ruzstd/huff0/
huff0_decoder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
//! Utilities for decoding Huff0 encoded huffman data.

use crate::decoding::bit_reader_reverse::{BitReaderReversed, GetBitsError};
use crate::fse::{FSEDecoder, FSEDecoderError, FSETable, FSETableError};
use alloc::vec::Vec;
#[cfg(feature = "std")]
use std::error::Error as StdError;

pub struct HuffmanTable {
    decode: Vec<Entry>,
    /// The weight of a symbol is the number of occurences in a table.
    /// This value is used in constructing a binary tree referred to as
    /// a huffman tree.
    weights: Vec<u8>,
    /// The maximum size in bits a prefix code in the encoded data can be.
    /// This value is used so that the decoder knows how many bits
    /// to read from the bitstream before checking the table. This
    /// value must be 11 or lower.
    pub max_num_bits: u8,
    bits: Vec<u8>,
    bit_ranks: Vec<u32>,
    rank_indexes: Vec<usize>,
    /// In some cases, the list of weights is compressed using FSE compression.
    fse_table: FSETable,
}

#[derive(Debug)]
#[non_exhaustive]
pub enum HuffmanTableError {
    GetBitsError(GetBitsError),
    FSEDecoderError(FSEDecoderError),
    FSETableError(FSETableError),
    SourceIsEmpty,
    NotEnoughBytesForWeights {
        got_bytes: usize,
        expected_bytes: u8,
    },
    ExtraPadding {
        skipped_bits: i32,
    },
    TooManyWeights {
        got: usize,
    },
    MissingWeights,
    LeftoverIsNotAPowerOf2 {
        got: u32,
    },
    NotEnoughBytesToDecompressWeights {
        have: usize,
        need: usize,
    },
    FSETableUsedTooManyBytes {
        used: usize,
        available_bytes: u8,
    },
    NotEnoughBytesInSource {
        got: usize,
        need: usize,
    },
    WeightBiggerThanMaxNumBits {
        got: u8,
    },
    MaxBitsTooHigh {
        got: u8,
    },
}

#[cfg(feature = "std")]
impl StdError for HuffmanTableError {
    fn source(&self) -> Option<&(dyn StdError + 'static)> {
        match self {
            HuffmanTableError::GetBitsError(source) => Some(source),
            HuffmanTableError::FSEDecoderError(source) => Some(source),
            HuffmanTableError::FSETableError(source) => Some(source),
            _ => None,
        }
    }
}

impl core::fmt::Display for HuffmanTableError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> ::core::fmt::Result {
        match self {
            HuffmanTableError::GetBitsError(e) => write!(f, "{:?}", e),
            HuffmanTableError::FSEDecoderError(e) => write!(f, "{:?}", e),
            HuffmanTableError::FSETableError(e) => write!(f, "{:?}", e),
            HuffmanTableError::SourceIsEmpty => write!(f, "Source needs to have at least one byte"),
            HuffmanTableError::NotEnoughBytesForWeights {
                got_bytes,
                expected_bytes,
            } => {
                write!(f, "Header says there should be {} bytes for the weights but there are only {} bytes in the stream",
                    expected_bytes,
                    got_bytes)
            }
            HuffmanTableError::ExtraPadding { skipped_bits } => {
                write!(f,
                    "Padding at the end of the sequence_section was more than a byte long: {} bits. Probably caused by data corruption",
                    skipped_bits,
                )
            }
            HuffmanTableError::TooManyWeights { got } => {
                write!(
                    f,
                    "More than 255 weights decoded (got {} weights). Stream is probably corrupted",
                    got,
                )
            }
            HuffmanTableError::MissingWeights => {
                write!(f, "Can\'t build huffman table without any weights")
            }
            HuffmanTableError::LeftoverIsNotAPowerOf2 { got } => {
                write!(f, "Leftover must be power of two but is: {}", got)
            }
            HuffmanTableError::NotEnoughBytesToDecompressWeights { have, need } => {
                write!(
                    f,
                    "Not enough bytes in stream to decompress weights. Is: {}, Should be: {}",
                    have, need,
                )
            }
            HuffmanTableError::FSETableUsedTooManyBytes {
                used,
                available_bytes,
            } => {
                write!(f,
                    "FSE table used more bytes: {} than were meant to be used for the whole stream of huffman weights ({})",
                    used,
                    available_bytes,
                )
            }
            HuffmanTableError::NotEnoughBytesInSource { got, need } => {
                write!(
                    f,
                    "Source needs to have at least {} bytes, got: {}",
                    need, got,
                )
            }
            HuffmanTableError::WeightBiggerThanMaxNumBits { got } => {
                write!(
                    f,
                    "Cant have weight: {} bigger than max_num_bits: {}",
                    got, MAX_MAX_NUM_BITS,
                )
            }
            HuffmanTableError::MaxBitsTooHigh { got } => {
                write!(
                    f,
                    "max_bits derived from weights is: {} should be lower than: {}",
                    got, MAX_MAX_NUM_BITS,
                )
            }
        }
    }
}

impl From<GetBitsError> for HuffmanTableError {
    fn from(val: GetBitsError) -> Self {
        Self::GetBitsError(val)
    }
}

impl From<FSEDecoderError> for HuffmanTableError {
    fn from(val: FSEDecoderError) -> Self {
        Self::FSEDecoderError(val)
    }
}

impl From<FSETableError> for HuffmanTableError {
    fn from(val: FSETableError) -> Self {
        Self::FSETableError(val)
    }
}

/// An interface around a huffman table used to decode data.
pub struct HuffmanDecoder<'table> {
    table: &'table HuffmanTable,
    /// State is used to index into the table.
    pub state: u64,
}

#[derive(Debug)]
#[non_exhaustive]
pub enum HuffmanDecoderError {
    GetBitsError(GetBitsError),
}

impl core::fmt::Display for HuffmanDecoderError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            HuffmanDecoderError::GetBitsError(e) => write!(f, "{:?}", e),
        }
    }
}

#[cfg(feature = "std")]
impl StdError for HuffmanDecoderError {
    fn source(&self) -> Option<&(dyn StdError + 'static)> {
        match self {
            HuffmanDecoderError::GetBitsError(source) => Some(source),
        }
    }
}

impl From<GetBitsError> for HuffmanDecoderError {
    fn from(val: GetBitsError) -> Self {
        Self::GetBitsError(val)
    }
}

/// A single entry in the table contains the decoded symbol/literal and the
/// size of the prefix code.
#[derive(Copy, Clone)]
pub struct Entry {
    /// The byte that the prefix code replaces during encoding.
    symbol: u8,
    /// The number of bits the prefix code occupies.
    num_bits: u8,
}

/// The Zstandard specification limits the maximum length of a code to 11 bits.
const MAX_MAX_NUM_BITS: u8 = 11;

/// Assert that the provided value is greater than zero, and returns the
/// 32 - the number of leading zeros
fn highest_bit_set(x: u32) -> u32 {
    assert!(x > 0);
    u32::BITS - x.leading_zeros()
}

impl<'t> HuffmanDecoder<'t> {
    /// Create a new decoder with the provided table
    pub fn new(table: &'t HuffmanTable) -> HuffmanDecoder<'t> {
        HuffmanDecoder { table, state: 0 }
    }

    /// Re-initialize the decoder, using the new table if one is provided.
    /// This might used for treeless blocks, because they re-use the table from old
    /// data.
    pub fn reset(mut self, new_table: Option<&'t HuffmanTable>) {
        self.state = 0;
        if let Some(next_table) = new_table {
            self.table = next_table;
        }
    }

    /// Decode the symbol the internal state (cursor) is pointed at and return the
    /// decoded literal.
    pub fn decode_symbol(&mut self) -> u8 {
        self.table.decode[self.state as usize].symbol
    }

    /// Initialize internal state and prepare to decode data. Then, `decode_symbol` can be called
    /// to read the byte the internal cursor is pointing at, and `next_state` can be called to advance
    /// the cursor until the max number of bits has been read.
    pub fn init_state(&mut self, br: &mut BitReaderReversed<'_>) -> u8 {
        let num_bits = self.table.max_num_bits;
        let new_bits = br.get_bits(num_bits);
        self.state = new_bits;
        num_bits
    }

    /// Advance the internal cursor to the next symbol. After this, you can call `decode_symbol`
    /// to read from the new position.
    pub fn next_state(&mut self, br: &mut BitReaderReversed<'_>) -> u8 {
        // self.state stores a small section, or a window of the bit stream. The table can be indexed via this state,
        // telling you how many bits identify the current symbol.
        let num_bits = self.table.decode[self.state as usize].num_bits;
        // New bits are read from the stream
        let new_bits = br.get_bits(num_bits);
        // Shift and mask out the bits that identify the current symbol
        self.state <<= num_bits;
        self.state &= self.table.decode.len() as u64 - 1;
        // The new bits are appended at the end of the current state.
        self.state |= new_bits;
        num_bits
    }
}

impl Default for HuffmanTable {
    fn default() -> Self {
        Self::new()
    }
}

impl HuffmanTable {
    /// Create a new, empty table.
    pub fn new() -> HuffmanTable {
        HuffmanTable {
            decode: Vec::new(),

            weights: Vec::with_capacity(256),
            max_num_bits: 0,
            bits: Vec::with_capacity(256),
            bit_ranks: Vec::with_capacity(11),
            rank_indexes: Vec::with_capacity(11),
            fse_table: FSETable::new(100),
        }
    }

    /// Completely empty the table then repopulate as a replica
    /// of `other`.
    pub fn reinit_from(&mut self, other: &Self) {
        self.reset();
        self.decode.extend_from_slice(&other.decode);
        self.weights.extend_from_slice(&other.weights);
        self.max_num_bits = other.max_num_bits;
        self.bits.extend_from_slice(&other.bits);
        self.rank_indexes.extend_from_slice(&other.rank_indexes);
        self.fse_table.reinit_from(&other.fse_table);
    }

    /// Completely empty the table of all data.
    pub fn reset(&mut self) {
        self.decode.clear();
        self.weights.clear();
        self.max_num_bits = 0;
        self.bits.clear();
        self.bit_ranks.clear();
        self.rank_indexes.clear();
        self.fse_table.reset();
    }

    /// Read from `source` and parse it into a huffman table.
    ///
    /// Returns the number of bytes read.
    pub fn build_decoder(&mut self, source: &[u8]) -> Result<u32, HuffmanTableError> {
        self.decode.clear();

        let bytes_used = self.read_weights(source)?;
        self.build_table_from_weights()?;
        Ok(bytes_used)
    }

    /// Read weights from the provided source.
    ///
    /// The huffman table is represented in the encoded data as a list of weights
    /// at the most basic level. After the header, weights are read, then the table
    /// can be built using that list of weights.
    ///
    /// Returns the number of bytes read.
    fn read_weights(&mut self, source: &[u8]) -> Result<u32, HuffmanTableError> {
        use HuffmanTableError as err;

        if source.is_empty() {
            return Err(err::SourceIsEmpty);
        }
        let header = source[0];
        let mut bits_read = 8;

        match header {
            // If the header byte is less than 128, the series of weights
            // is compressed using two interleaved FSE streams that share
            // a distribution table.
            0..=127 => {
                let fse_stream = &source[1..];
                if header as usize > fse_stream.len() {
                    return Err(err::NotEnoughBytesForWeights {
                        got_bytes: fse_stream.len(),
                        expected_bytes: header,
                    });
                }
                //fse decompress weights
                let bytes_used_by_fse_header = self
                    .fse_table
                    .build_decoder(fse_stream, /*TODO find actual max*/ 100)?;

                if bytes_used_by_fse_header > header as usize {
                    return Err(err::FSETableUsedTooManyBytes {
                        used: bytes_used_by_fse_header,
                        available_bytes: header,
                    });
                }

                vprintln!(
                    "Building fse table for huffman weights used: {}",
                    bytes_used_by_fse_header
                );
                // Huffman headers are compressed using two interleaved
                // FSE bitstreams, where the first state (decoder) handles
                // even symbols, and the second handles odd symbols.
                let mut dec1 = FSEDecoder::new(&self.fse_table);
                let mut dec2 = FSEDecoder::new(&self.fse_table);

                let compressed_start = bytes_used_by_fse_header;
                let compressed_length = header as usize - bytes_used_by_fse_header;

                let compressed_weights = &fse_stream[compressed_start..];
                if compressed_weights.len() < compressed_length {
                    return Err(err::NotEnoughBytesToDecompressWeights {
                        have: compressed_weights.len(),
                        need: compressed_length,
                    });
                }
                let compressed_weights = &compressed_weights[..compressed_length];
                let mut br = BitReaderReversed::new(compressed_weights);

                bits_read += (bytes_used_by_fse_header + compressed_length) * 8;

                //skip the 0 padding at the end of the last byte of the bit stream and throw away the first 1 found
                let mut skipped_bits = 0;
                loop {
                    let val = br.get_bits(1);
                    skipped_bits += 1;
                    if val == 1 || skipped_bits > 8 {
                        break;
                    }
                }
                if skipped_bits > 8 {
                    //if more than 7 bits are 0, this is not the correct end of the bitstream. Either a bug or corrupted data
                    return Err(err::ExtraPadding { skipped_bits });
                }

                dec1.init_state(&mut br)?;
                dec2.init_state(&mut br)?;

                self.weights.clear();

                // The two decoders take turns decoding a single symbol and updating their state.
                loop {
                    let w = dec1.decode_symbol();
                    self.weights.push(w);
                    dec1.update_state(&mut br);

                    if br.bits_remaining() <= -1 {
                        //collect final states
                        self.weights.push(dec2.decode_symbol());
                        break;
                    }

                    let w = dec2.decode_symbol();
                    self.weights.push(w);
                    dec2.update_state(&mut br);

                    if br.bits_remaining() <= -1 {
                        //collect final states
                        self.weights.push(dec1.decode_symbol());
                        break;
                    }
                    //maximum number of weights is 255 because we use u8 symbols and the last weight is inferred from the sum of all others
                    if self.weights.len() > 255 {
                        return Err(err::TooManyWeights {
                            got: self.weights.len(),
                        });
                    }
                }
            }
            // If the header byte is greater than or equal to 128,
            // weights are directly represented, where each weight is
            // encoded directly as a 4 bit field. The weights will
            // always be encoded with full bytes, meaning if there's
            // an odd number of weights, the last weight will still
            // occupy a full byte.
            _ => {
                // weights are directly encoded
                let weights_raw = &source[1..];
                let num_weights = header - 127;
                self.weights.resize(num_weights as usize, 0);

                let bytes_needed = if num_weights % 2 == 0 {
                    num_weights as usize / 2
                } else {
                    (num_weights as usize / 2) + 1
                };

                if weights_raw.len() < bytes_needed {
                    return Err(err::NotEnoughBytesInSource {
                        got: weights_raw.len(),
                        need: bytes_needed,
                    });
                }

                for idx in 0..num_weights {
                    if idx % 2 == 0 {
                        self.weights[idx as usize] = weights_raw[idx as usize / 2] >> 4;
                    } else {
                        self.weights[idx as usize] = weights_raw[idx as usize / 2] & 0xF;
                    }
                    bits_read += 4;
                }
            }
        }

        let bytes_read = if bits_read % 8 == 0 {
            bits_read / 8
        } else {
            (bits_read / 8) + 1
        };
        Ok(bytes_read as u32)
    }

    /// Once the weights have been read from the data, you can decode the weights
    /// into a table, and use that table to decode the actual compressed data.
    ///
    /// This function populates the rest of the table from the series of weights.
    fn build_table_from_weights(&mut self) -> Result<(), HuffmanTableError> {
        use HuffmanTableError as err;

        self.bits.clear();
        self.bits.resize(self.weights.len() + 1, 0);

        let mut weight_sum: u32 = 0;
        for w in &self.weights {
            if *w > MAX_MAX_NUM_BITS {
                return Err(err::WeightBiggerThanMaxNumBits { got: *w });
            }
            weight_sum += if *w > 0 { 1_u32 << (*w - 1) } else { 0 };
        }

        if weight_sum == 0 {
            return Err(err::MissingWeights);
        }

        let max_bits = highest_bit_set(weight_sum) as u8;
        let left_over = (1 << max_bits) - weight_sum;

        //left_over must be power of two
        if !left_over.is_power_of_two() {
            return Err(err::LeftoverIsNotAPowerOf2 { got: left_over });
        }

        let last_weight = highest_bit_set(left_over) as u8;

        for symbol in 0..self.weights.len() {
            let bits = if self.weights[symbol] > 0 {
                max_bits + 1 - self.weights[symbol]
            } else {
                0
            };
            self.bits[symbol] = bits;
        }

        self.bits[self.weights.len()] = max_bits + 1 - last_weight;
        self.max_num_bits = max_bits;

        if max_bits > MAX_MAX_NUM_BITS {
            return Err(err::MaxBitsTooHigh { got: max_bits });
        }

        self.bit_ranks.clear();
        self.bit_ranks.resize((max_bits + 1) as usize, 0);
        for num_bits in &self.bits {
            self.bit_ranks[(*num_bits) as usize] += 1;
        }

        //fill with dummy symbols
        self.decode.resize(
            1 << self.max_num_bits,
            Entry {
                symbol: 0,
                num_bits: 0,
            },
        );

        //starting codes for each rank
        self.rank_indexes.clear();
        self.rank_indexes.resize((max_bits + 1) as usize, 0);

        self.rank_indexes[max_bits as usize] = 0;
        for bits in (1..self.rank_indexes.len() as u8).rev() {
            self.rank_indexes[bits as usize - 1] = self.rank_indexes[bits as usize]
                + self.bit_ranks[bits as usize] as usize * (1 << (max_bits - bits));
        }

        assert!(
            self.rank_indexes[0] == self.decode.len(),
            "rank_idx[0]: {} should be: {}",
            self.rank_indexes[0],
            self.decode.len()
        );

        for symbol in 0..self.bits.len() {
            let bits_for_symbol = self.bits[symbol];
            if bits_for_symbol != 0 {
                // allocate code for the symbol and set in the table
                // a code ignores all max_bits - bits[symbol] bits, so it gets
                // a range that spans all of those in the decoding table
                let base_idx = self.rank_indexes[bits_for_symbol as usize];
                let len = 1 << (max_bits - bits_for_symbol);
                self.rank_indexes[bits_for_symbol as usize] += len;
                for idx in 0..len {
                    self.decode[base_idx + idx].symbol = symbol as u8;
                    self.decode[base_idx + idx].num_bits = bits_for_symbol;
                }
            }
        }

        Ok(())
    }
}