rustc_codegen_spirv/
spirv_type.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
use crate::abi::{RecursivePointeeCache, TyLayoutNameKey};
use crate::builder_spirv::SpirvValue;
use crate::codegen_cx::CodegenCx;
use indexmap::IndexSet;
use rspirv::dr::Operand;
use rspirv::spirv::{Capability, Decoration, Dim, ImageFormat, StorageClass, Word};
use rustc_data_structures::fx::FxHashMap;
use rustc_middle::span_bug;
use rustc_span::def_id::DefId;
use rustc_span::{Span, Symbol};
use rustc_target::abi::{Align, Size};
use std::cell::RefCell;
use std::fmt;
use std::iter;
use std::sync::{LazyLock, Mutex};

/// Spir-v types are represented as simple Words, which are the `result_id` of instructions like
/// `OpTypeInteger`. Sometimes, however, we want to inspect one of these Words and ask questions
/// like "Is this an `OpTypeInteger`? How many bits does it have?". This struct holds all of that
/// information. All types that are emitted are registered in `CodegenCx`, so you can always look
/// up the definition of a `Word` via `cx.lookup_type`. Note that this type doesn't actually store
/// the `result_id` of the type declaration instruction, merely the contents.
//
// FIXME(eddyb) should `SpirvType`s be behind `&'tcx` from `tcx.arena.dropless`?
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum SpirvType<'tcx> {
    Void,
    Bool,
    Integer(u32, bool),
    Float(u32),
    /// This uses the rustc definition of "adt", i.e. a struct, enum, or union
    Adt {
        /// Not emitted into SPIR-V, but used to avoid too much deduplication,
        /// which could result in one SPIR-V `OpType*` having many names
        /// (not in itself an issue, but it makes error reporting harder).
        def_id: Option<DefId>,

        align: Align,
        size: Option<Size>,
        field_types: &'tcx [Word],
        field_offsets: &'tcx [Size],
        field_names: Option<&'tcx [Symbol]>,
    },
    Vector {
        element: Word,
        /// Note: vector count is literal.
        count: u32,
    },
    Matrix {
        element: Word,
        /// Note: matrix count is literal.
        count: u32,
    },
    Array {
        element: Word,
        /// Note: array count is ref to constant.
        count: SpirvValue,
    },
    RuntimeArray {
        element: Word,
    },
    Pointer {
        pointee: Word,
    },
    Function {
        return_type: Word,
        arguments: &'tcx [Word],
    },
    Image {
        sampled_type: Word,
        dim: Dim,
        depth: u32,
        arrayed: u32,
        multisampled: u32,
        sampled: u32,
        image_format: ImageFormat,
    },
    Sampler,
    SampledImage {
        image_type: Word,
    },

    /// `OpTypeStruct` decorated with `Block`, required by Vulkan (and OpenGL)
    /// for `PushConstant`, `Uniform` and `StorageBuffer` interface variables.
    InterfaceBlock {
        inner_type: Word,
    },

    AccelerationStructureKhr,
    RayQueryKhr,
}

impl SpirvType<'_> {
    /// Note: `Builder::type_*` should be called *nowhere else* but here, to ensure
    /// `CodegenCx::type_defs` stays up-to-date
    pub fn def(self, def_span: Span, cx: &CodegenCx<'_>) -> Word {
        if let Some(cached) = cx.type_cache.get(&self) {
            return cached;
        }
        let id = Some(cx.emit_global().id());
        let result = match self {
            Self::Void => cx.emit_global().type_void_id(id),
            Self::Bool => cx.emit_global().type_bool_id(id),
            Self::Integer(width, signedness) => {
                let result = cx.emit_global().type_int_id(id, width, signedness as u32);
                let u_or_i = if signedness { "i" } else { "u" };
                match width {
                    8 if !cx.builder.has_capability(Capability::Int8) => cx.zombie_with_span(
                        result,
                        def_span,
                        &format!("`{u_or_i}8` without `OpCapability Int8`"),
                    ),
                    16 if !cx.builder.has_capability(Capability::Int16) => cx.zombie_with_span(
                        result,
                        def_span,
                        &format!("`{u_or_i}16` without `OpCapability Int16`"),
                    ),
                    64 if !cx.builder.has_capability(Capability::Int64) => cx.zombie_with_span(
                        result,
                        def_span,
                        &format!("`{u_or_i}64` without `OpCapability Int64`"),
                    ),
                    8 | 16 | 32 | 64 => {}
                    w => cx.zombie_with_span(
                        result,
                        def_span,
                        &format!("`{u_or_i}{w}` unsupported in SPIR-V"),
                    ),
                };
                result
            }
            Self::Float(width) => {
                let result = cx.emit_global().type_float_id(id, width);
                match width {
                    16 if !cx.builder.has_capability(Capability::Float16) => cx.zombie_with_span(
                        result,
                        def_span,
                        "`f16` without `OpCapability Float16`",
                    ),
                    64 if !cx.builder.has_capability(Capability::Float64) => cx.zombie_with_span(
                        result,
                        def_span,
                        "`f64` without `OpCapability Float64`",
                    ),
                    16 | 32 | 64 => (),
                    other => cx.zombie_with_span(
                        result,
                        def_span,
                        &format!("`f{other}` unsupported in SPIR-V"),
                    ),
                };
                result
            }
            Self::Adt {
                def_id: _,
                align: _,
                size: _,
                field_types,
                field_offsets,
                field_names,
            } => {
                let mut emit = cx.emit_global();
                let result = emit.type_struct_id(id, field_types.iter().cloned());
                // The struct size is only used in our own sizeof_in_bits() (used in e.g. ArrayStride decoration)
                for (index, offset) in field_offsets.iter().copied().enumerate() {
                    emit.member_decorate(
                        result,
                        index as u32,
                        Decoration::Offset,
                        [Operand::LiteralBit32(offset.bytes() as u32)]
                            .iter()
                            .cloned(),
                    );
                }
                if let Some(field_names) = field_names {
                    for (index, field_name) in field_names.iter().enumerate() {
                        emit.member_name(result, index as u32, field_name.as_str());
                    }
                }
                result
            }
            Self::Vector { element, count } => cx.emit_global().type_vector_id(id, element, count),
            Self::Matrix { element, count } => cx.emit_global().type_matrix_id(id, element, count),
            Self::Array { element, count } => {
                // ArrayStride decoration wants in *bytes*
                let element_size = cx
                    .lookup_type(element)
                    .sizeof(cx)
                    .expect("Element of sized array must be sized")
                    .bytes();
                let mut emit = cx.emit_global();
                let result = emit.type_array_id(id, element, count.def_cx(cx));
                emit.decorate(
                    result,
                    Decoration::ArrayStride,
                    iter::once(Operand::LiteralBit32(element_size as u32)),
                );
                result
            }
            Self::RuntimeArray { element } => {
                let mut emit = cx.emit_global();
                let result = emit.type_runtime_array_id(id, element);
                // ArrayStride decoration wants in *bytes*
                let element_size = cx
                    .lookup_type(element)
                    .sizeof(cx)
                    .expect("Element of sized array must be sized")
                    .bytes();
                emit.decorate(
                    result,
                    Decoration::ArrayStride,
                    iter::once(Operand::LiteralBit32(element_size as u32)),
                );
                result
            }
            Self::Pointer { pointee } => {
                // NOTE(eddyb) we emit `StorageClass::Generic` here, but later
                // the linker will specialize the entire SPIR-V module to use
                // storage classes inferred from `OpVariable`s.
                let result = cx
                    .emit_global()
                    .type_pointer(id, StorageClass::Generic, pointee);
                // no pointers to functions
                if let SpirvType::Function { .. } = cx.lookup_type(pointee) {
                    // FIXME(eddyb) use the `SPV_INTEL_function_pointers` extension.
                    cx.zombie_with_span(result, def_span, "function pointer types are not allowed");
                }
                result
            }
            Self::Function {
                return_type,
                arguments,
            } => cx
                .emit_global()
                .type_function_id(id, return_type, arguments.iter().cloned()),
            Self::Image {
                sampled_type,
                dim,
                depth,
                arrayed,
                multisampled,
                sampled,
                image_format,
            } => cx.emit_global().type_image_id(
                id,
                sampled_type,
                dim,
                depth,
                arrayed,
                multisampled,
                sampled,
                image_format,
                None,
            ),
            Self::Sampler => cx.emit_global().type_sampler_id(id),
            Self::AccelerationStructureKhr => {
                cx.emit_global().type_acceleration_structure_khr_id(id)
            }
            Self::RayQueryKhr => cx.emit_global().type_ray_query_khr_id(id),
            Self::SampledImage { image_type } => {
                cx.emit_global().type_sampled_image_id(id, image_type)
            }

            Self::InterfaceBlock { inner_type } => {
                let mut emit = cx.emit_global();
                let result = emit.type_struct_id(id, iter::once(inner_type));
                emit.decorate(result, Decoration::Block, iter::empty());
                emit.member_decorate(
                    result,
                    0,
                    Decoration::Offset,
                    [Operand::LiteralBit32(0)].iter().cloned(),
                );
                result
            }
        };
        cx.type_cache_def(result, self.tcx_arena_alloc_slices(cx), def_span);
        result
    }

    /// `def_with_id` is used by the `RecursivePointeeCache` to handle `OpTypeForwardPointer`: when
    /// emitting the subsequent `OpTypePointer`, the ID is already known and must be re-used.
    pub fn def_with_id(self, cx: &CodegenCx<'_>, def_span: Span, id: Word) -> Word {
        if let Some(cached) = cx.type_cache.get(&self) {
            assert_eq!(cached, id);
            return cached;
        }
        let result = match self {
            Self::Pointer { pointee } => {
                // NOTE(eddyb) we emit `StorageClass::Generic` here, but later
                // the linker will specialize the entire SPIR-V module to use
                // storage classes inferred from `OpVariable`s.
                let result =
                    cx.emit_global()
                        .type_pointer(Some(id), StorageClass::Generic, pointee);
                // no pointers to functions
                if let SpirvType::Function { .. } = cx.lookup_type(pointee) {
                    // FIXME(eddyb) use the `SPV_INTEL_function_pointers` extension.
                    cx.zombie_with_span(result, def_span, "function pointer types are not allowed");
                }
                result
            }
            ref other => cx
                .tcx
                .dcx()
                .fatal(format!("def_with_id invalid for type {other:?}")),
        };
        cx.type_cache_def(result, self.tcx_arena_alloc_slices(cx), def_span);
        result
    }

    /// In addition to `SpirvType::def`, also name the resulting type (with `OpName`).
    pub fn def_with_name<'tcx>(
        self,
        cx: &CodegenCx<'tcx>,
        def_span: Span,
        name_key: TyLayoutNameKey<'tcx>,
    ) -> Word {
        let id = self.def(def_span, cx);

        // Only emit `OpName` if this is the first time we see this name.
        let mut type_names = cx.type_cache.type_names.borrow_mut();
        if type_names.entry(id).or_default().insert(name_key) {
            cx.emit_global().name(id, name_key.to_string());
        }

        id
    }

    pub fn sizeof(&self, cx: &CodegenCx<'_>) -> Option<Size> {
        let result = match *self {
            // Types that have a dynamic size, or no concept of size at all.
            Self::Void | Self::RuntimeArray { .. } | Self::Function { .. } => return None,

            Self::Bool => Size::from_bytes(1),
            Self::Integer(width, _) | Self::Float(width) => Size::from_bits(width),
            Self::Adt { size, .. } => size?,
            Self::Vector { element, count } => {
                cx.lookup_type(element).sizeof(cx)? * count.next_power_of_two() as u64
            }
            Self::Matrix { element, count } => cx.lookup_type(element).sizeof(cx)? * count as u64,
            Self::Array { element, count } => {
                cx.lookup_type(element).sizeof(cx)?
                    * cx.builder
                        .lookup_const_scalar(count)
                        .unwrap()
                        .try_into()
                        .unwrap()
            }
            Self::Pointer { .. } => cx.tcx.data_layout.pointer_size,
            Self::Image { .. }
            | Self::AccelerationStructureKhr
            | Self::RayQueryKhr
            | Self::Sampler
            | Self::SampledImage { .. }
            | Self::InterfaceBlock { .. } => Size::from_bytes(4),
        };
        Some(result)
    }

    pub fn alignof(&self, cx: &CodegenCx<'_>) -> Align {
        match *self {
            // Types that have no concept of size or alignment.
            Self::Void | Self::Function { .. } => Align::from_bytes(0).unwrap(),

            Self::Bool => Align::from_bytes(1).unwrap(),
            Self::Integer(width, _) | Self::Float(width) => Align::from_bits(width as u64).unwrap(),
            Self::Adt { align, .. } => align,
            // Vectors have size==align
            Self::Vector { .. } => Align::from_bytes(
                self.sizeof(cx)
                    .expect("alignof: Vectors must be sized")
                    .bytes(),
            )
            .expect("alignof: Vectors must have power-of-2 size"),
            Self::Array { element, .. }
            | Self::RuntimeArray { element }
            | Self::Matrix { element, .. } => cx.lookup_type(element).alignof(cx),
            Self::Pointer { .. } => cx.tcx.data_layout.pointer_align.abi,
            Self::Image { .. }
            | Self::AccelerationStructureKhr
            | Self::RayQueryKhr
            | Self::Sampler
            | Self::SampledImage { .. }
            | Self::InterfaceBlock { .. } => Align::from_bytes(4).unwrap(),
        }
    }

    /// Replace `&[T]` fields with `&'tcx [T]` ones produced by calling
    /// `tcx.arena.dropless.alloc_slice(...)` - this is done late for two reasons:
    /// 1. it avoids allocating in the arena when the cache would be hit anyway,
    ///    which would create "garbage" (as in, unreachable allocations)
    ///    (ideally these would also be interned, but that's even more refactors)
    /// 2. an empty slice is disallowed (as it's usually handled as a special
    ///    case elsewhere, e.g. `rustc`'s `ty::List` - sadly we can't use that)
    fn tcx_arena_alloc_slices<'tcx>(self, cx: &CodegenCx<'tcx>) -> SpirvType<'tcx> {
        fn arena_alloc_slice<'tcx, T: Copy>(cx: &CodegenCx<'tcx>, xs: &[T]) -> &'tcx [T] {
            if xs.is_empty() {
                &[]
            } else {
                cx.tcx.arena.dropless.alloc_slice(xs)
            }
        }

        match self {
            // FIXME(eddyb) these are all noop cases, could they be automated?
            SpirvType::Void => SpirvType::Void,
            SpirvType::Bool => SpirvType::Bool,
            SpirvType::Integer(width, signedness) => SpirvType::Integer(width, signedness),
            SpirvType::Float(width) => SpirvType::Float(width),
            SpirvType::Vector { element, count } => SpirvType::Vector { element, count },
            SpirvType::Matrix { element, count } => SpirvType::Matrix { element, count },
            SpirvType::Array { element, count } => SpirvType::Array { element, count },
            SpirvType::RuntimeArray { element } => SpirvType::RuntimeArray { element },
            SpirvType::Pointer { pointee } => SpirvType::Pointer { pointee },
            SpirvType::Image {
                sampled_type,
                dim,
                depth,
                arrayed,
                multisampled,
                sampled,
                image_format,
            } => SpirvType::Image {
                sampled_type,
                dim,
                depth,
                arrayed,
                multisampled,
                sampled,
                image_format,
            },
            SpirvType::Sampler => SpirvType::Sampler,
            SpirvType::SampledImage { image_type } => SpirvType::SampledImage { image_type },
            SpirvType::InterfaceBlock { inner_type } => SpirvType::InterfaceBlock { inner_type },
            SpirvType::AccelerationStructureKhr => SpirvType::AccelerationStructureKhr,
            SpirvType::RayQueryKhr => SpirvType::RayQueryKhr,

            // Only these variants have any slices to arena-allocate.
            SpirvType::Adt {
                def_id,
                align,
                size,
                field_types,
                field_offsets,
                field_names,
            } => SpirvType::Adt {
                def_id,
                align,
                size,
                field_types: arena_alloc_slice(cx, field_types),
                field_offsets: arena_alloc_slice(cx, field_offsets),
                field_names: field_names.map(|field_names| arena_alloc_slice(cx, field_names)),
            },
            SpirvType::Function {
                return_type,
                arguments,
            } => SpirvType::Function {
                return_type,
                arguments: arena_alloc_slice(cx, arguments),
            },
        }
    }
}

impl<'a> SpirvType<'a> {
    /// Use this if you want a pretty type printing that recursively prints the types within (e.g. struct fields)
    pub fn debug<'tcx>(self, id: Word, cx: &'a CodegenCx<'tcx>) -> SpirvTypePrinter<'a, 'tcx> {
        SpirvTypePrinter { ty: self, id, cx }
    }
}

pub struct SpirvTypePrinter<'a, 'tcx> {
    id: Word,
    ty: SpirvType<'a>,
    cx: &'a CodegenCx<'tcx>,
}

/// Types can be recursive, e.g. a struct can contain a pointer to itself. So, we need to keep
/// track of a stack of what types are currently being printed, to not infinitely loop.
/// Unfortunately, unlike `fmt::Display`, we can't easily pass down the "stack" of
/// currently-being-printed types, so we use a global static.
static DEBUG_STACK: LazyLock<Mutex<Vec<Word>>> = LazyLock::new(|| Mutex::new(Vec::new()));

impl fmt::Debug for SpirvTypePrinter<'_, '_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        {
            let mut debug_stack = DEBUG_STACK.lock().unwrap();
            if debug_stack.contains(&self.id) {
                return write!(f, "<recursive type id={}>", self.id);
            }
            debug_stack.push(self.id);
        }
        let res = match self.ty {
            SpirvType::Void => f.debug_struct("Void").field("id", &self.id).finish(),
            SpirvType::Bool => f.debug_struct("Bool").field("id", &self.id).finish(),
            SpirvType::Integer(width, signedness) => f
                .debug_struct("Integer")
                .field("id", &self.id)
                .field("width", &width)
                .field("signedness", &signedness)
                .finish(),
            SpirvType::Float(width) => f
                .debug_struct("Float")
                .field("id", &self.id)
                .field("width", &width)
                .finish(),
            SpirvType::Adt {
                def_id,
                align,
                size,
                field_types,
                field_offsets,
                field_names,
            } => {
                let fields = field_types
                    .iter()
                    .map(|&f| self.cx.debug_type(f))
                    .collect::<Vec<_>>();
                f.debug_struct("Adt")
                    .field("id", &self.id)
                    .field("def_id", &def_id)
                    .field("align", &align)
                    .field("size", &size)
                    .field("field_types", &fields)
                    .field("field_offsets", &field_offsets)
                    .field("field_names", &field_names)
                    .finish()
            }
            SpirvType::Vector { element, count } => f
                .debug_struct("Vector")
                .field("id", &self.id)
                .field("element", &self.cx.debug_type(element))
                .field("count", &count)
                .finish(),
            SpirvType::Matrix { element, count } => f
                .debug_struct("Matrix")
                .field("id", &self.id)
                .field("element", &self.cx.debug_type(element))
                .field("count", &count)
                .finish(),
            SpirvType::Array { element, count } => f
                .debug_struct("Array")
                .field("id", &self.id)
                .field("element", &self.cx.debug_type(element))
                .field(
                    "count",
                    &self
                        .cx
                        .builder
                        .lookup_const_scalar(count)
                        .expect("Array type has invalid count value"),
                )
                .finish(),
            SpirvType::RuntimeArray { element } => f
                .debug_struct("RuntimeArray")
                .field("id", &self.id)
                .field("element", &self.cx.debug_type(element))
                .finish(),
            SpirvType::Pointer { pointee } => f
                .debug_struct("Pointer")
                .field("id", &self.id)
                .field("pointee", &self.cx.debug_type(pointee))
                .finish(),
            SpirvType::Function {
                return_type,
                arguments,
            } => {
                let args = arguments
                    .iter()
                    .map(|&a| self.cx.debug_type(a))
                    .collect::<Vec<_>>();
                f.debug_struct("Function")
                    .field("id", &self.id)
                    .field("return_type", &self.cx.lookup_type(return_type))
                    .field("arguments", &args)
                    .finish()
            }
            SpirvType::Image {
                sampled_type,
                dim,
                depth,
                arrayed,
                multisampled,
                sampled,
                image_format,
            } => f
                .debug_struct("Image")
                .field("id", &self.id)
                .field("sampled_type", &self.cx.debug_type(sampled_type))
                .field("dim", &dim)
                .field("depth", &depth)
                .field("arrayed", &arrayed)
                .field("multisampled", &multisampled)
                .field("sampled", &sampled)
                .field("image_format", &image_format)
                .finish(),
            SpirvType::Sampler => f.debug_struct("Sampler").field("id", &self.id).finish(),
            SpirvType::SampledImage { image_type } => f
                .debug_struct("SampledImage")
                .field("id", &self.id)
                .field("image_type", &self.cx.debug_type(image_type))
                .finish(),
            SpirvType::InterfaceBlock { inner_type } => f
                .debug_struct("InterfaceBlock")
                .field("id", &self.id)
                .field("inner_type", &self.cx.debug_type(inner_type))
                .finish(),
            SpirvType::AccelerationStructureKhr => f.debug_struct("AccelerationStructure").finish(),
            SpirvType::RayQueryKhr => f.debug_struct("RayQuery").finish(),
        };
        {
            let mut debug_stack = DEBUG_STACK.lock().unwrap();
            debug_stack.pop();
        }
        res
    }
}

/// Types can be recursive, e.g. a struct can contain a pointer to itself. So, we need to keep
/// track of a stack of what types are currently being printed, to not infinitely loop. So, we only
/// use `fmt::Display::fmt` as an "entry point", and then call through to our own (recursive)
/// custom function that has a parameter for the current stack. Make sure to not call Display on a
/// type inside the custom function!
impl fmt::Display for SpirvTypePrinter<'_, '_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.display(&mut Vec::new(), f)
    }
}

impl SpirvTypePrinter<'_, '_> {
    fn display(&self, stack: &mut Vec<Word>, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fn ty(
            cx: &CodegenCx<'_>,
            stack: &mut Vec<Word>,
            f: &mut fmt::Formatter<'_>,
            ty: Word,
        ) -> fmt::Result {
            if stack.contains(&ty) {
                f.write_str("<recursive type>")
            } else {
                stack.push(ty);
                let result = cx.debug_type(ty).display(stack, f);
                assert_eq!(ty, stack.pop().unwrap());
                result
            }
        }
        match self.ty {
            SpirvType::Void => f.write_str("void"),
            SpirvType::Bool => f.write_str("bool"),
            SpirvType::Integer(width, signedness) => {
                let prefix = if signedness { "i" } else { "u" };
                write!(f, "{prefix}{width}")
            }
            SpirvType::Float(width) => write!(f, "f{width}"),
            SpirvType::Adt {
                def_id: _,
                align: _,
                size: _,
                field_types,
                field_offsets: _,
                ref field_names,
            } => {
                write!(f, "struct")?;

                // HACK(eddyb) use the first name (in insertion order, i.e.
                // from the first invocation of `def_with_name` for this type)
                // even when this may not be correct - a better solution could
                // be to pick the shortest name (which could work well when
                // newtypes are involved).
                let first_name = {
                    let type_names = self.cx.type_cache.type_names.borrow();
                    type_names
                        .get(&self.id)
                        .and_then(|names| names.iter().next().copied())
                };

                if let Some(name) = first_name {
                    write!(f, " {name}")?;
                }

                f.write_str(" { ")?;
                for (index, &field) in field_types.iter().enumerate() {
                    let suffix = if index + 1 == field_types.len() {
                        ""
                    } else {
                        ", "
                    };
                    if let Some(field_names) = field_names {
                        write!(f, "{}: ", field_names[index])?;
                    }
                    ty(self.cx, stack, f, field)?;
                    write!(f, "{suffix}")?;
                }
                f.write_str(" }")
            }
            SpirvType::Vector { element, count } | SpirvType::Matrix { element, count } => {
                ty(self.cx, stack, f, element)?;
                write!(f, "x{count}")
            }
            SpirvType::Array { element, count } => {
                let len = self.cx.builder.lookup_const_scalar(count);
                let len = len.expect("Array type has invalid count value");
                f.write_str("[")?;
                ty(self.cx, stack, f, element)?;
                write!(f, "; {len}]")
            }
            SpirvType::RuntimeArray { element } => {
                f.write_str("[")?;
                ty(self.cx, stack, f, element)?;
                f.write_str("]")
            }
            SpirvType::Pointer { pointee } => {
                f.write_str("*")?;
                ty(self.cx, stack, f, pointee)
            }
            SpirvType::Function {
                return_type,
                arguments,
            } => {
                f.write_str("fn(")?;
                for (index, &arg) in arguments.iter().enumerate() {
                    let suffix = if index + 1 == arguments.len() {
                        ""
                    } else {
                        ", "
                    };
                    ty(self.cx, stack, f, arg)?;
                    write!(f, "{suffix}")?;
                }
                f.write_str(") -> ")?;
                ty(self.cx, stack, f, return_type)
            }
            SpirvType::Image {
                sampled_type,
                dim,
                depth,
                arrayed,
                multisampled,
                sampled,
                image_format,
            } => f
                .debug_struct("Image")
                .field("sampled_type", &self.cx.debug_type(sampled_type))
                .field("dim", &dim)
                .field("depth", &depth)
                .field("arrayed", &arrayed)
                .field("multisampled", &multisampled)
                .field("sampled", &sampled)
                .field("image_format", &image_format)
                .finish(),
            SpirvType::Sampler => f.write_str("Sampler"),
            SpirvType::SampledImage { image_type } => f
                .debug_struct("SampledImage")
                .field("image_type", &self.cx.debug_type(image_type))
                .finish(),
            SpirvType::InterfaceBlock { inner_type } => {
                f.write_str("interface block { ")?;
                ty(self.cx, stack, f, inner_type)?;
                f.write_str(" }")
            }
            SpirvType::AccelerationStructureKhr => f.write_str("AccelerationStructureKhr"),
            SpirvType::RayQueryKhr => f.write_str("RayQuery"),
        }
    }
}

#[derive(Default)]
pub struct TypeCache<'tcx> {
    pub id_to_spirv_type: RefCell<FxHashMap<Word, SpirvType<'tcx>>>,
    pub spirv_type_to_id: RefCell<FxHashMap<SpirvType<'tcx>, Word>>,

    /// Recursive pointer breaking
    pub recursive_pointee_cache: RecursivePointeeCache<'tcx>,
    /// Set of names for a type (only `SpirvType::Adt` currently).
    /// The same `OpType*` may have multiple names if it's e.g. a generic
    /// `struct` where the generic parameters result in the same field types.
    type_names: RefCell<FxHashMap<Word, IndexSet<TyLayoutNameKey<'tcx>>>>,
}

impl<'tcx> TypeCache<'tcx> {
    fn get(&self, ty: &SpirvType<'_>) -> Option<Word> {
        self.spirv_type_to_id.borrow().get(ty).copied()
    }

    #[track_caller]
    pub fn lookup(&self, id: Word) -> SpirvType<'tcx> {
        *self
            .id_to_spirv_type
            .borrow()
            .get(&id)
            .expect("tried to lookup ID that wasn't a type, or has no definition")
    }
}

impl<'tcx> CodegenCx<'tcx> {
    fn type_cache_def(&self, id: Word, ty: SpirvType<'tcx>, def_span: Span) {
        if let Some(old_ty) = self.type_cache.id_to_spirv_type.borrow_mut().insert(id, ty) {
            span_bug!(
                def_span,
                "SPIR-V type with ID %{id} is being redefined\n\
                old type: {old_ty}\n\
                new type: {ty}",
                old_ty = old_ty.debug(id, self),
                ty = ty.debug(id, self)
            );
        }

        if let Some(old_id) = self.type_cache.spirv_type_to_id.borrow_mut().insert(ty, id) {
            span_bug!(
                def_span,
                "SPIR-V type is changing IDs (%{old_id} -> %{id}):\n\
                {ty}",
                ty = ty.debug(id, self)
            );
        }
    }
}