ruzstd/decoding/ringbuffer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
use alloc::alloc::{alloc, dealloc};
use core::{alloc::Layout, ptr::NonNull, slice};
pub struct RingBuffer {
// Safety invariants:
//
// 1.
// a.`buf` must be a valid allocation of capacity `cap`
// b. ...unless `cap=0`, in which case it is dangling
// 2. If tail≥head
// a. `head..tail` must contain initialized memory.
// b. Else, `head..` and `..tail` must be initialized
// 3. `head` and `tail` are in bounds (≥ 0 and < cap)
// 4. `tail` is never `cap` except for a full buffer, and instead uses the value `0`. In other words, `tail` always points to the place
// where the next element would go (if there is space)
buf: NonNull<u8>,
cap: usize,
head: usize,
tail: usize,
}
// SAFETY: RingBuffer does not hold any thread specific values -> it can be sent to another thread -> RingBuffer is Send
unsafe impl Send for RingBuffer {}
// SAFETY: Ringbuffer does not provide unsyncronized interior mutability which makes &RingBuffer Send -> RingBuffer is Sync
unsafe impl Sync for RingBuffer {}
impl RingBuffer {
pub fn new() -> Self {
RingBuffer {
// SAFETY: Upholds invariant 1a as stated
buf: NonNull::dangling(),
cap: 0,
// SAFETY: Upholds invariant 2-4
head: 0,
tail: 0,
}
}
/// Return the number of bytes in the buffer.
pub fn len(&self) -> usize {
let (x, y) = self.data_slice_lengths();
x + y
}
/// Return the amount of available space (in bytes) of the buffer.
pub fn free(&self) -> usize {
let (x, y) = self.free_slice_lengths();
(x + y).saturating_sub(1)
}
/// Empty the buffer and reset the head and tail.
pub fn clear(&mut self) {
// SAFETY: Upholds invariant 2, trivially
// SAFETY: Upholds invariant 3; 0 is always valid
self.head = 0;
self.tail = 0;
}
/// Whether the buffer is empty
pub fn is_empty(&self) -> bool {
self.head == self.tail
}
/// Ensure that there's space for `amount` elements in the buffer.
pub fn reserve(&mut self, amount: usize) {
let free = self.free();
if free >= amount {
return;
}
self.reserve_amortized(amount - free);
}
#[inline(never)]
#[cold]
fn reserve_amortized(&mut self, amount: usize) {
// SAFETY: if we were succesfully able to construct this layout when we allocated then it's also valid do so now
let current_layout = unsafe { Layout::array::<u8>(self.cap).unwrap_unchecked() };
// Always have at least 1 unused element as the sentinel.
let new_cap = usize::max(
self.cap.next_power_of_two(),
(self.cap + amount).next_power_of_two(),
) + 1;
// Check that the capacity isn't bigger than isize::MAX, which is the max allowed by LLVM, or that
// we are on a >= 64 bit system which will never allow that much memory to be allocated
#[allow(clippy::assertions_on_constants)]
{
debug_assert!(usize::BITS >= 64 || new_cap < isize::MAX as usize);
}
let new_layout = Layout::array::<u8>(new_cap)
.unwrap_or_else(|_| panic!("Could not create layout for u8 array of size {}", new_cap));
// alloc the new memory region and panic if alloc fails
// TODO maybe rework this to generate an error?
let new_buf = unsafe {
let new_buf = alloc(new_layout);
NonNull::new(new_buf).expect("Allocating new space for the ringbuffer failed")
};
// If we had data before, copy it over to the newly alloced memory region
if self.cap > 0 {
let ((s1_ptr, s1_len), (s2_ptr, s2_len)) = self.data_slice_parts();
unsafe {
// SAFETY: Upholds invariant 2, we end up populating (0..(len₁ + len₂))
new_buf.as_ptr().copy_from_nonoverlapping(s1_ptr, s1_len);
new_buf
.as_ptr()
.add(s1_len)
.copy_from_nonoverlapping(s2_ptr, s2_len);
dealloc(self.buf.as_ptr(), current_layout);
}
// SAFETY: Upholds invariant 3, head is 0 and in bounds, tail is only ever `cap` if the buffer
// is entirely full
self.tail = s1_len + s2_len;
self.head = 0;
}
// SAFETY: Upholds invariant 1: the buffer was just allocated correctly
self.buf = new_buf;
self.cap = new_cap;
}
#[allow(dead_code)]
pub fn push_back(&mut self, byte: u8) {
self.reserve(1);
// SAFETY: Upholds invariant 2 by writing initialized memory
unsafe { self.buf.as_ptr().add(self.tail).write(byte) };
// SAFETY: Upholds invariant 3 by wrapping `tail` around
self.tail = (self.tail + 1) % self.cap;
}
/// Fetch the byte stored at the selected index from the buffer, returning it, or
/// `None` if the index is out of bounds.
#[allow(dead_code)]
pub fn get(&self, idx: usize) -> Option<u8> {
if idx < self.len() {
// SAFETY: Establishes invariants on memory being initialized and the range being in-bounds
// (Invariants 2 & 3)
let idx = (self.head + idx) % self.cap;
Some(unsafe { self.buf.as_ptr().add(idx).read() })
} else {
None
}
}
/// Append the provided data to the end of `self`.
pub fn extend(&mut self, data: &[u8]) {
let len = data.len();
let ptr = data.as_ptr();
if len == 0 {
return;
}
self.reserve(len);
debug_assert!(self.len() + len <= self.cap - 1);
debug_assert!(self.free() >= len, "free: {} len: {}", self.free(), len);
let ((f1_ptr, f1_len), (f2_ptr, f2_len)) = self.free_slice_parts();
debug_assert!(f1_len + f2_len >= len, "{} + {} < {}", f1_len, f2_len, len);
let in_f1 = usize::min(len, f1_len);
let in_f2 = len - in_f1;
debug_assert!(in_f1 + in_f2 == len);
unsafe {
// SAFETY: `in_f₁ + in_f₂ = len`, so this writes `len` bytes total
// upholding invariant 2
if in_f1 > 0 {
f1_ptr.copy_from_nonoverlapping(ptr, in_f1);
}
if in_f2 > 0 {
f2_ptr.copy_from_nonoverlapping(ptr.add(in_f1), in_f2);
}
}
// SAFETY: Upholds invariant 3 by wrapping `tail` around.
self.tail = (self.tail + len) % self.cap;
}
/// Advance head past `amount` elements, effectively removing
/// them from the buffer.
pub fn drop_first_n(&mut self, amount: usize) {
debug_assert!(amount <= self.len());
let amount = usize::min(amount, self.len());
// SAFETY: we maintain invariant 2 here since this will always lead to a smaller buffer
// for amount≤len
self.head = (self.head + amount) % self.cap;
}
/// Return the size of the two contiguous occupied sections of memory used
/// by the buffer.
// SAFETY: other code relies on this pointing to initialized halves of the buffer only
fn data_slice_lengths(&self) -> (usize, usize) {
let len_after_head;
let len_to_tail;
// TODO can we do this branchless?
if self.tail >= self.head {
len_after_head = self.tail - self.head;
len_to_tail = 0;
} else {
len_after_head = self.cap - self.head;
len_to_tail = self.tail;
}
(len_after_head, len_to_tail)
}
// SAFETY: other code relies on this pointing to initialized halves of the buffer only
/// Return pointers to the head and tail, and the length of each section.
fn data_slice_parts(&self) -> ((*const u8, usize), (*const u8, usize)) {
let (len_after_head, len_to_tail) = self.data_slice_lengths();
(
(unsafe { self.buf.as_ptr().add(self.head) }, len_after_head),
(self.buf.as_ptr(), len_to_tail),
)
}
/// Return references to each part of the ring buffer.
pub fn as_slices(&self) -> (&[u8], &[u8]) {
let (s1, s2) = self.data_slice_parts();
unsafe {
// SAFETY: relies on the behavior of data_slice_parts for producing initialized memory
let s1 = slice::from_raw_parts(s1.0, s1.1);
let s2 = slice::from_raw_parts(s2.0, s2.1);
(s1, s2)
}
}
// SAFETY: other code relies on this producing the lengths of free zones
// at the beginning/end of the buffer. Everything else must be initialized
/// Returns the size of the two unoccupied sections of memory used by the buffer.
fn free_slice_lengths(&self) -> (usize, usize) {
let len_to_head;
let len_after_tail;
// TODO can we do this branchless?
if self.tail < self.head {
len_after_tail = self.head - self.tail;
len_to_head = 0;
} else {
len_after_tail = self.cap - self.tail;
len_to_head = self.head;
}
(len_to_head, len_after_tail)
}
/// Returns mutable references to the available space and the size of that available space,
/// for the two sections in the buffer.
// SAFETY: Other code relies on this pointing to the free zones, data after the first and before the second must
// be valid
fn free_slice_parts(&self) -> ((*mut u8, usize), (*mut u8, usize)) {
let (len_to_head, len_after_tail) = self.free_slice_lengths();
(
(unsafe { self.buf.as_ptr().add(self.tail) }, len_after_tail),
(self.buf.as_ptr(), len_to_head),
)
}
/// Copies elements from the provided range to the end of the buffer.
#[allow(dead_code)]
pub fn extend_from_within(&mut self, start: usize, len: usize) {
if start + len > self.len() {
panic!(
"Calls to this functions must respect start ({}) + len ({}) <= self.len() ({})!",
start,
len,
self.len()
);
}
self.reserve(len);
// SAFETY: Requirements checked:
// 1. explicitly checked above, resulting in a panic if it does not hold
// 2. explicitly reserved enough memory
unsafe { self.extend_from_within_unchecked(start, len) }
}
/// Copies data from the provided range to the end of the buffer, without
/// first verifying that the unoccupied capacity is available.
///
/// SAFETY:
/// For this to be safe two requirements need to hold:
/// 1. start + len <= self.len() so we do not copy uninitialised memory
/// 2. More then len reserved space so we do not write out-of-bounds
#[warn(unsafe_op_in_unsafe_fn)]
pub unsafe fn extend_from_within_unchecked(&mut self, start: usize, len: usize) {
debug_assert!(start + len <= self.len());
debug_assert!(self.free() >= len);
if self.head < self.tail {
// Continuous source section and possibly non continuous write section:
//
// H T
// Read: ____XXXXSSSSXXXX________
// Write: ________________DDDD____
//
// H: Head position (first readable byte)
// T: Tail position (first writable byte)
// X: Uninvolved bytes in the readable section
// S: Source bytes, to be copied to D bytes
// D: Destination bytes, going to be copied from S bytes
// _: Uninvolved bytes in the writable section
let after_tail = usize::min(len, self.cap - self.tail);
let src = (
// SAFETY: `len <= isize::MAX` and fits the memory range of `buf`
unsafe { self.buf.as_ptr().add(self.head + start) }.cast_const(),
// Src length (see above diagram)
self.tail - self.head - start,
);
let dst = (
// SAFETY: `len <= isize::MAX` and fits the memory range of `buf`
unsafe { self.buf.as_ptr().add(self.tail) },
// Dst length (see above diagram)
self.cap - self.tail,
);
// SAFETY: `src` points at initialized data, `dst` points to writable memory
// and does not overlap `src`.
unsafe { copy_bytes_overshooting(src, dst, after_tail) }
if after_tail < len {
// The write section was not continuous:
//
// H T
// Read: ____XXXXSSSSXXXX__
// Write: DD______________DD
//
// H: Head position (first readable byte)
// T: Tail position (first writable byte)
// X: Uninvolved bytes in the readable section
// S: Source bytes, to be copied to D bytes
// D: Destination bytes, going to be copied from S bytes
// _: Uninvolved bytes in the writable section
let src = (
// SAFETY: we are still within the memory range of `buf`
unsafe { src.0.add(after_tail) },
// Src length (see above diagram)
src.1 - after_tail,
);
let dst = (
self.buf.as_ptr(),
// Dst length overflowing (see above diagram)
self.head,
);
// SAFETY: `src` points at initialized data, `dst` points to writable memory
// and does not overlap `src`.
unsafe { copy_bytes_overshooting(src, dst, len - after_tail) }
}
} else {
if self.head + start > self.cap {
// Continuous read section and destination section:
//
// T H
// Read: XXSSSSXXXX____________XX
// Write: __________DDDD__________
//
// H: Head position (first readable byte)
// T: Tail position (first writable byte)
// X: Uninvolved bytes in the readable section
// S: Source bytes, to be copied to D bytes
// D: Destination bytes, going to be copied from S bytes
// _: Uninvolved bytes in the writable section
let start = (self.head + start) % self.cap;
let src = (
// SAFETY: `len <= isize::MAX` and fits the memory range of `buf`
unsafe { self.buf.as_ptr().add(start) }.cast_const(),
// Src length (see above diagram)
self.tail - start,
);
let dst = (
// SAFETY: `len <= isize::MAX` and fits the memory range of `buf`
unsafe { self.buf.as_ptr().add(self.tail) }, // Dst length (see above diagram)
// Dst length (see above diagram)
self.head - self.tail,
);
// SAFETY: `src` points at initialized data, `dst` points to writable memory
// and does not overlap `src`.
unsafe { copy_bytes_overshooting(src, dst, len) }
} else {
// Possibly non continuous read section and continuous destination section:
//
// T H
// Read: XXXX____________XXSSSSXX
// Write: ____DDDD________________
//
// H: Head position (first readable byte)
// T: Tail position (first writable byte)
// X: Uninvolved bytes in the readable section
// S: Source bytes, to be copied to D bytes
// D: Destination bytes, going to be copied from S bytes
// _: Uninvolved bytes in the writable section
let after_start = usize::min(len, self.cap - self.head - start);
let src = (
// SAFETY: `len <= isize::MAX` and fits the memory range of `buf`
unsafe { self.buf.as_ptr().add(self.head + start) }.cast_const(),
// Src length - chunk 1 (see above diagram on the right)
self.cap - self.head - start,
);
let dst = (
// SAFETY: `len <= isize::MAX` and fits the memory range of `buf`
unsafe { self.buf.as_ptr().add(self.tail) },
// Dst length (see above diagram)
self.head - self.tail,
);
// SAFETY: `src` points at initialized data, `dst` points to writable memory
// and does not overlap `src`.
unsafe { copy_bytes_overshooting(src, dst, after_start) }
if after_start < len {
// The read section was not continuous:
//
// T H
// Read: SSXXXXXX____________XXSS
// Write: ________DDDD____________
//
// H: Head position (first readable byte)
// T: Tail position (first writable byte)
// X: Uninvolved bytes in the readable section
// S: Source bytes, to be copied to D bytes
// D: Destination bytes, going to be copied from S bytes
// _: Uninvolved bytes in the writable section
let src = (
self.buf.as_ptr().cast_const(),
// Src length - chunk 2 (see above diagram on the left)
self.tail,
);
let dst = (
// SAFETY: we are still within the memory range of `buf`
unsafe { dst.0.add(after_start) },
// Dst length (see above diagram)
dst.1 - after_start,
);
// SAFETY: `src` points at initialized data, `dst` points to writable memory
// and does not overlap `src`.
unsafe { copy_bytes_overshooting(src, dst, len - after_start) }
}
}
}
self.tail = (self.tail + len) % self.cap;
}
#[allow(dead_code)]
/// This function is functionally the same as [RingBuffer::extend_from_within_unchecked],
/// but it does not contain any branching operations.
///
/// SAFETY:
/// Needs start + len <= self.len()
/// And more then len reserved space
pub unsafe fn extend_from_within_unchecked_branchless(&mut self, start: usize, len: usize) {
// data slices in raw parts
let ((s1_ptr, s1_len), (s2_ptr, s2_len)) = self.data_slice_parts();
debug_assert!(len <= s1_len + s2_len, "{} > {} + {}", len, s1_len, s2_len);
// calc the actually wanted slices in raw parts
let start_in_s1 = usize::min(s1_len, start);
let end_in_s1 = usize::min(s1_len, start + len);
let m1_ptr = s1_ptr.add(start_in_s1);
let m1_len = end_in_s1 - start_in_s1;
debug_assert!(end_in_s1 <= s1_len);
debug_assert!(start_in_s1 <= s1_len);
let start_in_s2 = start.saturating_sub(s1_len);
let end_in_s2 = start_in_s2 + (len - m1_len);
let m2_ptr = s2_ptr.add(start_in_s2);
let m2_len = end_in_s2 - start_in_s2;
debug_assert!(start_in_s2 <= s2_len);
debug_assert!(end_in_s2 <= s2_len);
debug_assert_eq!(len, m1_len + m2_len);
// the free slices, must hold: f1_len + f2_len >= m1_len + m2_len
let ((f1_ptr, f1_len), (f2_ptr, f2_len)) = self.free_slice_parts();
debug_assert!(f1_len + f2_len >= m1_len + m2_len);
// calc how many from where bytes go where
let m1_in_f1 = usize::min(m1_len, f1_len);
let m1_in_f2 = m1_len - m1_in_f1;
let m2_in_f1 = usize::min(f1_len - m1_in_f1, m2_len);
let m2_in_f2 = m2_len - m2_in_f1;
debug_assert_eq!(m1_len, m1_in_f1 + m1_in_f2);
debug_assert_eq!(m2_len, m2_in_f1 + m2_in_f2);
debug_assert!(f1_len >= m1_in_f1 + m2_in_f1);
debug_assert!(f2_len >= m1_in_f2 + m2_in_f2);
debug_assert_eq!(len, m1_in_f1 + m2_in_f1 + m1_in_f2 + m2_in_f2);
debug_assert!(self.buf.as_ptr().add(self.cap) > f1_ptr.add(m1_in_f1 + m2_in_f1));
debug_assert!(self.buf.as_ptr().add(self.cap) > f2_ptr.add(m1_in_f2 + m2_in_f2));
debug_assert!((m1_in_f2 > 0) ^ (m2_in_f1 > 0) || (m1_in_f2 == 0 && m2_in_f1 == 0));
copy_with_checks(
m1_ptr, m2_ptr, f1_ptr, f2_ptr, m1_in_f1, m2_in_f1, m1_in_f2, m2_in_f2,
);
self.tail = (self.tail + len) % self.cap;
}
}
impl Drop for RingBuffer {
fn drop(&mut self) {
if self.cap == 0 {
return;
}
// SAFETY: is we were succesfully able to construct this layout when we allocated then it's also valid do so now
// Relies on / establishes invariant 1
let current_layout = unsafe { Layout::array::<u8>(self.cap).unwrap_unchecked() };
unsafe {
dealloc(self.buf.as_ptr(), current_layout);
}
}
}
/// Similar to ptr::copy_nonoverlapping
///
/// But it might overshoot the desired copy length if deemed useful
///
/// src and dst specify the entire length they are eligible for reading/writing respectively
/// in addition to the desired copy length.
///
/// This function will then copy in chunks and might copy up to chunk size - 1 more bytes from src to dst
/// if that operation does not read/write memory that does not belong to src/dst.
///
/// The chunk size is not part of the contract and may change depending on the target platform.
///
/// If that isn't possible we just fall back to ptr::copy_nonoverlapping
#[inline(always)]
unsafe fn copy_bytes_overshooting(
src: (*const u8, usize),
dst: (*mut u8, usize),
copy_at_least: usize,
) {
// By default use usize as the copy size
#[cfg(all(not(target_feature = "sse2"), not(target_feature = "neon")))]
type CopyType = usize;
// Use u128 if we detect a simd feature
#[cfg(target_feature = "neon")]
type CopyType = u128;
#[cfg(target_feature = "sse2")]
type CopyType = u128;
const COPY_AT_ONCE_SIZE: usize = core::mem::size_of::<CopyType>();
let min_buffer_size = usize::min(src.1, dst.1);
// Can copy in just one read+write, very common case
if min_buffer_size >= COPY_AT_ONCE_SIZE && copy_at_least <= COPY_AT_ONCE_SIZE {
dst.0
.cast::<CopyType>()
.write_unaligned(src.0.cast::<CopyType>().read_unaligned())
} else {
let copy_multiple = copy_at_least.next_multiple_of(COPY_AT_ONCE_SIZE);
// Can copy in multiple simple instructions
if min_buffer_size >= copy_multiple {
let mut src_ptr = src.0.cast::<CopyType>();
let src_ptr_end = src.0.add(copy_multiple).cast::<CopyType>();
let mut dst_ptr = dst.0.cast::<CopyType>();
while src_ptr < src_ptr_end {
dst_ptr.write_unaligned(src_ptr.read_unaligned());
src_ptr = src_ptr.add(1);
dst_ptr = dst_ptr.add(1);
}
} else {
// Fall back to standard memcopy
dst.0.copy_from_nonoverlapping(src.0, copy_at_least);
}
}
debug_assert_eq!(
slice::from_raw_parts(src.0, copy_at_least),
slice::from_raw_parts(dst.0, copy_at_least)
);
}
#[allow(dead_code)]
#[inline(always)]
#[allow(clippy::too_many_arguments)]
unsafe fn copy_without_checks(
m1_ptr: *const u8,
m2_ptr: *const u8,
f1_ptr: *mut u8,
f2_ptr: *mut u8,
m1_in_f1: usize,
m2_in_f1: usize,
m1_in_f2: usize,
m2_in_f2: usize,
) {
f1_ptr.copy_from_nonoverlapping(m1_ptr, m1_in_f1);
f1_ptr
.add(m1_in_f1)
.copy_from_nonoverlapping(m2_ptr, m2_in_f1);
f2_ptr.copy_from_nonoverlapping(m1_ptr.add(m1_in_f1), m1_in_f2);
f2_ptr
.add(m1_in_f2)
.copy_from_nonoverlapping(m2_ptr.add(m2_in_f1), m2_in_f2);
}
#[allow(dead_code)]
#[inline(always)]
#[allow(clippy::too_many_arguments)]
unsafe fn copy_with_checks(
m1_ptr: *const u8,
m2_ptr: *const u8,
f1_ptr: *mut u8,
f2_ptr: *mut u8,
m1_in_f1: usize,
m2_in_f1: usize,
m1_in_f2: usize,
m2_in_f2: usize,
) {
if m1_in_f1 != 0 {
f1_ptr.copy_from_nonoverlapping(m1_ptr, m1_in_f1);
}
if m2_in_f1 != 0 {
f1_ptr
.add(m1_in_f1)
.copy_from_nonoverlapping(m2_ptr, m2_in_f1);
}
if m1_in_f2 != 0 {
f2_ptr.copy_from_nonoverlapping(m1_ptr.add(m1_in_f1), m1_in_f2);
}
if m2_in_f2 != 0 {
f2_ptr
.add(m1_in_f2)
.copy_from_nonoverlapping(m2_ptr.add(m2_in_f1), m2_in_f2);
}
}
#[allow(dead_code)]
#[inline(always)]
#[allow(clippy::too_many_arguments)]
unsafe fn copy_with_nobranch_check(
m1_ptr: *const u8,
m2_ptr: *const u8,
f1_ptr: *mut u8,
f2_ptr: *mut u8,
m1_in_f1: usize,
m2_in_f1: usize,
m1_in_f2: usize,
m2_in_f2: usize,
) {
let case = (m1_in_f1 > 0) as usize
| (((m2_in_f1 > 0) as usize) << 1)
| (((m1_in_f2 > 0) as usize) << 2)
| (((m2_in_f2 > 0) as usize) << 3);
match case {
0 => {}
// one bit set
1 => {
f1_ptr.copy_from_nonoverlapping(m1_ptr, m1_in_f1);
}
2 => {
f1_ptr.copy_from_nonoverlapping(m2_ptr, m2_in_f1);
}
4 => {
f2_ptr.copy_from_nonoverlapping(m1_ptr, m1_in_f2);
}
8 => {
f2_ptr.copy_from_nonoverlapping(m2_ptr, m2_in_f2);
}
// two bit set
3 => {
f1_ptr.copy_from_nonoverlapping(m1_ptr, m1_in_f1);
f1_ptr
.add(m1_in_f1)
.copy_from_nonoverlapping(m2_ptr, m2_in_f1);
}
5 => {
f1_ptr.copy_from_nonoverlapping(m1_ptr, m1_in_f1);
f2_ptr.copy_from_nonoverlapping(m1_ptr.add(m1_in_f1), m1_in_f2);
}
6 => core::hint::unreachable_unchecked(),
7 => core::hint::unreachable_unchecked(),
9 => {
f1_ptr.copy_from_nonoverlapping(m1_ptr, m1_in_f1);
f2_ptr.copy_from_nonoverlapping(m2_ptr, m2_in_f2);
}
10 => {
f1_ptr.copy_from_nonoverlapping(m2_ptr, m2_in_f1);
f2_ptr.copy_from_nonoverlapping(m2_ptr.add(m2_in_f1), m2_in_f2);
}
12 => {
f2_ptr.copy_from_nonoverlapping(m1_ptr, m1_in_f2);
f2_ptr
.add(m1_in_f2)
.copy_from_nonoverlapping(m2_ptr, m2_in_f2);
}
// three bit set
11 => {
f1_ptr.copy_from_nonoverlapping(m1_ptr, m1_in_f1);
f1_ptr
.add(m1_in_f1)
.copy_from_nonoverlapping(m2_ptr, m2_in_f1);
f2_ptr.copy_from_nonoverlapping(m2_ptr.add(m2_in_f1), m2_in_f2);
}
13 => {
f1_ptr.copy_from_nonoverlapping(m1_ptr, m1_in_f1);
f2_ptr.copy_from_nonoverlapping(m1_ptr.add(m1_in_f1), m1_in_f2);
f2_ptr
.add(m1_in_f2)
.copy_from_nonoverlapping(m2_ptr, m2_in_f2);
}
14 => core::hint::unreachable_unchecked(),
15 => core::hint::unreachable_unchecked(),
_ => core::hint::unreachable_unchecked(),
}
}
#[cfg(test)]
mod tests {
use super::RingBuffer;
#[test]
fn smoke() {
let mut rb = RingBuffer::new();
rb.reserve(15);
assert_eq!(17, rb.cap);
rb.extend(b"0123456789");
assert_eq!(rb.len(), 10);
assert_eq!(rb.as_slices().0, b"0123456789");
assert_eq!(rb.as_slices().1, b"");
rb.drop_first_n(5);
assert_eq!(rb.len(), 5);
assert_eq!(rb.as_slices().0, b"56789");
assert_eq!(rb.as_slices().1, b"");
rb.extend_from_within(2, 3);
assert_eq!(rb.len(), 8);
assert_eq!(rb.as_slices().0, b"56789789");
assert_eq!(rb.as_slices().1, b"");
rb.extend_from_within(0, 3);
assert_eq!(rb.len(), 11);
assert_eq!(rb.as_slices().0, b"56789789567");
assert_eq!(rb.as_slices().1, b"");
rb.extend_from_within(0, 2);
assert_eq!(rb.len(), 13);
assert_eq!(rb.as_slices().0, b"567897895675");
assert_eq!(rb.as_slices().1, b"6");
rb.drop_first_n(11);
assert_eq!(rb.len(), 2);
assert_eq!(rb.as_slices().0, b"5");
assert_eq!(rb.as_slices().1, b"6");
rb.extend(b"0123456789");
assert_eq!(rb.len(), 12);
assert_eq!(rb.as_slices().0, b"5");
assert_eq!(rb.as_slices().1, b"60123456789");
rb.drop_first_n(11);
assert_eq!(rb.len(), 1);
assert_eq!(rb.as_slices().0, b"9");
assert_eq!(rb.as_slices().1, b"");
rb.extend(b"0123456789");
assert_eq!(rb.len(), 11);
assert_eq!(rb.as_slices().0, b"9012345");
assert_eq!(rb.as_slices().1, b"6789");
}
#[test]
fn edge_cases() {
// Fill exactly, then empty then fill again
let mut rb = RingBuffer::new();
rb.reserve(16);
assert_eq!(17, rb.cap);
rb.extend(b"0123456789012345");
assert_eq!(17, rb.cap);
assert_eq!(16, rb.len());
assert_eq!(0, rb.free());
rb.drop_first_n(16);
assert_eq!(0, rb.len());
assert_eq!(16, rb.free());
rb.extend(b"0123456789012345");
assert_eq!(16, rb.len());
assert_eq!(0, rb.free());
assert_eq!(17, rb.cap);
assert_eq!(1, rb.as_slices().0.len());
assert_eq!(15, rb.as_slices().1.len());
rb.clear();
// data in both slices and then reserve
rb.extend(b"0123456789012345");
rb.drop_first_n(8);
rb.extend(b"67890123");
assert_eq!(16, rb.len());
assert_eq!(0, rb.free());
assert_eq!(17, rb.cap);
assert_eq!(9, rb.as_slices().0.len());
assert_eq!(7, rb.as_slices().1.len());
rb.reserve(1);
assert_eq!(16, rb.len());
assert_eq!(16, rb.free());
assert_eq!(33, rb.cap);
assert_eq!(16, rb.as_slices().0.len());
assert_eq!(0, rb.as_slices().1.len());
rb.clear();
// fill exactly, then extend from within
rb.extend(b"0123456789012345");
rb.extend_from_within(0, 16);
assert_eq!(32, rb.len());
assert_eq!(0, rb.free());
assert_eq!(33, rb.cap);
assert_eq!(32, rb.as_slices().0.len());
assert_eq!(0, rb.as_slices().1.len());
// extend from within cases
let mut rb = RingBuffer::new();
rb.reserve(8);
rb.extend(b"01234567");
rb.drop_first_n(5);
rb.extend_from_within(0, 3);
assert_eq!(4, rb.as_slices().0.len());
assert_eq!(2, rb.as_slices().1.len());
rb.drop_first_n(2);
assert_eq!(2, rb.as_slices().0.len());
assert_eq!(2, rb.as_slices().1.len());
rb.extend_from_within(0, 4);
assert_eq!(2, rb.as_slices().0.len());
assert_eq!(6, rb.as_slices().1.len());
rb.drop_first_n(2);
assert_eq!(6, rb.as_slices().0.len());
assert_eq!(0, rb.as_slices().1.len());
rb.drop_first_n(2);
assert_eq!(4, rb.as_slices().0.len());
assert_eq!(0, rb.as_slices().1.len());
rb.extend_from_within(0, 4);
assert_eq!(7, rb.as_slices().0.len());
assert_eq!(1, rb.as_slices().1.len());
let mut rb = RingBuffer::new();
rb.reserve(8);
rb.extend(b"11111111");
rb.drop_first_n(7);
rb.extend(b"111");
assert_eq!(2, rb.as_slices().0.len());
assert_eq!(2, rb.as_slices().1.len());
rb.extend_from_within(0, 4);
assert_eq!(b"11", rb.as_slices().0);
assert_eq!(b"111111", rb.as_slices().1);
}
}