ruzstd/fse/
fse_decoder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
use crate::decoding::bit_reader::BitReader;
use crate::decoding::bit_reader_reverse::{BitReaderReversed, GetBitsError};
use alloc::vec::Vec;

/// FSE decoding involves a decoding table that describes the probabilities of
/// all literals from 0 to the highest present one
///
/// <https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#fse-table-description>
pub struct FSETable {
    /// The maximum symbol in the table (inclusive). Limits the probabilities length to max_symbol + 1.
    max_symbol: u8,
    /// The actual table containing the decoded symbol and the compression data
    /// connected to that symbol.
    pub decode: Vec<Entry>, //used to decode symbols, and calculate the next state
    /// The size of the table is stored in logarithm base 2 format,
    /// with the **size of the table** being equal to `(1 << accuracy_log)`.
    /// This value is used so that the decoder knows how many bits to read from the bitstream.
    pub accuracy_log: u8,
    /// In this context, probability refers to the likelihood that a symbol occurs in the given data.
    /// Given this info, the encoder can assign shorter codes to symbols that appear more often,
    /// and longer codes that appear less often, then the decoder can use the probability
    /// to determine what code was assigned to what symbol.
    ///
    /// The probability of a single symbol is a value representing the proportion of times the symbol
    /// would fall within the data.
    ///
    /// If a symbol probability is set to `-1`, it means that the probability of a symbol
    /// occurring in the data is less than one.
    pub symbol_probabilities: Vec<i32>, //used while building the decode Vector
    /// The number of times each symbol occurs (The first entry being 0x0, the second being 0x1) and so on
    /// up until the highest possible symbol (255).
    symbol_counter: Vec<u32>,
}

#[derive(Debug)]
#[non_exhaustive]
pub enum FSETableError {
    AccLogIsZero,
    AccLogTooBig {
        got: u8,
        max: u8,
    },
    GetBitsError(GetBitsError),
    ProbabilityCounterMismatch {
        got: u32,
        expected_sum: u32,
        symbol_probabilities: Vec<i32>,
    },
    TooManySymbols {
        got: usize,
    },
}

#[cfg(feature = "std")]
impl std::error::Error for FSETableError {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        match self {
            FSETableError::GetBitsError(source) => Some(source),
            _ => None,
        }
    }
}

impl core::fmt::Display for FSETableError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            FSETableError::AccLogIsZero => write!(f, "Acclog must be at least 1"),
            FSETableError::AccLogTooBig { got, max } => {
                write!(
                    f,
                    "Found FSE acc_log: {0} bigger than allowed maximum in this case: {1}",
                    got, max
                )
            }
            FSETableError::GetBitsError(e) => write!(f, "{:?}", e),
            FSETableError::ProbabilityCounterMismatch {
                got,
                expected_sum,
                symbol_probabilities,
            } => {
                write!(f,
                    "The counter ({}) exceeded the expected sum: {}. This means an error or corrupted data \n {:?}",
                    got,
                    expected_sum,
                    symbol_probabilities,
                )
            }
            FSETableError::TooManySymbols { got } => {
                write!(
                    f,
                    "There are too many symbols in this distribution: {}. Max: 256",
                    got,
                )
            }
        }
    }
}

impl From<GetBitsError> for FSETableError {
    fn from(val: GetBitsError) -> Self {
        Self::GetBitsError(val)
    }
}

pub struct FSEDecoder<'table> {
    /// An FSE state value represents an index in the FSE table.
    pub state: Entry,
    /// A reference to the table used for decoding.
    table: &'table FSETable,
}

#[derive(Debug)]
#[non_exhaustive]
pub enum FSEDecoderError {
    GetBitsError(GetBitsError),
    TableIsUninitialized,
}

#[cfg(feature = "std")]
impl std::error::Error for FSEDecoderError {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        match self {
            FSEDecoderError::GetBitsError(source) => Some(source),
            _ => None,
        }
    }
}

impl core::fmt::Display for FSEDecoderError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            FSEDecoderError::GetBitsError(e) => write!(f, "{:?}", e),
            FSEDecoderError::TableIsUninitialized => {
                write!(f, "Tried to use an uninitialized table!")
            }
        }
    }
}

impl From<GetBitsError> for FSEDecoderError {
    fn from(val: GetBitsError) -> Self {
        Self::GetBitsError(val)
    }
}

/// A single entry in an FSE table.
#[derive(Copy, Clone)]
pub struct Entry {
    /// This value is used as an offset value, and it is added
    /// to a value read from the stream to determine the next state value.
    pub base_line: u32,
    /// How many bits should be read from the stream when decoding this entry.
    pub num_bits: u8,
    /// The byte that should be put in the decode output when encountering this state.
    pub symbol: u8,
}

/// This value is added to the first 4 bits of the stream to determine the
/// `Accuracy_Log`
const ACC_LOG_OFFSET: u8 = 5;

fn highest_bit_set(x: u32) -> u32 {
    assert!(x > 0);
    u32::BITS - x.leading_zeros()
}

impl<'t> FSEDecoder<'t> {
    /// Initialize a new Finite State Entropy decoder.
    pub fn new(table: &'t FSETable) -> FSEDecoder<'t> {
        FSEDecoder {
            state: table.decode.first().copied().unwrap_or(Entry {
                base_line: 0,
                num_bits: 0,
                symbol: 0,
            }),
            table,
        }
    }

    /// Returns the byte associated with the symbol the internal cursor is pointing at.
    pub fn decode_symbol(&self) -> u8 {
        self.state.symbol
    }

    /// Initialize internal state and prepare for decoding. After this, `decode_symbol` can be called
    /// to read the first symbol and `update_state` can be called to prepare to read the next symbol.
    pub fn init_state(&mut self, bits: &mut BitReaderReversed<'_>) -> Result<(), FSEDecoderError> {
        if self.table.accuracy_log == 0 {
            return Err(FSEDecoderError::TableIsUninitialized);
        }
        self.state = self.table.decode[bits.get_bits(self.table.accuracy_log) as usize];

        Ok(())
    }

    /// Advance the internal state to decode the next symbol in the bitstream.
    pub fn update_state(&mut self, bits: &mut BitReaderReversed<'_>) {
        let num_bits = self.state.num_bits;
        let add = bits.get_bits(num_bits);
        let base_line = self.state.base_line;
        let new_state = base_line + add as u32;
        self.state = self.table.decode[new_state as usize];

        //println!("Update: {}, {} -> {}", base_line, add,  self.state);
    }
}

impl FSETable {
    /// Initialize a new empty Finite State Entropy decoding table.
    pub fn new(max_symbol: u8) -> FSETable {
        FSETable {
            max_symbol,
            symbol_probabilities: Vec::with_capacity(256), //will never be more than 256 symbols because u8
            symbol_counter: Vec::with_capacity(256), //will never be more than 256 symbols because u8
            decode: Vec::new(),                      //depending on acc_log.
            accuracy_log: 0,
        }
    }

    /// Reset `self` and update `self`'s state to mirror the provided table.
    pub fn reinit_from(&mut self, other: &Self) {
        self.reset();
        self.symbol_counter.extend_from_slice(&other.symbol_counter);
        self.symbol_probabilities
            .extend_from_slice(&other.symbol_probabilities);
        self.decode.extend_from_slice(&other.decode);
        self.accuracy_log = other.accuracy_log;
    }

    /// Empty the table and clear all internal state.
    pub fn reset(&mut self) {
        self.symbol_counter.clear();
        self.symbol_probabilities.clear();
        self.decode.clear();
        self.accuracy_log = 0;
    }

    /// returns how many BYTEs (not bits) were read while building the decoder
    pub fn build_decoder(&mut self, source: &[u8], max_log: u8) -> Result<usize, FSETableError> {
        self.accuracy_log = 0;

        let bytes_read = self.read_probabilities(source, max_log)?;
        self.build_decoding_table()?;

        Ok(bytes_read)
    }

    /// Given the provided accuracy log, build a decoding table from that log.
    pub fn build_from_probabilities(
        &mut self,
        acc_log: u8,
        probs: &[i32],
    ) -> Result<(), FSETableError> {
        if acc_log == 0 {
            return Err(FSETableError::AccLogIsZero);
        }
        self.symbol_probabilities = probs.to_vec();
        self.accuracy_log = acc_log;
        self.build_decoding_table()
    }

    /// Build the actual decoding table after probabilities have been read into the table.
    /// After this function is called, the decoding process can begin.
    fn build_decoding_table(&mut self) -> Result<(), FSETableError> {
        if self.symbol_probabilities.len() > self.max_symbol as usize + 1 {
            return Err(FSETableError::TooManySymbols {
                got: self.symbol_probabilities.len(),
            });
        }

        self.decode.clear();

        let table_size = 1 << self.accuracy_log;
        if self.decode.len() < table_size {
            self.decode.reserve(table_size - self.decode.len());
        }
        //fill with dummy entries
        self.decode.resize(
            table_size,
            Entry {
                base_line: 0,
                num_bits: 0,
                symbol: 0,
            },
        );

        let mut negative_idx = table_size; //will point to the highest index with is already occupied by a negative-probability-symbol

        //first scan for all -1 probabilities and place them at the top of the table
        for symbol in 0..self.symbol_probabilities.len() {
            if self.symbol_probabilities[symbol] == -1 {
                negative_idx -= 1;
                let entry = &mut self.decode[negative_idx];
                entry.symbol = symbol as u8;
                entry.base_line = 0;
                entry.num_bits = self.accuracy_log;
            }
        }

        //then place in a semi-random order all of the other symbols
        let mut position = 0;
        for idx in 0..self.symbol_probabilities.len() {
            let symbol = idx as u8;
            if self.symbol_probabilities[idx] <= 0 {
                continue;
            }

            //for each probability point the symbol gets on slot
            let prob = self.symbol_probabilities[idx];
            for _ in 0..prob {
                let entry = &mut self.decode[position];
                entry.symbol = symbol;

                position = next_position(position, table_size);
                while position >= negative_idx {
                    position = next_position(position, table_size);
                    //everything above negative_idx is already taken
                }
            }
        }

        // baselines and num_bits can only be calculated when all symbols have been spread
        self.symbol_counter.clear();
        self.symbol_counter
            .resize(self.symbol_probabilities.len(), 0);
        for idx in 0..negative_idx {
            let entry = &mut self.decode[idx];
            let symbol = entry.symbol;
            let prob = self.symbol_probabilities[symbol as usize];

            let symbol_count = self.symbol_counter[symbol as usize];
            let (bl, nb) = calc_baseline_and_numbits(table_size as u32, prob as u32, symbol_count);

            //println!("symbol: {:2}, table: {}, prob: {:3}, count: {:3}, bl: {:3}, nb: {:2}", symbol, table_size, prob, symbol_count, bl, nb);

            assert!(nb <= self.accuracy_log);
            self.symbol_counter[symbol as usize] += 1;

            entry.base_line = bl;
            entry.num_bits = nb;
        }
        Ok(())
    }

    /// Read the accuracy log and the probability table from the source and return the number of bytes
    /// read. If the size of the table is larger than the provided `max_log`, return an error.
    fn read_probabilities(&mut self, source: &[u8], max_log: u8) -> Result<usize, FSETableError> {
        self.symbol_probabilities.clear(); //just clear, we will fill a probability for each entry anyways. No need to force new allocs here

        let mut br = BitReader::new(source);
        self.accuracy_log = ACC_LOG_OFFSET + (br.get_bits(4)? as u8);
        if self.accuracy_log > max_log {
            return Err(FSETableError::AccLogTooBig {
                got: self.accuracy_log,
                max: max_log,
            });
        }
        if self.accuracy_log == 0 {
            return Err(FSETableError::AccLogIsZero);
        }

        let probability_sum = 1 << self.accuracy_log;
        let mut probability_counter = 0;

        while probability_counter < probability_sum {
            let max_remaining_value = probability_sum - probability_counter + 1;
            let bits_to_read = highest_bit_set(max_remaining_value);

            let unchecked_value = br.get_bits(bits_to_read as usize)? as u32;

            let low_threshold = ((1 << bits_to_read) - 1) - (max_remaining_value);
            let mask = (1 << (bits_to_read - 1)) - 1;
            let small_value = unchecked_value & mask;

            let value = if small_value < low_threshold {
                br.return_bits(1);
                small_value
            } else if unchecked_value > mask {
                unchecked_value - low_threshold
            } else {
                unchecked_value
            };
            //println!("{}, {}, {}", self.symbol_probablilities.len(), unchecked_value, value);

            let prob = (value as i32) - 1;

            self.symbol_probabilities.push(prob);
            if prob != 0 {
                if prob > 0 {
                    probability_counter += prob as u32;
                } else {
                    // probability -1 counts as 1
                    assert!(prob == -1);
                    probability_counter += 1;
                }
            } else {
                //fast skip further zero probabilities
                loop {
                    let skip_amount = br.get_bits(2)? as usize;

                    self.symbol_probabilities
                        .resize(self.symbol_probabilities.len() + skip_amount, 0);
                    if skip_amount != 3 {
                        break;
                    }
                }
            }
        }

        if probability_counter != probability_sum {
            return Err(FSETableError::ProbabilityCounterMismatch {
                got: probability_counter,
                expected_sum: probability_sum,
                symbol_probabilities: self.symbol_probabilities.clone(),
            });
        }
        if self.symbol_probabilities.len() > self.max_symbol as usize + 1 {
            return Err(FSETableError::TooManySymbols {
                got: self.symbol_probabilities.len(),
            });
        }

        let bytes_read = if br.bits_read() % 8 == 0 {
            br.bits_read() / 8
        } else {
            (br.bits_read() / 8) + 1
        };

        Ok(bytes_read)
    }
}

//utility functions for building the decoding table from probabilities
/// Calculate the position of the next entry of the table given the current
/// position and size of the table.
fn next_position(mut p: usize, table_size: usize) -> usize {
    p += (table_size >> 1) + (table_size >> 3) + 3;
    p &= table_size - 1;
    p
}

fn calc_baseline_and_numbits(
    num_states_total: u32,
    num_states_symbol: u32,
    state_number: u32,
) -> (u32, u8) {
    let num_state_slices = if 1 << (highest_bit_set(num_states_symbol) - 1) == num_states_symbol {
        num_states_symbol
    } else {
        1 << (highest_bit_set(num_states_symbol))
    }; //always power of two

    let num_double_width_state_slices = num_state_slices - num_states_symbol; //leftovers to the power of two need to be distributed
    let num_single_width_state_slices = num_states_symbol - num_double_width_state_slices; //these will not receive a double width slice of states
    let slice_width = num_states_total / num_state_slices; //size of a single width slice of states
    let num_bits = highest_bit_set(slice_width) - 1; //number of bits needed to read for one slice

    if state_number < num_double_width_state_slices {
        let baseline = num_single_width_state_slices * slice_width + state_number * slice_width * 2;
        (baseline, num_bits as u8 + 1)
    } else {
        let index_shifted = state_number - num_double_width_state_slices;
        ((index_shifted * slice_width), num_bits as u8)
    }
}