specialize_operand(&self, operand: &Operand) -> bool;
/// The operand that should be used to replace unresolved inference variables,
/// i.e. the uses of operands for which `specialize_operand` returns `true`,
/// but which none of the instructions in the same SPIR-V function require
/// any particular concrete value or relate it to the function's signature,
/// so an arbitrary choice can be made (as long as it's valid SPIR-V etc.).
fn concrete_fallback(&self) -> Operand;
}
/// Helper to avoid needing an `impl` of `Specialization`, while allowing the rest
/// of this module to use `Specialization` (instead of `Fn(&Operand) -> bool`).
pub struct SimpleSpecialization<SO: Fn(&Operand) -> bool> {
pub specialize_operand: SO,
pub concrete_fallback: Operand,
}
impl<SO: Fn(&Operand) -> bool> Specialization for SimpleSpecialization<SO> {
fn specialize_operand(&self, operand: &Operand) -> bool {
(self.specialize_operand)(operand)
}
fn concrete_fallback(&self) -> Operand {
self.concrete_fallback.clone()
}
}
pub fn specialize(
opts: &super::Options,
module: Module,
specialization: impl Specialization,
) -> Module {
// FIXME(eddyb) use `log`/`tracing` instead.
let debug = opts.specializer_debug;
let dump_instances = &opts.specializer_dump_instances;
let mut debug_names = FxHashMap::default();
if debug || dump_instances.is_some() {
debug_names = module
.debug_names
.iter()
.filter(|inst| inst.class.opcode == Op::Name)
.map(|inst| {
(
inst.operands[0].unwrap_id_ref(),
inst.operands[1].unwrap_literal_string().to_string(),
)
})
.collect();
}
let mut specializer = Specializer {
specialization,
debug,
debug_names,
generics: IndexMap::new(),
int_consts: FxHashMap::default(),
};
specializer.collect_generics(&module);
// "Generic" module-scoped variables can be fully constrained to the point
// where we could theoretically always add an instance for them, in order
// to preserve them, even if they would appear to otherwise be unused.
// We do this here for fully-constrained variables used by `OpEntryPoint`s,
// in order to avoid a failure in `Expander::expand_module` (see #723).
let mut interface_concrete_instances = IndexSet::new();
for inst in &module.entry_points {
for interface_operand in &inst.operands[3..] {
let interface_id = interface_operand.unwrap_id_ref();
if let Some(generic) = specializer.generics.get(&interface_id) {
if let Some(param_values) = &generic.param_values {
if param_values.iter().all(|v| matches!(v, Value::Known(_))) {
interface_concrete_instances.insert(Instance {
generic_id: interface_id,
generic_args: param_values
.iter()
.copied()
.map(|v| match v {
Value::Known(v) => v,
_ => unreachable!(),
})
.collect(),
});
}
}
}
}
}
let call_graph = CallGraph::collect(&module);
let mut non_generic_replacements = vec![];
for func_idx in call_graph.post_order() {
if let Some(replacements) = specializer.infer_function(&module.functions[func_idx]) {
non_generic_replacements.push((func_idx, replacements));
}
}
let mut expander = Expander::new(&specializer, module);
// See comment above on the loop collecting `interface_concrete_instances`.
for interface_instance in interface_concrete_instances {
expander.alloc_instance_id(interface_instance);
}
// For non-"generic" functions, we can apply `replacements` right away,
// though not before finishing inference for all functions first
// (because `expander` needs to borrow `specializer` immutably).
if debug {
eprintln!("non-generic replacements:");
}
for (func_idx, replacements) in non_generic_replacements {
let mut func = mem::replace(
&mut expander.builder.module_mut().functions[func_idx],
Function::new(),
);
if debug {
let empty = replacements.with_instance.is_empty()
&& replacements.with_concrete_or_param.is_empty();
if !empty {
eprintln!(" in %{}:", func.def_id().unwrap());
}
}
for (loc, operand) in
replacements.to_concrete(&[], |instance| expander.alloc_instance_id(instance))
{
if debug {
eprintln!(" {operand} -> {loc:?}");
}
func.index_set(loc, operand.into());
}
expander.builder.module_mut().functions[func_idx] = func;
}
expander.propagate_instances();
if let Some(path) = dump_instances {
expander
.dump_instances(&mut std::fs::File::create(path).unwrap())
.unwrap();
}
expander.expand_module()
}
// HACK(eddyb) `Copy` version of `Operand` that only includes the cases that
// are relevant to the inference algorithm (and is also smaller).
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
enum CopyOperand {
IdRef(Word),
StorageClass(StorageClass),
}
#[derive(Debug)]
struct NotSupportedAsCopyOperand(
// HACK(eddyb) only exists for `fmt::Debug` in case of error.
#[allow(dead_code)] Operand,
);
impl TryFrom<&Operand> for CopyOperand {
type Error = NotSupportedAsCopyOperand;
fn try_from(operand: &Operand) -> Result<Self, Self::Error> {
match *operand {
Operand::IdRef(id) => Ok(Self::IdRef(id)),
Operand::StorageClass(s) => Ok(Self::StorageClass(s)),
_ => Err(NotSupportedAsCopyOperand(operand.clone())),
}
}
}
impl From<CopyOperand> for Operand {
fn from(op: CopyOperand) -> Self {
match op {
CopyOperand::IdRef(id) => Self::IdRef(id),
CopyOperand::StorageClass(s) => Self::StorageClass(s),
}
}
}
impl fmt::Display for CopyOperand {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::IdRef(id) => write!(f, "%{id}"),
Self::StorageClass(s) => write!(f, "{s:?}"),
}
}
}
/// The "value" of a `Param`/`InferVar`, if we know anything about it.
// FIXME(eddyb) find a more specific name.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
enum Value<T> {
/// The value of this `Param`/`InferVar` is completely known.
Unknown,
/// The value of this `Param`/`InferVar` is known to be a specific `Operand`.
Known(CopyOperand),
/// The value of this `Param`/`InferVar` is the same as another `Param`/`InferVar`.
///
/// For consistency, and to allow some `Param` <-> `InferVar` mapping,
/// all cases of `values[y] == Value::SameAs(x)` should have `x < y`,
/// i.e. "newer" variables must be redirected to "older" ones.
SameAs(T),
}
impl<T> Value<T> {
fn map_var<U>(self, f: impl FnOnce(T) -> U) -> Value<U> {
match self {
Value::Unknown => Value::Unknown,
Value::Known(o) => Value::Known(o),
Value::SameAs(var) => Value::SameAs(f(var)),
}
}
}
/// Newtype'd "generic" parameter index.
// FIXME(eddyb) use `rustc_index` for this instead.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct Param(u32);
impl fmt::Display for Param {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "${}", self.0)
}
}
impl Param {
// HACK(eddyb) this works around `Range<Param>` not being iterable
// because `Param` doesn't implement the (unstable) `Step` trait.
fn range_iter(range: &Range<Self>) -> impl Iterator<Item = Self> + Clone {
(range.start.0..range.end.0).map(Self)
}
}
/// A specific instance of a "generic" global/function.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct Instance<GA> {
generic_id: Word,
generic_args: GA,
}
impl<GA> Instance<GA> {
fn as_ref(&self) -> Instance<&GA> {
Instance {
generic_id: self.generic_id,
generic_args: &self.generic_args,
}
}
fn map_generic_args<T, U, GA2>(self, f: impl FnMut(T) -> U) -> Instance<GA2>
where
GA: IntoIterator<Item = T>,
GA2: std::iter::FromIterator<U>,
{
Instance {
generic_id: self.generic_id,
generic_args: self.generic_args.into_iter().map(f).collect(),
}
}
// FIXME(eddyb) implement `Step` for `Param` and `InferVar` instead.
fn display<'a, T: fmt::Display, GAI: Iterator<Item = T> + Clone>(
&'a self,
f: impl FnOnce(&'a GA) -> GAI,
) -> impl fmt::Display {
let &Self {
generic_id,
ref generic_args,
} = self;
let generic_args_iter = f(generic_args);
FmtBy(move |f| {
write!(f, "%{generic_id}<")?;
for (i, arg) in generic_args_iter.clone().enumerate() {
if i != 0 {
write!(f, ", ")?;
}
write!(f, "{arg}")?;
}
write!(f, ">")
})
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum InstructionLocation {
Module,
FnParam(usize),
FnBody {
/// Block index within a function.
block_idx: usize,
/// Instruction index within the block with index `block_idx`.
inst_idx: usize,
},
}
trait OperandIndexGetSet<I> {
// FIXME(eddyb) how come this isn't used? (is iteration preferred?)
#[allow(dead_code)]
fn index_get(&self, index: I) -> Operand;
fn index_set(&mut self, index: I, operand: Operand);
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum OperandIdx {
ResultType,
Input(usize),
}
impl OperandIndexGetSet<OperandIdx> for Instruction {
fn index_get(&self, idx: OperandIdx) -> Operand {
match idx {
OperandIdx::ResultType => Operand::IdRef(self.result_type.unwrap()),
OperandIdx::Input(i) => self.operands[i].clone(),
}
}
fn index_set(&mut self, idx: OperandIdx, operand: Operand) {
match idx {
OperandIdx::ResultType => self.result_type = Some(operand.unwrap_id_ref()),
OperandIdx::Input(i) => self.operands[i] = operand,
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
struct OperandLocation {
inst_loc: InstructionLocation,
operand_idx: OperandIdx,
}
impl OperandIndexGetSet<OperandLocation> for Instruction {
fn index_get(&self, loc: OperandLocation) -> Operand {
assert_eq!(loc.inst_loc, InstructionLocation::Module);
self.index_get(loc.operand_idx)
}
fn index_set(&mut self, loc: OperandLocation, operand: Operand) {
assert_eq!(loc.inst_loc, InstructionLocation::Module);
self.index_set(loc.operand_idx, operand);
}
}
impl OperandIndexGetSet<OperandLocation> for Function {
fn index_get(&self, loc: OperandLocation) -> Operand {
let inst = match loc.inst_loc {
InstructionLocation::Module => self.def.as_ref().unwrap(),
InstructionLocation::FnParam(i) => &self.parameters[i],
InstructionLocation::FnBody {
block_idx,
inst_idx,
} => &self.blocks[block_idx].instructions[inst_idx],
};
inst.index_get(loc.operand_idx)
}
fn index_set(&mut self, loc: OperandLocation, operand: Operand) {
let inst = match loc.inst_loc {
InstructionLocation::Module => self.def.as_mut().unwrap(),
InstructionLocation::FnParam(i) => &mut self.parameters[i],
InstructionLocation::FnBody {
block_idx,
inst_idx,
} => &mut self.blocks[block_idx].instructions[inst_idx],
};
inst.index_set(loc.operand_idx, operand);
}
}
// FIXME(eddyb) this is a bit like `Value<Param>` but more explicit,
// and the name isn't too nice, but at least it's very clear.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
enum ConcreteOrParam {
Concrete(CopyOperand),
Param(Param),
}
impl ConcreteOrParam {
/// Replace `Param(i)` with `generic_args[i]` while preserving `Concrete`.
fn apply_generic_args(self, generic_args: &[CopyOperand]) -> CopyOperand {
match self {
Self::Concrete(x) => x,
Self::Param(Param(i)) => generic_args[i as usize],
}
}
}
#[derive(Debug)]
struct Replacements {
/// Operands that need to be replaced with instances of "generic" globals.
/// Keyed by instance to optimize for few instances used many times.
// FIXME(eddyb) fine-tune the length of `SmallVec<[_; 4]>` here.
with_instance: IndexMap<Instance<SmallVec<[ConcreteOrParam; 4]>>, Vec<OperandLocation>>,
/// Operands that need to be replaced with a concrete operand or a parameter.
with_concrete_or_param: Vec<(OperandLocation, ConcreteOrParam)>,
}
impl Replacements {
/// Apply `generic_args` to all the `ConcreteOrParam`s in this `Replacements`
/// (i.e. replacing `Param(i)` with `generic_args[i]`), producing a stream of
/// "replace the operand at `OperandLocation` with this concrete `CopyOperand`".
/// The `concrete_instance_id` closure should look up and/or allocate an ID
/// for a specific concrete `Instance`.
fn to_concrete<'a>(
&'a self,
generic_args: &'a [CopyOperand],
mut concrete_instance_id: impl FnMut(Instance<SmallVec<[CopyOperand; 4]>>) -> Word + 'a,
) -> impl Iterator<Item = (OperandLocation, CopyOperand)> + 'a {
self.with_instance
.iter()
.flat_map(move |(instance, locations)| {
let concrete = CopyOperand::IdRef(concrete_instance_id(
instance
.as_ref()
.map_generic_args(|x| x.apply_generic_args(generic_args)),
));
locations.iter().map(move |&loc| (loc, concrete))
})
.chain(
self.with_concrete_or_param
.iter()
.map(move |&(loc, x)| (loc, x.apply_generic_args(generic_args))),
)
}
}
/// Computed "generic" shape for a SPIR-V global/function. In the interest of efficient
/// representation, the parameters of operands that are themselves "generic",
/// are concatenated by default, i.e. parameters come from disjoint leaves.
///
/// As an example, for `%T = OpTypeStruct %A %B`, if `%A` and `%B` have 2 and 3
/// parameters, respectively, `%T` will have `A0, A1, B0, B1, B2` as parameters.
struct Generic {
param_count: u32,
/// Defining instruction for this global (`OpType...`, `OpConstant...`, etc.)
/// or function (`OpFunction`).
// FIXME(eddyb) consider using `SmallVec` for the operands, or converting
// the operands into something more like `InferOperand`, but that would
// complicate `InferOperandList`, which has to be able to iterate them.
def: Instruction,
/// `param_values[p]` constrains what "generic" args `Param(p)` could take.
/// This is only present if any constraints were inferred from the defining
/// instruction of a global, or the body of a function. Inference performed
/// after `collect_generics` (e.g. from instructions in function bodies) is
/// monotonic, i.e. it may only introduce more constraints, not remove any.
// FIXME(eddyb) use `rustc_index`'s `IndexVec` for this.
param_values: Option<Vec<Value<Param>>>,
/// Operand replacements that need to be performed on the defining instruction
/// of a global, or an entire function (including all instructions in its body),
/// in order to expand an instance of it.
replacements: Replacements,
}
struct Specializer<S: Specialization> {
specialization: S,
// FIXME(eddyb) use `log`/`tracing` instead.
debug: bool,
// HACK(eddyb) if debugging is requested, this is used to quickly get `OpName`s.
debug_names: FxHashMap<Word, String>,
// FIXME(eddyb) compact SPIR-V IDs to allow flatter maps.
generics: IndexMap<Word, Generic>,
/// Integer `OpConstant`s (i.e. containing a `LiteralBit32`), to be used
/// for interpreting `TyPat::IndexComposite` (such as for `OpAccessChain`).
int_consts: FxHashMap<Word, u32>,
}
impl<S: Specialization> Specializer<S> {
/// Returns the number of "generic" parameters `operand` "takes", either
/// because it's specialized by, or it refers to a "generic" global/function.
/// In the latter case, the `&Generic` for that global/function is also returned.
fn params_needed_by(&self, operand: &Operand) -> (u32, Option<&Generic>) {
if self.specialization.specialize_operand(operand) {
// Each operand we specialize by is one leaf "generic" parameter.
(1, None)
} else if let Operand::IdRef(id) = operand {
self.generics
.get(id)
.map_or((0, None), |generic| (generic.param_count, Some(generic)))
} else {
(0, None)
}
}
fn collect_generics(&mut self, module: &Module) {
// Process all defining instructions for globals (types, constants,
// and module-scoped variables), and functions' `OpFunction` instructions,
// but note that for `OpFunction`s only the signature is considered,
// actual inference based on bodies happens later, in `infer_function`.
let types_global_values_and_functions = module
.types_global_values
.iter()
.chain(module.functions.iter().filter_map(|f| f.def.as_ref()));
let mut forward_declared_pointers = FxHashSet::default();
for inst in types_global_values_and_functions {
let result_id = if inst.class.opcode == Op::TypeForwardPointer {
forward_declared_pointers.insert(inst.operands[0].unwrap_id_ref());
inst.operands[0].unwrap_id_ref()
} else {
let result_id = inst.result_id.unwrap_or_else(|| {
unreachable!(
"Op{:?} is in `types_global_values` but not have a result ID",
inst.class.opcode
);
});
if forward_declared_pointers.remove(&result_id) {
// HACK(eddyb) this is a forward-declared pointer, pretend
// it's not "generic" at all to avoid breaking the rest of
// the logic - see module-level docs for how this should be
// handled in the future to support recursive data types.
assert_eq!(inst.class.opcode, Op::TypePointer);
continue;
}
result_id
};
// Record all integer `OpConstant`s (used for `IndexComposite`).
if inst.class.opcode == Op::Constant {
if let Operand::LiteralBit32(x) = inst.operands[0] {
self.int_consts.insert(result_id, x);
}
}
// Instantiate `inst` in a fresh inference context, to determine
// how many parameters it needs, and how they might be constrained.
let (param_count, param_values, replacements) = {
let mut infer_cx = InferCx::new(self);
infer_cx.instantiate_instruction(inst, InstructionLocation::Module);
let param_count = infer_cx.infer_var_values.len() as u32;
// FIXME(eddyb) dedup this with `infer_function`.
let param_values = infer_cx
.infer_var_values
.iter()
.map(|v| v.map_var(|InferVar(i)| Param(i)));
// Only allocate `param_values` if they constrain parameters.
let param_values = if param_values.clone().any(|v| v != Value::Unknown) {
Some(param_values.collect())
} else {
None
};
(
param_count,
param_values,
infer_cx.into_replacements(..Param(param_count)),
)
};
// Inference variables become "generic" parameters.
if param_count > 0 {
self.generics.insert(result_id, Generic {
param_count,
def: inst.clone(),
param_values,
replacements,
});
}
}
}
/// Perform inference across the entire definition of `func`, including all
/// the instructions in its body, and either store the resulting `Replacements`
/// in its `Generic` (if `func` is "generic"), or return them otherwise.
fn infer_function(&mut self, func: &Function) -> Option<Replacements> {
let func_id = func.def_id().unwrap();
let param_count = self
.generics
.get(&func_id)
.map_or(0, |generic| generic.param_count);
let (param_values, replacements) = {
let mut infer_cx = InferCx::new(self);
infer_cx.instantiate_function(func);
// FIXME(eddyb) dedup this with `collect_generics`.
let param_values = infer_cx.infer_var_values[..param_count as usize]
.iter()
.map(|v| v.map_var(|InferVar(i)| Param(i)));
// Only allocate `param_values` if they constrain parameters.
let param_values = if param_values.clone().any(|v| v != Value::Unknown) {
Some(param_values.collect())
} else {
None
};
(
param_values,
infer_cx.into_replacements(..Param(param_count)),
)
};
if let Some(generic) = self.generics.get_mut(&func_id) {
// All constraints `func` could have from `collect_generics`
// would have to come from its `OpTypeFunction`, but types don't have
// internal constraints like e.g. `OpConstant*` and `OpVariable` do.
assert!(generic.param_values.is_none());
generic.param_values = param_values;
generic.replacements = replacements;
None
} else {
Some(replacements)
}
}
}
/// Newtype'd inference variable index.
// FIXME(eddyb) use `rustc_index` for this instead.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct InferVar(u32);
impl fmt::Display for InferVar {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "?{}", self.0)
}
}
impl InferVar {
// HACK(eddyb) this works around `Range<InferVar>` not being iterable
// because `InferVar` doesn't implement the (unstable) `Step` trait.
fn range_iter(range: &Range<Self>) -> impl Iterator<Item = Self> + Clone {
(range.start.0..range.end.0).map(Self)
}
}
struct InferCx<'a, S: Specialization> {
specializer: &'a Specializer<S>,
/// `infer_var_values[i]` holds the current state of `InferVar(i)`.
/// Each inference variable starts out as `Unknown`, may become `SameAs`
/// pointing to another inference variable, but eventually inference must
/// result in `Known` values (i.e. concrete `Operand`s).
// FIXME(eddyb) use `rustc_index`'s `IndexVec` for this.
infer_var_values: Vec<Value<InferVar>>,
/// Instantiated *Result Type* of each instruction that has any `InferVar`s,
/// used when an instruction's result is an input to a later instruction.
///
/// Note that for consistency, for `OpFunction` this contains *Function Type*
/// instead of *Result Type*, which is inexplicably specified as:
/// > *Result Type* must be the same as the *Return Type* declared in *Function Type*
type_of_result: IndexMap<Word, InferOperand>,
/// Operands that need to be replaced with instances of "generic" globals/functions
/// (taking as "generic" arguments the results of inference).
instantiated_operands: Vec<(OperandLocation, Instance<Range<InferVar>>)>,
/// Operands that need to be replaced with results of inference.
inferred_operands: Vec<(OperandLocation, InferVar)>,
}
impl<'a, S: Specialization> InferCx<'a, S> {
fn new(specializer: &'a Specializer<S>) -> Self {
InferCx {
specializer,
infer_var_values: vec![],
type_of_result: IndexMap::new(),
instantiated_operands: vec![],
inferred_operands: vec![],
}
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
enum InferOperand {
Unknown,
Var(InferVar),
Concrete(CopyOperand),
Instance(Instance<Range<InferVar>>),
}
impl InferOperand {
/// Construct an `InferOperand` based on whether `operand` refers to some
/// "generic" definition, or we're specializing by it.
/// Also returns the remaining inference variables, not used by this operand.
fn from_operand_and_generic_args(
operand: &Operand,
generic_args: Range<InferVar>,
cx: &InferCx<'_, impl Specialization>,
) -> (Self, Range<InferVar>) {
let (needed, generic) = cx.specializer.params_needed_by(operand);
let split = InferVar(generic_args.start.0 + needed);
let (generic_args, rest) = (generic_args.start..split, split..generic_args.end);
(
if generic.is_some() {
Self::Instance(Instance {
generic_id: operand.unwrap_id_ref(),
generic_args,
})
} else if needed == 0 {
CopyOperand::try_from(operand).map_or(Self::Unknown, Self::Concrete)
} else {
assert_eq!(needed, 1);
Self::Var(generic_args.start)
},
rest,
)
}
fn display_with_infer_var_values<'a>(
&'a self,
infer_var_value: impl Fn(InferVar) -> Value<InferVar> + Copy + 'a,
) -> impl fmt::Display + '_ {
FmtBy(move |f| {
let var_with_value = |v| {
FmtBy(move |f| {
write!(f, "{v}")?;
match infer_var_value(v) {
Value::Unknown => Ok(()),
Value::Known(o) => write!(f, " = {o}"),
Value::SameAs(v) => write!(f, " = {v}"),
}
})
};
match self {
Self::Unknown => write!(f, "_"),
Self::Var(v) => write!(f, "{}", var_with_value(*v)),
Self::Concrete(o) => write!(f, "{o}"),
Self::Instance(instance) => write!(
f,
"{}",
instance.display(|generic_args| {
InferVar::range_iter(generic_args).map(var_with_value)
})
),
}
})
}
fn display_with_infer_cx<'a>(
&'a self,
cx: &'a InferCx<'_, impl Specialization>,
) -> impl fmt::Display + '_ {
self.display_with_infer_var_values(move |v| {
// HACK(eddyb) can't use `resolve_infer_var` because that mutates
// `InferCx` (for the "path compression" union-find optimization).
let get = |v: InferVar| cx.infer_var_values[v.0 as usize];
let mut value = get(v);
while let Value::SameAs(v) = value {
let next = get(v);
if next == Value::Unknown {
break;
}
value = next;
}
value
})
}
}
impl fmt::Display for InferOperand {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.display_with_infer_var_values(|_| Value::Unknown)
.fmt(f)
}
}
/// How to filter and/or map the operands in an `InferOperandList`, while iterating.
///
/// Having this in `InferOperandList` itself, instead of using iterator combinators,
/// allows storing `InferOperandList`s directly in `Match`, for `TyPatList` matches.
#[derive(Copy, Clone, PartialEq, Eq)]
enum InferOperandListTransform {
/// The list is the result of keeping only ID operands, and mapping them to
/// their types (or `InferOperand::Unknown` for non-value operands, or
/// value operands which don't have a "generic" type).
///
/// This is used to match against the `inputs` `TyListPat` of `InstSig`.
TypeOfId,
}
#[derive(Clone, PartialEq)]
struct InferOperandList<'a> {
operands: &'a [Operand],
/// Joined ranges of all `InferVar`s needed by individual `Operand`s,
/// either for `InferOperand::Instance` or `InferOperand::Var`.
all_generic_args: Range<InferVar>,
transform: Option<InferOperandListTransform>,
}
impl<'a> InferOperandList<'a> {
fn split_first(
&self,
cx: &InferCx<'_, impl Specialization>,
) -> Option<(InferOperand, InferOperandList<'a>)> {
let mut list = self.clone();
loop {
let (first_operand, rest) = list.operands.split_first()?;
list.operands = rest;
let (first, rest_args) = InferOperand::from_operand_and_generic_args(
first_operand,
list.all_generic_args.clone(),
cx,
);
list.all_generic_args = rest_args;
// Maybe filter this operand, but only *after* consuming the "generic" args for it.
match self.transform {
None => {}
// Skip a non-ID operand.
Some(InferOperandListTransform::TypeOfId) => {
if first_operand.id_ref_any().is_none() {
continue;
}
}
}
// Maybe replace this operand with a different one.
let first = match self.transform {
None => first,
// Map `first` to its type.
Some(InferOperandListTransform::TypeOfId) => match first {
InferOperand::Concrete(CopyOperand::IdRef(id)) => cx
.type_of_result
.get(&id)
.cloned()
.unwrap_or(InferOperand::Unknown),
InferOperand::Unknown | InferOperand::Var(_) | InferOperand::Concrete(_) => {
InferOperand::Unknown
}
InferOperand::Instance(instance) => {
let generic = &cx.specializer.generics[&instance.generic_id];
// HACK(eddyb) work around the inexplicable fact that `OpFunction` is
// specified with a *Result Type* that isn't the type of its *Result*:
// > *Result Type* must be the same as the *Return Type* declared in *Function Type*
// So we use *Function Type* instead as the type of its *Result*, and
// we are helped by `instantiate_instruction`, which ensures that the
// "generic" args we have are specifically meant for *Function Type*.
let type_of_result = match generic.def.class.opcode {
Op::Function => Some(generic.def.operands[1].unwrap_id_ref()),
_ => generic.def.result_type,
};
match type_of_result {
Some(type_of_result) => {
InferOperand::from_operand_and_generic_args(
&Operand::IdRef(type_of_result),
instance.generic_args,
cx,
)
.0
}
None => InferOperand::Unknown,
}
}
},
};
return Some((first, list));
}
}
fn iter<'b>(
&self,
cx: &'b InferCx<'_, impl Specialization>,
) -> impl Iterator<Item = InferOperand> + 'b
where
'a: 'b,
{
let mut list = self.clone();
iter::from_fn(move || {
let (next, rest) = list.split_first(cx)?;
list = rest;
Some(next)
})
}
fn display_with_infer_cx<'b>(
&'b self,
cx: &'b InferCx<'a, impl Specialization>,
) -> impl fmt::Display + '_ {
FmtBy(move |f| {
f.debug_list()
.entries(self.iter(cx).map(|operand| {
FmtBy(move |f| write!(f, "{}", operand.display_with_infer_cx(cx)))
}))
.finish()
})
}
}
/// `SmallVec<A>` with a map interface.
#[derive(Default)]
struct SmallIntMap<A: smallvec::Array>(SmallVec<A>);
impl<A: smallvec::Array> SmallIntMap<A> {
fn get(&self, i: usize) -> Option<&A::Item> {
self.0.get(i)
}
fn get_mut_or_default(&mut self, i: usize) -> &mut A::Item
where
A::Item: Default,
{
let needed = i + 1;
if self.0.len() < needed {
self.0.resize_with(needed, Default::default);
}
&mut self.0[i]
}
}
impl<A: smallvec::Array> IntoIterator for SmallIntMap<A> {
type Item = (usize, A::Item);
type IntoIter = iter::Enumerate<smallvec::IntoIter<A>>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter().enumerate()
}
}
impl<'a, A: smallvec::Array> IntoIterator for &'a mut SmallIntMap<A> {
type Item = (usize, &'a mut A::Item);
type IntoIter = iter::Enumerate<slice::IterMut<'a, A::Item>>;
fn into_iter(self) -> Self::IntoIter {
self.0.iter_mut().enumerate()
}
}
#[derive(PartialEq)]
struct IndexCompositeMatch<'a> {
/// *Indexes* `Operand`s (see `TyPat::IndexComposite`'s doc comment for details).
indices: &'a [Operand],
/// The result of indexing the composite type with all `indices`.
leaf: InferOperand,
}
/// Inference success (e.g. type matched type pattern).
#[must_use]
#[derive(Default)]
struct Match<'a> {
/// Whether this success isn't guaranteed, because of missing information
/// (such as the defining instructions of non-"generic" types).
///
/// If there are other alternatives, they will be attempted as well,
/// and merged using `Match::or` (if they don't result in `Unapplicable`).
ambiguous: bool,
// FIXME(eddyb) create some type for these that allows providing common methods
//
/// `storage_class_var_found[i][..]` holds all the `InferOperand`s matched by
/// `StorageClassPat::Var(i)` (currently `i` is always `0`, aka `StorageClassPat::S`).
storage_class_var_found: SmallIntMap<[SmallVec<[InferOperand; 2]>; 1]>,
/// `ty_var_found[i][..]` holds all the `InferOperand`s matched by
/// `TyPat::Var(i)` (currently `i` is always `0`, aka `TyPat::T`).
ty_var_found: SmallIntMap<[SmallVec<[InferOperand; 4]>; 1]>,
/// `index_composite_found[i][..]` holds all the `InferOperand`s matched by
/// `TyPat::IndexComposite(TyPat::Var(i))` (currently `i` is always `0`, aka `TyPat::T`).
index_composite_ty_var_found: SmallIntMap<[SmallVec<[IndexCompositeMatch<'a>; 1]>; 1]>,
/// `ty_list_var_found[i][..]` holds all the `InferOperandList`s matched by
/// `TyListPat::Var(i)` (currently `i` is always `0`, aka `TyListPat::TS`).
ty_list_var_found: SmallIntMap<[SmallVec<[InferOperandList<'a>; 2]>; 1]>,
}
impl<'a> Match<'a> {
/// Combine two `Match`es such that the result implies both of them apply,
/// i.e. contains the union of their constraints.
fn and(mut self, other: Self) -> Self {
let Match {
ambiguous,
storage_class_var_found,
ty_var_found,
index_composite_ty_var_found,
ty_list_var_found,
} = &mut self;
*ambiguous |= other.ambiguous;
for (i, other_found) in other.storage_class_var_found {
storage_class_var_found
.get_mut_or_default(i)
.extend(other_found);
}
for (i, other_found) in other.ty_var_found {
ty_var_found.get_mut_or_default(i).extend(other_found);
}
for (i, other_found) in other.index_composite_ty_var_found {
index_composite_ty_var_found
.get_mut_or_default(i)
.extend(other_found);
}
for (i, other_found) in other.ty_list_var_found {
ty_list_var_found.get_mut_or_default(i).extend(other_found);
}
self
}
/// Combine two `Match`es such that the result allows for either applying,
/// i.e. contains the intersection of their constraints.
fn or(mut self, other: Self) -> Self {
let Match {
ambiguous,
storage_class_var_found,
ty_var_found,
index_composite_ty_var_found,
ty_list_var_found,
} = &mut self;
*ambiguous |= other.ambiguous;
for (i, self_found) in storage_class_var_found {
let other_found = other
.storage_class_var_found
.get(i)
.map_or(&[][..], |xs| &xs[..]);
self_found.retain(|x| other_found.contains(x));
}
for (i, self_found) in ty_var_found {
let other_found = other.ty_var_found.get(i).map_or(&[][..], |xs| &xs[..]);
self_found.retain(|x| other_found.contains(x));
}
for (i, self_found) in index_composite_ty_var_found {
let other_found = other
.index_composite_ty_var_found
.get(i)
.map_or(&[][..], |xs| &xs[..]);
self_found.retain(|x| other_found.contains(x));
}
for (i, self_found) in ty_list_var_found {
let other_found = other.ty_list_var_found.get(i).map_or(&[][..], |xs| &xs[..]);
self_found.retain(|x| other_found.contains(x));
}
self
}
fn debug_with_infer_cx<'b>(
&'b self,
cx: &'b InferCx<'a, impl Specialization>,
) -> impl fmt::Debug + Captures<'a> + '_ {
fn debug_var_found<'a, A: smallvec::Array<Item = T> + 'a, T: 'a, TD: fmt::Display>(
var_found: &'a SmallIntMap<impl smallvec::Array<Item = SmallVec<A>>>,
display: &'a impl Fn(&'a T) -> TD,
) -> impl Iterator<Item = impl fmt::Debug + 'a> + 'a {
var_found
.0
.iter()
.filter(|found| !found.is_empty())
.map(move |found| {
FmtBy(move |f| {
let mut found = found.iter().map(display);
write!(f, "{}", found.next().unwrap())?;
for x in found {
write!(f, " = {x}")?;
}
Ok(())
})
})
}
FmtBy(move |f| {
let Self {
ambiguous,
storage_class_var_found,
ty_var_found,
index_composite_ty_var_found,
ty_list_var_found,
} = self;
write!(f, "Match{} ", if *ambiguous { " (ambiguous)" } else { "" })?;
let mut list = f.debug_list();
list.entries(debug_var_found(storage_class_var_found, &move |operand| {
operand.display_with_infer_cx(cx)
}));
list.entries(debug_var_found(ty_var_found, &move |operand| {
operand.display_with_infer_cx(cx)
}));
list.entries(
index_composite_ty_var_found
.0
.iter()
.enumerate()
.filter(|(_, found)| !found.is_empty())
.flat_map(|(i, found)| found.iter().map(move |x| (i, x)))
.map(move |(i, IndexCompositeMatch { indices, leaf })| {
FmtBy(move |f| {
match ty_var_found.get(i) {
Some(found) if found.len() == 1 => {
write!(f, "{}", found[0].display_with_infer_cx(cx))?;
}
found => {
let found = found.map_or(&[][..], |xs| &xs[..]);
write!(f, "(")?;
for (j, operand) in found.iter().enumerate() {
if j != 0 {
write!(f, " = ")?;
}
write!(f, "{}", operand.display_with_infer_cx(cx))?;
}
write!(f, ")")?;
}
}
for operand in &indices[..] {
// Show the value for literals and IDs pointing to
// known `OpConstant`s (e.g. struct field indices).
let maybe_idx = match operand {
Operand::IdRef(id) => cx.specializer.int_consts.get(id),
Operand::LiteralBit32(idx) => Some(idx),
_ => None,
};
match maybe_idx {
Some(idx) => write!(f, ".{idx}")?,
None => write!(f, "[{operand}]")?,
}
}
write!(f, " = {}", leaf.display_with_infer_cx(cx))
})
}),
);
list.entries(debug_var_found(ty_list_var_found, &move |list| {
list.display_with_infer_cx(cx)
}));
list.finish()
})
}
}
/// Pattern-matching failure, returned by `match_*` when the pattern doesn't apply.
struct Unapplicable;
impl<'a, S: Specialization> InferCx<'a, S> {
/// Match `storage_class` against `pat`, returning a `Match` with found `Var`s.
#[allow(clippy::unused_self)] // TODO: remove?
fn match_storage_class_pat(
&self,
pat: &StorageClassPat,
storage_class: InferOperand,
) -> Match<'a> {
match pat {
StorageClassPat::Any => Match::default(),
StorageClassPat::Var(i) => {
let mut m = Match::default();
m.storage_class_var_found
.get_mut_or_default(*i)
.push(storage_class);
m
}
}
}
/// Match `ty` against `pat`, returning a `Match` with found `Var`s.
fn match_ty_pat(&self, pat: &TyPat<'_>, ty: InferOperand) -> Result<Match<'a>, Unapplicable> {
match pat {
TyPat::Any => Ok(Match::default()),
TyPat::Var(i) => {
let mut m = Match::default();
m.ty_var_found.get_mut_or_default(*i).push(ty);
Ok(m)
}
TyPat::Either(a, b) => match self.match_ty_pat(a, ty.clone()) {
Ok(m) if !m.ambiguous => Ok(m),
a_result => match (a_result, self.match_ty_pat(b, ty)) {
(Ok(ma), Ok(mb)) => Ok(ma.or(mb)),
(Ok(m), _) | (_, Ok(m)) => Ok(m),
(Err(Unapplicable), Err(Unapplicable)) => Err(Unapplicable),
},
},
TyPat::IndexComposite(composite_pat) => match composite_pat {
TyPat::Var(i) => {
let mut m = Match::default();
m.index_composite_ty_var_found.get_mut_or_default(*i).push(
IndexCompositeMatch {
// HACK(eddyb) leave empty `indices` in here for
// `match_inst_sig` to fill in, as it has access
// to the whole `Instruction` but we don't.
indices: &[],
leaf: ty,
},
);
Ok(m)
}
_ => unreachable!(
"`IndexComposite({:?})` isn't supported, only type variable
patterns are (for the composite type), e.g. `IndexComposite(T)`",
composite_pat
),
},
_ => {
let instance = match ty {
InferOperand::Unknown | InferOperand::Concrete(_) => {
return Ok(Match {
ambiguous: true,
..Match::default()
});
}
InferOperand::Var(_) => return Err(Unapplicable),
InferOperand::Instance(instance) => instance,
};
let generic = &self.specializer.generics[&instance.generic_id];
let ty_operands = InferOperandList {
operands: &generic.def.operands,
all_generic_args: instance.generic_args,
transform: None,
};
let simple = |op, inner_pat| {
if generic.def.class.opcode == op {
self.match_ty_pat(inner_pat, ty_operands.split_first(self).unwrap().0)
} else {
Err(Unapplicable)
}
};
match pat {
TyPat::Any | TyPat::Var(_) | TyPat::Either(..) | TyPat::IndexComposite(_) => {
unreachable!()
}
// HACK(eddyb) `TyPat::Void` can't be observed because it's
// not "generic", so it would return early as ambiguous.
TyPat::Void => unreachable!(),
TyPat::Pointer(storage_class_pat, pointee_pat) => {
let mut ty_operands = ty_operands.iter(self);
let (storage_class, pointee_ty) =
(ty_operands.next().unwrap(), ty_operands.next().unwrap());
Ok(self
.match_storage_class_pat(storage_class_pat, storage_class)
.and(self.match_ty_pat(pointee_pat, pointee_ty)?))
}
TyPat::Array(pat) => simple(Op::TypeArray, pat),
TyPat::Vector(pat) => simple(Op::TypeVector, pat),
TyPat::Vector4(pat) => match ty_operands.operands {
[_, Operand::LiteralBit32(4)] => simple(Op::TypeVector, pat),
_ => Err(Unapplicable),
},
TyPat::Matrix(pat) => simple(Op::TypeMatrix, pat),
TyPat::Image(pat) => simple(Op::TypeImage, pat),
TyPat::Pipe(_pat) => {
if generic.def.class.opcode == Op::TypePipe {
Ok(Match::default())
} else {
Err(Unapplicable)
}
}
TyPat::SampledImage(pat) => simple(Op::TypeSampledImage, pat),
TyPat::Struct(fields_pat) => {
if generic.def.class.opcode == Op::TypeStruct {
self.match_ty_list_pat(fields_pat, ty_operands)
} else {
Err(Unapplicable)
}
}
TyPat::Function(ret_pat, params_pat) => {
let (ret_ty, params_ty_list) = ty_operands.split_first(self).unwrap();
Ok(self
.match_ty_pat(ret_pat, ret_ty)?
.and(self.match_ty_list_pat(params_pat, params_ty_list)?))
}
}
}
}
}
/// Match `ty_list` against `pat`, returning a `Match` with found `Var`s.
fn match_ty_list_pat(
&self,
mut list_pat: &TyListPat<'_>,
mut ty_list: InferOperandList<'a>,
) -> Result<Match<'a>, Unapplicable> {
let mut m = Match::default();
while let TyListPat::Cons { first: pat, suffix } = list_pat {
list_pat = suffix;
let (ty, rest) = ty_list.split_first(self).ok_or(Unapplicable)?;
ty_list = rest;
m = m.and(self.match_ty_pat(pat, ty)?);
}
match list_pat {
TyListPat::Cons { .. } => unreachable!(),
TyListPat::Any => {}
TyListPat::Var(i) => {
m.ty_list_var_found.get_mut_or_default(*i).push(ty_list);
}
TyListPat::Repeat(repeat_list_pat) => {
let mut tys = ty_list.iter(self).peekable();
loop {
let mut list_pat = repeat_list_pat;
while let TyListPat::Cons { first: pat, suffix } = list_pat {
m = m.and(self.match_ty_pat(pat, tys.next().ok_or(Unapplicable)?)?);
list_pat = suffix;
}
assert!(matches!(list_pat, TyListPat::Nil));
if tys.peek().is_none() {
break;
}
}
}
TyListPat::Nil => {
if ty_list.split_first(self).is_some() {
return Err(Unapplicable);
}
}
}
Ok(m)
}
/// Match `inst`'s input operands (with `inputs_generic_args` as "generic" args),
/// and `result_type`, against `sig`, returning a `Match` with found `Var`s.
fn match_inst_sig(
&self,
sig: &InstSig<'_>,
inst: &'a Instruction,
inputs_generic_args: Range<InferVar>,
result_type: Option<InferOperand>,
) -> Result<Match<'a>, Unapplicable> {
let mut m = Match::default();
if let Some(pat) = sig.storage_class {
// FIXME(eddyb) going through all the operands to find the one that
// is a storage class is inefficient, storage classes should be part
// of a single unified list of operand patterns.
let all_operands = InferOperandList {
operands: &inst.operands,
all_generic_args: inputs_generic_args.clone(),
transform: None,
};
let storage_class = all_operands
.iter(self)
.zip(&inst.operands)
.filter(|(_, original)| matches!(original, Operand::StorageClass(_)))
.map(|(operand, _)| operand)
.next()
.ok_or(Unapplicable)?;
m = m.and(self.match_storage_class_pat(pat, storage_class));
}
let input_ty_list = InferOperandList {
operands: &inst.operands,
all_generic_args: inputs_generic_args,
transform: Some(InferOperandListTransform::TypeOfId),
};
m = m.and(self.match_ty_list_pat(sig.input_types, input_ty_list.clone())?);
match (sig.output_type, result_type) {
(Some(pat), Some(result_type)) => {
m = m.and(self.match_ty_pat(pat, result_type)?);
}
(None, None) => {}
_ => return Err(Unapplicable),
}
if !m.index_composite_ty_var_found.0.is_empty() {
let composite_indices = {
// Drain the `input_types` prefix (everything before `..`).
let mut ty_list = input_ty_list;
let mut list_pat = sig.input_types;
while let TyListPat::Cons { first: _, suffix } = list_pat {
list_pat = suffix;
ty_list = ty_list.split_first(self).ok_or(Unapplicable)?.1;
}
assert_eq!(
list_pat,
&TyListPat::Any,
"`IndexComposite` must have input types end in `..`"
);
// Extract the underlying remaining `operands` - while iterating on
// the `TypeOfId` list would skip over non-ID operands, and replace
// ID operands with their types, the `operands` slice is still a
// subslice of `inst.operands` (minus the prefix we drained above).
ty_list.operands
};
// Fill in all the `indices` fields left empty by `match_ty_pat`.
for (_, found) in &mut m.index_composite_ty_var_found {
for index_composite_match in found {
let empty = mem::replace(&mut index_composite_match.indices, composite_indices);
assert_eq!(empty, &[]);
}
}
}
Ok(m)
}
/// Match `inst`'s input operands (with `inputs_generic_args` as "generic" args),
/// and `result_type`, against `sigs`, returning a `Match` with found `Var`s.
fn match_inst_sigs(
&self,
sigs: &[InstSig<'_>],
inst: &'a Instruction,
inputs_generic_args: Range<InferVar>,
result_type: Option<InferOperand>,
) -> Result<Match<'a>, Unapplicable> {
let mut result = Err(Unapplicable);
for sig in sigs {
result = match (
result,
self.match_inst_sig(sig, inst, inputs_generic_args.clone(), result_type.clone()),
) {
(Err(Unapplicable), Ok(m)) if !m.ambiguous => return Ok(m),
(Ok(a), Ok(b)) => Ok(a.or(b)),
(Ok(m), _) | (_, Ok(m)) => Ok(m),
(Err(Unapplicable), Err(Unapplicable)) => Err(Unapplicable),
};
}
result
}
}
enum InferError {
/// Mismatch between operands, returned by `equate_*(a, b)` when `a != b`.
// FIXME(eddyb) track where the mismatched operands come from.
Conflict(InferOperand, InferOperand),
}
impl InferError {
fn report(self, inst: &Instruction) {
// FIXME(eddyb) better error reporting than this.
match self {
Self::Conflict(a, b) => {
eprintln!("inference conflict: {a:?} vs {b:?}");
}
}
eprint!(" in ");
// FIXME(eddyb) deduplicate this with other instruction printing logic.
if let Some(result_id) = inst.result_id {
eprint!("%{result_id} = ");
}
eprint!("Op{:?}", inst.class.opcode);
for operand in inst
.result_type
.map(Operand::IdRef)
.iter()
.chain(inst.operands.iter())
{
eprint!(" {operand}");
}
eprintln!();
std::process::exit(1);
}
}
impl<'a, S: Specialization> InferCx<'a, S> {
/// Traverse `SameAs` chains starting at `x` and return the first `InferVar`
/// that isn't `SameAs` (i.e. that is `Unknown` or `Known`).
/// This corresponds to `find(v)` from union-find.
fn resolve_infer_var(&mut self, v: InferVar) -> InferVar {
match self.infer_var_values[v.0 as usize] {
Value::Unknown | Value::Known(_) => v,
Value::SameAs(next) => {
let resolved = self.resolve_infer_var(next);
if resolved != next {
// Update the `SameAs` entry for faster lookup next time
// (also known as "path compression" in union-find).
self.infer_var_values[v.0 as usize] = Value::SameAs(resolved);
}
resolved
}
}
}
/// Enforce that `a = b`, returning a combined `InferVar`, if successful.
/// This corresponds to `union(a, b)` from union-find.
fn equate_infer_vars(&mut self, a: InferVar, b: InferVar) -> Result<InferVar, InferError> {
let (a, b) = (self.resolve_infer_var(a), self.resolve_infer_var(b));
if a == b {
return Ok(a);
}
// Maintain the invariant that "newer" variables are redirected to "older" ones.
let (older, newer) = (a.min(b), a.max(b));
let newer_value = mem::replace(
&mut self.infer_var_values[newer.0 as usize],
Value::SameAs(older),
);
match (self.infer_var_values[older.0 as usize], newer_value) {
// Guaranteed by `resolve_infer_var`.
(Value::SameAs(_), _) | (_, Value::SameAs(_)) => unreachable!(),
// Both `newer` and `older` had a `Known` value, they must match.
(Value::Known(x), Value::Known(y)) => {
if x != y {
return Err(InferError::Conflict(
InferOperand::Concrete(x),
InferOperand::Concrete(y),
));
}
}
// Move the `Known` value from `newer` to `older`.
(Value::Unknown, Value::Known(_)) => {
self.infer_var_values[older.0 as usize] = newer_value;
}
(_, Value::Unknown) => {}
}
Ok(older)
}
/// Enforce that `a = b`, returning a combined `Range<InferVar>`, if successful.
fn equate_infer_var_ranges(
&mut self,
a: Range<InferVar>,
b: Range<InferVar>,
) -> Result<Range<InferVar>, InferError> {
if a == b {
return Ok(a);
}
assert_eq!(a.end.0 - a.start.0, b.end.0 - b.start.0);
for (a, b) in InferVar::range_iter(&a).zip(InferVar::range_iter(&b)) {
self.equate_infer_vars(a, b)?;
}
// Pick the "oldest" range to maintain the invariant that "newer" variables
// are redirected to "older" ones, while keeping a contiguous range
// (instead of splitting it into individual variables), for performance.
Ok(if a.start < b.start { a } else { b })
}
/// Enforce that `a = b`, returning a combined `InferOperand`, if successful.
fn equate_infer_operands(
&mut self,
a: InferOperand,
b: InferOperand,
) -> Result<InferOperand, InferError> {
if a == b {
return Ok(a);
}
#[allow(clippy::match_same_arms)]
Ok(match (a.clone(), b.clone()) {
// Instances of "generic" globals/functions must be of the same ID,
// and their `generic_args` inference variables must be unified.
(
InferOperand::Instance(Instance {
generic_id: a_id,
generic_args: a_args,
}),
InferOperand::Instance(Instance {
generic_id: b_id,
generic_args: b_args,
}),
) => {
if a_id != b_id {
return Err(InferError::Conflict(a, b));
}
InferOperand::Instance(Instance {
generic_id: a_id,
generic_args: self.equate_infer_var_ranges(a_args, b_args)?,
})
}
// Instances of "generic" globals/functions can never equal anything else.
(InferOperand::Instance(_), _) | (_, InferOperand::Instance(_)) => {
return Err(InferError::Conflict(a, b));
}
// Inference variables must be unified.
(InferOperand::Var(a), InferOperand::Var(b)) => {
InferOperand::Var(self.equate_infer_vars(a, b)?)
}
// An inference variable can be assigned a concrete value.
(InferOperand::Var(v), InferOperand::Concrete(new))
| (InferOperand::Concrete(new), InferOperand::Var(v)) => {
let v = self.resolve_infer_var(v);
match &mut self.infer_var_values[v.0 as usize] {
// Guaranteed by `resolve_infer_var`.
Value::SameAs(_) => unreachable!(),
&mut Value::Known(old) => {
if new != old {
return Err(InferError::Conflict(
InferOperand::Concrete(old),
InferOperand::Concrete(new),
));
}
}
value @ Value::Unknown => *value = Value::Known(new),
}
InferOperand::Var(v)
}
// Concrete `Operand`s must simply match.
(InferOperand::Concrete(_), InferOperand::Concrete(_)) => {
// Success case is handled by `if a == b` early return above.
return Err(InferError::Conflict(a, b));
}
// Unknowns can be ignored in favor of non-`Unknown`.
// NOTE(eddyb) `x` cannot be `Instance`, that is handled above.
(InferOperand::Unknown, x) | (x, InferOperand::Unknown) => x,
})
}
/// Compute the result ("leaf") type for a `TyPat::IndexComposite` pattern,
/// by applying each index in `indices` to `composite_ty`, extracting the
/// element type (for `OpType{Array,RuntimeArray,Vector,Matrix}`), or the
/// field type for `OpTypeStruct`, where `indices` contains the field index.
fn index_composite(&self, composite_ty: InferOperand, indices: &[Operand]) -> InferOperand {
let mut ty = composite_ty;
for idx in indices {
let instance = match ty {
InferOperand::Unknown | InferOperand::Concrete(_) | InferOperand::Var(_) => {
return InferOperand::Unknown;
}
InferOperand::Instance(instance) => instance,
};
let generic = &self.specializer.generics[&instance.generic_id];
let ty_opcode = generic.def.class.opcode;
let ty_operands = InferOperandList {
operands: &generic.def.operands,
all_generic_args: instance.generic_args,
transform: None,
};
let ty_operands_idx = match ty_opcode {
Op::TypeArray | Op::TypeRuntimeArray | Op::TypeVector | Op::TypeMatrix => 0,
Op::TypeStruct => match idx {
Operand::IdRef(id) => {
*self.specializer.int_consts.get(id).unwrap_or_else(|| {
unreachable!("non-constant `OpTypeStruct` field index {}", id);
})
}
&Operand::LiteralBit32(i) => i,
_ => {
unreachable!("invalid `OpTypeStruct` field index operand {:?}", idx);
}
},
_ => unreachable!("indexing non-composite type `Op{:?}`", ty_opcode),
};
ty = ty_operands
.iter(self)
.nth(ty_operands_idx as usize)
.unwrap_or_else(|| {
unreachable!(
"out of bounds index {} for `Op{:?}`",
ty_operands_idx, ty_opcode
);
});
}
ty
}
/// Enforce that all the `InferOperand`/`InferOperandList`s found for the
/// same pattern variable (i.e. `*Pat::Var(i)` with the same `i`), are equal.
fn equate_match_findings(&mut self, m: Match<'_>) -> Result<(), InferError> {
let Match {
ambiguous: _,
storage_class_var_found,
ty_var_found,
index_composite_ty_var_found,
ty_list_var_found,
} = m;
for (_, found) in storage_class_var_found {
let mut found = found.into_iter();
if let Some(first) = found.next() {
found.try_fold(first, |a, b| self.equate_infer_operands(a, b))?;
}
}
for (i, found) in ty_var_found {
let mut found = found.into_iter();
if let Some(first) = found.next() {
let equated_ty = found.try_fold(first, |a, b| self.equate_infer_operands(a, b))?;
// Apply any `IndexComposite(Var(i))`'s indices to `equated_ty`,
// and equate the resulting "leaf" type with the found "leaf" type.
let index_composite_found = index_composite_ty_var_found
.get(i)
.map_or(&[][..], |xs| &xs[..]);
for IndexCompositeMatch { indices, leaf } in index_composite_found {
let indexing_result_ty = self.index_composite(equated_ty.clone(), indices);
self.equate_infer_operands(indexing_result_ty, leaf.clone())?;
}
}
}
for (_, mut found) in ty_list_var_found {
if let Some((first_list, other_lists)) = found.split_first_mut() {
// Advance all the lists in lock-step so that we don't have to
// allocate state proportional to list length and/or `found.len()`.
while let Some((first, rest)) = first_list.split_first(self) {
*first_list = rest;
other_lists.iter_mut().try_fold(first, |a, b_list| {
let (b, rest) = b_list
.split_first(self)
.expect("list length mismatch (invalid SPIR-V?)");
*b_list = rest;
self.equate_infer_operands(a, b)
})?;
}
for other_list in other_lists {
assert!(
other_list.split_first(self).is_none(),
"list length mismatch (invalid SPIR-V?)"
);
}
}
}
Ok(())
}
/// Track an instantiated operand, to be included in the `Replacements`
/// (produced by `into_replacements`), if it has any `InferVar`s at all.
fn record_instantiated_operand(&mut self, loc: OperandLocation, operand: InferOperand) {
match operand {
InferOperand::Var(v) => {
self.inferred_operands.push((loc, v));
}
InferOperand::Instance(instance) => {
self.instantiated_operands.push((loc, instance));
}
InferOperand::Unknown | InferOperand::Concrete(_) => {}
}
}
/// Instantiate all of `inst`'s operands (and *Result Type*) that refer to
/// "generic" globals/functions, or we need to specialize by, with fresh
/// inference variables, and enforce any inference constraints applicable.
fn instantiate_instruction(&mut self, inst: &'a Instruction, inst_loc: InstructionLocation) {
let mut all_generic_args = {
let next_infer_var = InferVar(self.infer_var_values.len().try_into().unwrap());
next_infer_var..next_infer_var
};
// HACK(eddyb) work around the inexplicable fact that `OpFunction` is
// specified with a *Result Type* that isn't the type of its *Result*:
// > *Result Type* must be the same as the *Return Type* declared in *Function Type*
// Specifically, we don't instantiate *Result Type* (to avoid ending
// up with redundant `InferVar`s), and instead overlap its "generic" args
// with that of the *Function Type*, for `instantiations.
let (instantiate_result_type, record_fn_ret_ty, type_of_result) = match inst.class.opcode {
Op::Function => (
None,
inst.result_type,
Some(inst.operands[1].unwrap_id_ref()),
),
_ => (inst.result_type, None, inst.result_type),
};
for (operand_idx, operand) in instantiate_result_type
.map(Operand::IdRef)
.iter()
.map(|o| (OperandIdx::ResultType, o))
.chain(
inst.operands
.iter()
.enumerate()
.map(|(i, o)| (OperandIdx::Input(i), o)),
)
{
// HACK(eddyb) use `v..InferVar(u32::MAX)` as an open-ended range of sorts.
let (operand, rest) = InferOperand::from_operand_and_generic_args(
operand,
all_generic_args.end..InferVar(u32::MAX),
self,
);
let generic_args = all_generic_args.end..rest.start;
all_generic_args.end = generic_args.end;
let generic = match &operand {
InferOperand::Instance(instance) => {
Some(&self.specializer.generics[&instance.generic_id])
}
_ => None,
};
// Initialize the new inference variables (for `operand`'s "generic" args)
// with either `generic.param_values` (if present) or all `Unknown`s.
match generic {
Some(Generic {
param_values: Some(values),
..
}) => self.infer_var_values.extend(
values
.iter()
.map(|v| v.map_var(|Param(p)| InferVar(generic_args.start.0 + p))),
),
_ => {
self.infer_var_values
.extend(InferVar::range_iter(&generic_args).map(|_| Value::Unknown));
}
}
self.record_instantiated_operand(
OperandLocation {
inst_loc,
operand_idx,
},
operand,
);
}
// HACK(eddyb) workaround for `OpFunction`, see earlier HACK comment.
if let Some(ret_ty) = record_fn_ret_ty {
let (ret_ty, _) = InferOperand::from_operand_and_generic_args(
&Operand::IdRef(ret_ty),
all_generic_args.clone(),
self,
);
self.record_instantiated_operand(
OperandLocation {
inst_loc,
operand_idx: OperandIdx::ResultType,
},
ret_ty,
);
}
// *Result Type* comes first in `all_generic_args`, extract it back out.
let (type_of_result, inputs_generic_args) = match type_of_result {
Some(type_of_result) => {
let (type_of_result, rest) = InferOperand::from_operand_and_generic_args(
&Operand::IdRef(type_of_result),
all_generic_args.clone(),
self,
);
(
Some(type_of_result),
// HACK(eddyb) workaround for `OpFunction`, see earlier HACK comment.
match inst.class.opcode {
Op::Function => all_generic_args,
_ => rest,
},
)
}
None => (None, all_generic_args),
};
let debug_dump_if_enabled = |cx: &Self, prefix| {
if cx.specializer.debug {
let result_type = match inst.class.opcode {
// HACK(eddyb) workaround for `OpFunction`, see earlier HACK comment.
Op::Function => Some(
InferOperand::from_operand_and_generic_args(
&Operand::IdRef(inst.result_type.unwrap()),
inputs_generic_args.clone(),
cx,
)
.0,
),
_ => type_of_result.clone(),
};
let inputs = InferOperandList {
operands: &inst.operands,
all_generic_args: inputs_generic_args.clone(),
transform: None,
};
if inst_loc != InstructionLocation::Module {
eprint!(" ");
}
eprint!("{prefix}");
if let Some(result_id) = inst.result_id {
eprint!("%{result_id} = ");
}
eprint!("Op{:?}", inst.class.opcode);
for operand in result_type.into_iter().chain(inputs.iter(cx)) {
eprint!(" {}", operand.display_with_infer_cx(cx));
}
eprintln!();
}
};
// If we have some instruction signatures for `inst`, enforce them.
if let Some(sigs) = spirv_type_constraints::instruction_signatures(inst.class.opcode) {
// HACK(eddyb) workaround for `OpFunction`, see earlier HACK comment.
// (specifically, `type_of_result` isn't *Result Type* for `OpFunction`)
assert_ne!(inst.class.opcode, Op::Function);
debug_dump_if_enabled(self, " -> ");
let m = match self.match_inst_sigs(
sigs,
inst,
inputs_generic_args.clone(),
type_of_result.clone(),
) {
Ok(m) => m,
// While this could be an user error *in theory*, we haven't really
// unified any of the `InferOperand`s found by pattern match variables,
// at this point, so the only the possible error case is that `inst`
// doesn't match the *shapes* specified in `sigs`, i.e. this is likely
// a bug in `spirv_type_constraints`, not some kind of inference conflict.
Err(Unapplicable) => unreachable!(
"spirv_type_constraints(Op{:?}) = `{:?}` doesn't match `{:?}`",
inst.class.opcode, sigs, inst
),
};
if self.specializer.debug {
if inst_loc != InstructionLocation::Module {
eprint!(" ");
}
eprintln!(" found {:?}", m.debug_with_infer_cx(self));
}
if let Err(e) = self.equate_match_findings(m) {
e.report(inst);
}
debug_dump_if_enabled(self, " <- ");
} else {
debug_dump_if_enabled(self, "");
}
if let Some(type_of_result) = type_of_result {
// Keep the (instantiated) *Result Type*, for future instructions to use
// (but only if it has any `InferVar`s at all).
match type_of_result {
InferOperand::Var(_) | InferOperand::Instance(_) => {
self.type_of_result
.insert(inst.result_id.unwrap(), type_of_result);
}
InferOperand::Unknown | InferOperand::Concrete(_) => {}
}
}
}
/// Instantiate `func`'s definition and all instructions in its body,
/// effectively performing inference across the entire function body.
fn instantiate_function(&mut self, func: &'a Function) {
let func_id = func.def_id().unwrap();
if self.specializer.debug {
eprintln!();
eprint!("specializer::instantiate_function(%{func_id}");
if let Some(name) = self.specializer.debug_names.get(&func_id) {
eprint!(" {name}");
}
eprintln!("):");
}
// Instantiate the defining `OpFunction` first, so that the first
// inference variables match the parameters from the `Generic`
// (if the `OpTypeFunction` is "generic", that is).
assert!(self.infer_var_values.is_empty());
self.instantiate_instruction(func.def.as_ref().unwrap(), InstructionLocation::Module);
if self.specializer.debug {
eprintln!("infer body {{");
}
// If the `OpTypeFunction` is indeed "generic", we have to extract the
// return / parameter types for `OpReturnValue` and `OpFunctionParameter`.
let ret_ty = match self.type_of_result.get(&func_id).cloned() {
Some(InferOperand::Instance(instance)) => {
let generic = &self.specializer.generics[&instance.generic_id];
assert_eq!(generic.def.class.opcode, Op::TypeFunction);
let (ret_ty, mut params_ty_list) = InferOperandList {
operands: &generic.def.operands,
all_generic_args: instance.generic_args,
transform: None,
}
.split_first(self)
.unwrap();
// HACK(eddyb) manual iteration to avoid borrowing `self`.
let mut params = func.parameters.iter().enumerate();
while let Some((param_ty, rest)) = params_ty_list.split_first(self) {
params_ty_list = rest;
let (i, param) = params.next().unwrap();
assert_eq!(param.class.opcode, Op::FunctionParameter);
if self.specializer.debug {
eprintln!(
" %{} = Op{:?} {}",
param.result_id.unwrap(),
param.class.opcode,
param_ty.display_with_infer_cx(self)
);
}
self.record_instantiated_operand(
OperandLocation {
inst_loc: InstructionLocation::FnParam(i),
operand_idx: OperandIdx::ResultType,
},
param_ty.clone(),
);
match param_ty {
InferOperand::Var(_) | InferOperand::Instance(_) => {
self.type_of_result
.insert(param.result_id.unwrap(), param_ty);
}
InferOperand::Unknown | InferOperand::Concrete(_) => {}
}
}
assert_eq!(params.next(), None);
Some(ret_ty)
}
_ => None,
};
for (block_idx, block) in func.blocks.iter().enumerate() {
for (inst_idx, inst) in block.instructions.iter().enumerate() {
// Manually handle `OpReturnValue`/`OpReturn` because there's no
// way to inject `ret_ty` into `spirv_type_constraints` rules.
match inst.class.opcode {
Op::ReturnValue => {
let ret_val_id = inst.operands[0].unwrap_id_ref();
if let (Some(expected), Some(found)) = (
ret_ty.clone(),
self.type_of_result.get(&ret_val_id).cloned(),
) {
if let Err(e) = self.equate_infer_operands(expected, found) {
e.report(inst);
}
}
}
Op::Return => {}
_ => self.instantiate_instruction(inst, InstructionLocation::FnBody {
block_idx,
inst_idx,
}),
}
}
}
if self.specializer.debug {
eprint!("}}");
if let Some(func_ty) = self.type_of_result.get(&func_id) {
eprint!(" -> %{}: {}", func_id, func_ty.display_with_infer_cx(self));
}
eprintln!();
}
}
/// Helper for `into_replacements`, that computes a single `ConcreteOrParam`.
/// For all `Param(p)` in `generic_params`, inference variables that resolve
/// to `InferVar(p)` are replaced with `Param(p)`, whereas other inference
/// variables are considered unconstrained, and are instead replaced with
/// `S::concrete_fallback()` (which is chosen by the specialization).
fn resolve_infer_var_to_concrete_or_param(
&mut self,
v: InferVar,
generic_params: RangeTo<Param>,
) -> ConcreteOrParam {
let v = self.resolve_infer_var(v);
let InferVar(i) = v;
match self.infer_var_values[i as usize] {
// Guaranteed by `resolve_infer_var`.
Value::SameAs(_) => unreachable!(),
Value::Unknown => {
if i < generic_params.end.0 {
ConcreteOrParam::Param(Param(i))
} else {
ConcreteOrParam::Concrete(
CopyOperand::try_from(&self.specializer.specialization.concrete_fallback())
.unwrap(),
)
}
}
Value::Known(x) => ConcreteOrParam::Concrete(x),
}
}
/// Consume the `InferCx` and return a set of replacements that need to be
/// performed to instantiate the global/function inferred with this `InferCx`.
/// See `resolve_infer_var_to_concrete_or_param` for how inference variables
/// are handled (using `generic_params` and `S::concrete_fallback()`).
fn into_replacements(mut self, generic_params: RangeTo<Param>) -> Replacements {
let mut with_instance: IndexMap<_, Vec<_>> = IndexMap::new();
for (loc, instance) in mem::take(&mut self.instantiated_operands) {
with_instance
.entry(Instance {
generic_id: instance.generic_id,
generic_args: InferVar::range_iter(&instance.generic_args)
.map(|v| self.resolve_infer_var_to_concrete_or_param(v, generic_params))
.collect(),
})
.or_default()
.push(loc);
}
let with_concrete_or_param = mem::take(&mut self.inferred_operands)
.into_iter()
.map(|(loc, v)| {
(
loc,
self.resolve_infer_var_to_concrete_or_param(v, generic_params),
)
})
.collect();
Replacements {
with_instance,
with_concrete_or_param,
}
}
}
// HACK(eddyb) this state could live in `Specializer` except for the fact that
// it's commonly mutated at the same time as parts of `Specializer` are read,
// and in particular this arrangement allows calling `&mut self` methods on
// `Expander` while (immutably) iterating over data inside the `Specializer`.
struct Expander<'a, S: Specialization> {
specializer: &'a Specializer<S>,
builder: Builder,
/// All the instances of "generic" globals/functions that need to be expanded,
/// and their cached IDs (which are allocated as-needed, before expansion).
// NOTE(eddyb) this relies on `BTreeMap` so that `all_instances_of` can use
// `BTreeMap::range` to get all `Instances` that share a certain ID.
// FIXME(eddyb) fine-tune the length of `SmallVec<[_; 4]>` here.
instances: BTreeMap<Instance<SmallVec<[CopyOperand; 4]>>, Word>,
/// Instances of "generic" globals/functions that have yet to have had their
/// own `replacements` analyzed in order to fully collect all instances.
// FIXME(eddyb) fine-tune the length of `SmallVec<[_; 4]>` here.
propagate_instances_queue: VecDeque<Instance<SmallVec<[CopyOperand; 4]>>>,
}
impl<'a, S: Specialization> Expander<'a, S> {
fn new(specializer: &'a Specializer<S>, module: Module) -> Self {
Expander {
specializer,
builder: Builder::new_from_module(module),
instances: BTreeMap::new(),
propagate_instances_queue: VecDeque::new(),
}
}
/// Return the subset of `instances` that have `generic_id`.
/// This is efficiently implemented via `BTreeMap::range`, taking advantage
/// of the derived `Ord` on `Instance`, which orders by `generic_id` first,
/// resulting in `instances` being grouped by `generic_id`.
fn all_instances_of(
&self,
generic_id: Word,
) -> std::collections::btree_map::Range<'_, Instance<SmallVec<[CopyOperand; 4]>>, Word> {
let first_instance_of = |generic_id| Instance {
generic_id,
generic_args: SmallVec::new(),
};
self.instances
.range(first_instance_of(generic_id)..first_instance_of(generic_id + 1))
}
/// Allocate a new ID for `instance`, or return a cached one if it exists.
/// If a new ID is created, `instance` is added to `propagate_instances_queue`,
/// so that `propagate_instances` can later find all transitive dependencies.
fn alloc_instance_id(&mut self, instance: Instance<SmallVec<[CopyOperand; 4]>>) -> Word {
use std::collections::btree_map::Entry;
match self.instances.entry(instance) {
Entry::Occupied(entry) => *entry.get(),
Entry::Vacant(entry) => {
// Get the `Instance` back from the map key, to avoid having to
// clone it earlier when calling `self.instances.entry(instance)`.
let instance = entry.key().clone();
self.propagate_instances_queue.push_back(instance);
*entry.insert(self.builder.id())
}
}
}
/// Process all instances seen (by `alloc_instance_id`) up until this point,
/// to find the full set of instances (transitively) needed by the module.
///
/// **Warning**: calling `alloc_instance_id` later, without another call to
/// `propagate_instances`, will potentially result in missed instances, i.e.
/// that are added to `propagate_instances_queue` but never processed.
fn propagate_instances(&mut self) {
while let Some(instance) = self.propagate_instances_queue.pop_back() {
// Drain the iterator to generate all the `alloc_instance_id` calls.
for _ in self.specializer.generics[&instance.generic_id]
.replacements
.to_concrete(&instance.generic_args, |i| self.alloc_instance_id(i))
{}
}
}
/// Expand every "generic" global/function, and `OpName`/decorations applied
/// to them, to their respective full set of instances, treating the original
/// "generic" definition and its inferred `Replacements` as a template.
fn expand_module(mut self) -> Module {
// From here on out we assume all instances are known, so ensure there
// aren't any left unpropagated.
self.propagate_instances();
// HACK(eddyb) steal `Vec`s so that we can still call methods on `self` below.
let module = self.builder.module_mut();
let mut entry_points = mem::take(&mut module.entry_points);
let debug_names = mem::take(&mut module.debug_names);
let annotations = mem::take(&mut module.annotations);
let types_global_values = mem::take(&mut module.types_global_values);
let functions = mem::take(&mut module.functions);
// Adjust `OpEntryPoint ...` in-place to use the new IDs for *Interface*
// module-scoped `OpVariable`s (which should each have one instance).
for inst in &mut entry_points {
let func_id = inst.operands[1].unwrap_id_ref();
assert!(
!self.specializer.generics.contains_key(&func_id),
"entry-point %{func_id} shouldn't be \"generic\""
);
for interface_operand in &mut inst.operands[3..] {
let interface_id = interface_operand.unwrap_id_ref();
let mut instances = self.all_instances_of(interface_id);
match (instances.next(), instances.next()) {
(None, _) => unreachable!(
"entry-point %{} has overly-\"generic\" \
interface variable %{}, with no instances",
func_id, interface_id
),
(Some(_), Some(_)) => unreachable!(
"entry-point %{} has overly-\"generic\" \
interface variable %{}, with too many instances: {:?}",
func_id,
interface_id,
FmtBy(|f| f
.debug_list()
.entries(self.all_instances_of(interface_id).map(
|(instance, _)| FmtBy(move |f| write!(
f,
"{}",
instance.display(|generic_args| generic_args.iter().copied())
))
))
.finish())
),
(Some((_, &instance_id)), None) => {
*interface_operand = Operand::IdRef(instance_id);
}
}
}
}
// FIXME(eddyb) bucket `instances` into global vs function, and count
// annotations separately, so that we can know exact capacities below.
// Expand `Op* %target ...` when `target` is "generic".
let expand_debug_or_annotation = |insts: Vec<Instruction>| {
let mut expanded_insts = Vec::with_capacity(insts.len().next_power_of_two());
for inst in insts {
if let [Operand::IdRef(target), ..] = inst.operands[..] {
if self.specializer.generics.contains_key(&target) {
expanded_insts.extend(self.all_instances_of(target).map(
|(_, &instance_id)| {
let mut expanded_inst = inst.clone();
expanded_inst.operands[0] = Operand::IdRef(instance_id);
expanded_inst
},
));
continue;
}
}
expanded_insts.push(inst);
}
expanded_insts
};
// Expand `Op(Member)Name %target ...` when `target` is "generic".
let expanded_debug_names = expand_debug_or_annotation(debug_names);
// Expand `Op(Member)Decorate* %target ...`, when `target` is "generic".
let mut expanded_annotations = expand_debug_or_annotation(annotations);
// Expand "generic" globals (types, constants and module-scoped variables).
let mut expanded_types_global_values =
Vec::with_capacity(types_global_values.len().next_power_of_two());
for inst in types_global_values {
if let Some(result_id) = inst.result_id {
if let Some(generic) = self.specializer.generics.get(&result_id) {
expanded_types_global_values.extend(self.all_instances_of(result_id).map(
|(instance, &instance_id)| {
let mut expanded_inst = inst.clone();
expanded_inst.result_id = Some(instance_id);
for (loc, operand) in generic
.replacements
.to_concrete(&instance.generic_args, |i| self.instances[&i])
{
expanded_inst.index_set(loc, operand.into());
}
expanded_inst
},
));
continue;
}
}
expanded_types_global_values.push(inst);
}
// Expand "generic" functions.
let mut expanded_functions = Vec::with_capacity(functions.len().next_power_of_two());
for func in functions {
let func_id = func.def_id().unwrap();
if let Some(generic) = self.specializer.generics.get(&func_id) {
let old_expanded_functions_len = expanded_functions.len();
expanded_functions.extend(self.all_instances_of(func_id).map(
|(instance, &instance_id)| {
let mut expanded_func = func.clone();
expanded_func.def.as_mut().unwrap().result_id = Some(instance_id);
for (loc, operand) in generic
.replacements
.to_concrete(&instance.generic_args, |i| self.instances[&i])
{
expanded_func.index_set(loc, operand.into());
}
expanded_func
},
));
// Renumber all of the IDs defined within the function itself,
// to avoid conflicts between all the expanded copies.
// While some passes (such as inlining) may handle IDs reuse
// between different function bodies (mostly because they do
// their own renumbering), it's better not to tempt fate here.
// FIXME(eddyb) use compact IDs for more efficient renumbering.
let newly_expanded_functions =
&mut expanded_functions[old_expanded_functions_len..];
if newly_expanded_functions.len() > 1 {
// NOTE(eddyb) this is defined outside the loop to avoid
// allocating it for every expanded copy of the function.
let mut rewrite_rules = FxHashMap::default();
for func in newly_expanded_functions {
rewrite_rules.clear();
rewrite_rules.extend(func.parameters.iter_mut().map(|param| {
let old_id = param.result_id.unwrap();
let new_id = self.builder.id();
// HACK(eddyb) this is only needed because we're using
// `apply_rewrite_rules` and that only works on `Block`s,
// it should be generalized to handle `Function`s too.
param.result_id = Some(new_id);
(old_id, new_id)
}));
rewrite_rules.extend(
func.blocks
.iter()
.flat_map(|b| b.label.iter().chain(b.instructions.iter()))
.filter_map(|inst| inst.result_id)
.map(|old_id| (old_id, self.builder.id())),
);
super::apply_rewrite_rules(&rewrite_rules, &mut func.blocks);
// HACK(eddyb) this duplicates similar logic from `inline`.
for annotation_idx in 0..expanded_annotations.len() {
let inst = &expanded_annotations[annotation_idx];
if let [Operand::IdRef(target), ..] = inst.operands[..] {
if let Some(&rewritten_target) = rewrite_rules.get(&target) {
let mut expanded_inst = inst.clone();
expanded_inst.operands[0] = Operand::IdRef(rewritten_target);
expanded_annotations.push(expanded_inst);
}
}
}
}
}
continue;
}
expanded_functions.push(func);
}
// No new instances should've been found during expansion - they would've
// panicked while attempting to get `self.instances[&instance]` anyway.
assert!(self.propagate_instances_queue.is_empty());
let module = self.builder.module_mut();
module.entry_points = entry_points;
module.debug_names = expanded_debug_names;
module.annotations = expanded_annotations;
module.types_global_values = expanded_types_global_values;
module.functions = expanded_functions;
self.builder.module()
}
fn dump_instances(&self, w: &mut impl io::Write) -> io::Result<()> {
writeln!(w, "; All specializer \"generic\"s and their instances:")?;
writeln!(w)?;
// FIXME(eddyb) maybe dump (transitive) dependencies? could use a def-use graph.
for (&generic_id, generic) in &self.specializer.generics {
if let Some(name) = self.specializer.debug_names.get(&generic_id) {
writeln!(w, "; {name}")?;
}
write!(
w,
"{} = Op{:?}",
Instance {
generic_id,
generic_args: Param(0)..Param(generic.param_count)
}
.display(Param::range_iter),
generic.def.class.opcode
)?;
let mut next_param = Param(0);
for operand in generic
.def
.result_type
.map(Operand::IdRef)
.iter()
.chain(generic.def.operands.iter())
{
write!(w, " ")?;
let (needed, used_generic) = self.specializer.params_needed_by(operand);
let params = next_param..Param(next_param.0 + needed);
// NOTE(eddyb) see HACK comment in `instantiate_instruction`.
if generic.def.class.opcode != Op::Function {
next_param = params.end;
}
if used_generic.is_some() {
write!(
w,
"{}",
Instance {
generic_id: operand.unwrap_id_ref(),
generic_args: params
}
.display(Param::range_iter)
)?;
} else if needed == 1 {
write!(w, "{}", params.start)?;
} else {
write!(w, "{operand}")?;
}
}
writeln!(w)?;
if let Some(param_values) = &generic.param_values {
write!(w, " where")?;
for (i, v) in param_values.iter().enumerate() {
let p = Param(i as u32);
match v {
Value::Unknown => {}
Value::Known(o) => write!(w, " {p} = {o},")?,
Value::SameAs(q) => write!(w, " {p} = {q},")?,
}
}
writeln!(w)?;
}
for (instance, instance_id) in self.all_instances_of(generic_id) {
assert_eq!(instance.generic_id, generic_id);
writeln!(
w,
" %{} = {}",
instance_id,
instance.display(|generic_args| generic_args.iter().copied())
)?;
}
writeln!(w)?;
}
Ok(())
}
}