spirt/
cfg.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
//! Control-flow graph (CFG) abstractions and utilities.

use crate::transform::{InnerInPlaceTransform as _, Transformer};
use crate::{
    AttrSet, Const, ConstDef, ConstKind, Context, ControlNode, ControlNodeDef, ControlNodeKind,
    ControlNodeOutputDecl, ControlRegion, ControlRegionDef, EntityOrientedDenseMap, FuncDefBody,
    FxIndexMap, FxIndexSet, SelectionKind, Type, TypeKind, Value, spv,
};
use itertools::{Either, Itertools};
use smallvec::SmallVec;
use std::mem;
use std::rc::Rc;

/// The control-flow graph (CFG) of a function, as control-flow instructions
/// ([`ControlInst`]s) attached to [`ControlRegion`]s, as an "action on exit", i.e.
/// "terminator" (while intra-region control-flow is strictly structured).
#[derive(Clone, Default)]
pub struct ControlFlowGraph {
    pub control_inst_on_exit_from: EntityOrientedDenseMap<ControlRegion, ControlInst>,

    // HACK(eddyb) this currently only comes from `OpLoopMerge`, and cannot be
    // inferred (because implies too strong of an ownership/uniqueness notion).
    pub loop_merge_to_loop_header: FxIndexMap<ControlRegion, ControlRegion>,
}

#[derive(Clone)]
pub struct ControlInst {
    pub attrs: AttrSet,

    pub kind: ControlInstKind,

    pub inputs: SmallVec<[Value; 2]>,

    // FIXME(eddyb) change the inline size of this to fit most instructions.
    pub targets: SmallVec<[ControlRegion; 4]>,

    /// `target_inputs[region][input_idx]` is the [`Value`] that
    /// `Value::ControlRegionInput { region, input_idx }` will get on entry,
    /// where `region` must be appear at least once in `targets` - this is a
    /// separate map instead of being part of `targets` because it reflects the
    /// limitations of φ ("phi") nodes, which (unlike "basic block arguments")
    /// cannot tell apart multiple edges with the same source and destination.
    pub target_inputs: FxIndexMap<ControlRegion, SmallVec<[Value; 2]>>,
}

#[derive(Clone)]
pub enum ControlInstKind {
    /// Reaching this point in the control-flow is undefined behavior, e.g.:
    /// * a `SelectBranch` case that's known to be impossible
    /// * after a function call, where the function never returns
    ///
    /// Optimizations can take advantage of this information, to assume that any
    /// necessary preconditions for reaching this point, are never met.
    Unreachable,

    /// Leave the current function, optionally returning a value.
    Return,

    /// Leave the current invocation, similar to returning from every function
    /// call in the stack (up to and including the entry-point), but potentially
    /// indicating a fatal error as well.
    ExitInvocation(ExitInvocationKind),

    /// Unconditional branch to a single target.
    Branch,

    /// Branch to one of several targets, chosen by a single value input.
    SelectBranch(SelectionKind),
}

#[derive(Clone)]
pub enum ExitInvocationKind {
    SpvInst(spv::Inst),
}

impl ControlFlowGraph {
    /// Iterate over all [`ControlRegion`]s making up `func_def_body`'s CFG, in
    /// reverse post-order (RPO).
    ///
    /// RPO iteration over a CFG provides certain guarantees, most importantly
    /// that dominators are visited before the entire subgraph they dominate.
    pub fn rev_post_order(
        &self,
        func_def_body: &FuncDefBody,
    ) -> impl DoubleEndedIterator<Item = ControlRegion> {
        let mut post_order = SmallVec::<[_; 8]>::new();
        self.traverse_whole_func(func_def_body, &mut TraversalState {
            incoming_edge_counts: EntityOrientedDenseMap::new(),

            pre_order_visit: |_| {},
            post_order_visit: |region| post_order.push(region),

            // NOTE(eddyb) this doesn't impact semantics, but combined with
            // the final reversal, it should keep targets in the original
            // order in the cases when they didn't get deduplicated.
            reverse_targets: true,
        });
        post_order.into_iter().rev()
    }
}

// HACK(eddyb) this only serves to disallow accessing `private_count` field of
// `IncomingEdgeCount`.
mod sealed {
    /// Opaque newtype for the count of incoming edges (into a [`ControlRegion`](crate::ControlRegion)).
    ///
    /// The private field prevents direct mutation or construction, forcing the
    /// use of [`IncomingEdgeCount::ONE`] and addition operations to produce some
    /// specific count (which would require explicit workarounds for misuse).
    #[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
    pub(super) struct IncomingEdgeCount(usize);

    impl IncomingEdgeCount {
        pub(super) const ONE: Self = Self(1);
    }

    impl std::ops::Add for IncomingEdgeCount {
        type Output = Self;
        fn add(self, other: Self) -> Self {
            Self(self.0 + other.0)
        }
    }

    impl std::ops::AddAssign for IncomingEdgeCount {
        fn add_assign(&mut self, other: Self) {
            *self = *self + other;
        }
    }
}
use sealed::IncomingEdgeCount;

struct TraversalState<PreVisit: FnMut(ControlRegion), PostVisit: FnMut(ControlRegion)> {
    incoming_edge_counts: EntityOrientedDenseMap<ControlRegion, IncomingEdgeCount>,
    pre_order_visit: PreVisit,
    post_order_visit: PostVisit,

    // FIXME(eddyb) should this be a generic parameter for "targets iterator"?
    reverse_targets: bool,
}

impl ControlFlowGraph {
    fn traverse_whole_func(
        &self,
        func_def_body: &FuncDefBody,
        state: &mut TraversalState<impl FnMut(ControlRegion), impl FnMut(ControlRegion)>,
    ) {
        let func_at_body = func_def_body.at_body();

        // Quick sanity check that this is the right CFG for `func_def_body`.
        assert!(std::ptr::eq(func_def_body.unstructured_cfg.as_ref().unwrap(), self));
        assert!(func_at_body.def().outputs.is_empty());

        self.traverse(func_def_body.body, state);
    }

    fn traverse(
        &self,
        region: ControlRegion,
        state: &mut TraversalState<impl FnMut(ControlRegion), impl FnMut(ControlRegion)>,
    ) {
        // FIXME(eddyb) `EntityOrientedDenseMap` should have an `entry` API.
        if let Some(existing_count) = state.incoming_edge_counts.get_mut(region) {
            *existing_count += IncomingEdgeCount::ONE;
            return;
        }
        state.incoming_edge_counts.insert(region, IncomingEdgeCount::ONE);

        (state.pre_order_visit)(region);

        let control_inst = self
            .control_inst_on_exit_from
            .get(region)
            .expect("cfg: missing `ControlInst`, despite having left structured control-flow");

        let targets = control_inst.targets.iter().copied();
        let targets = if state.reverse_targets {
            Either::Left(targets.rev())
        } else {
            Either::Right(targets)
        };
        for target in targets {
            self.traverse(target, state);
        }

        (state.post_order_visit)(region);
    }
}

/// Minimal loop analysis, based on Tarjan's SCC (strongly connected components)
/// algorithm, applied recursively (for every level of loop nesting).
///
/// Here "minimal" means that each loops is the smallest CFG subgraph possible
/// (excluding any control-flow paths that cannot reach a backedge and cycle),
/// i.e. each loop is a CFG SCC (strongly connected component).
///
/// These "minimal loops" contrast with the "maximal loops" that the greedy
/// architecture of the structurizer would naively produce, with the main impact
/// of the difference being where loop exits (`break`s) "merge" (or "reconverge"),
/// which SPIR-V encodes via `OpLoopMerge`, and is significant for almost anything
/// where shared memory and/or subgroup ops can allow observing when invocations
/// "wait for others in the subgroup to exit the loop" (or when they fail to wait).
///
/// This analysis was added to because of two observations wrt "reconvergence":
/// 1. syntactic loops (from some high-level language), when truly structured
///    (i.e. only using `while`/`do`-`while` exit conditions, not `break` etc.),
///    *always* map to "minimal loops" on a CFG, as the only loop exit edge is
///    built-in, and no part of the syntactic "loop body" can be its successor
/// 2. more pragmatically, compiling shader languages to SPIR-V seems to (almost?)
///    always *either* fully preserve syntactic loops (via SPIR-V `OpLoopMerge`),
///    *or* structurize CFGs in a way that produces "minimal loops", which can
///    be misleading with explicit `break`s (moving user code from just before
///    the `break` to after the loop), but is less impactful than "maximal loops"
struct LoopFinder<'a> {
    cfg: &'a ControlFlowGraph,

    // FIXME(eddyb) this feels a bit inefficient (are many-exit loops rare?).
    loop_header_to_exit_targets: FxIndexMap<ControlRegion, FxIndexSet<ControlRegion>>,

    /// SCC accumulation stack, where CFG nodes collect during the depth-first
    /// traversal, and are only popped when their "SCC root" (loop header) is
    /// (note that multiple SCCs on the stack does *not* indicate SCC nesting,
    /// but rather a path between two SCCs, i.e. a loop *following* another).
    scc_stack: Vec<ControlRegion>,
    /// Per-CFG-node traversal state (often just pointing to a `scc_stack` slot).
    scc_state: EntityOrientedDenseMap<ControlRegion, SccState>,
}

#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
struct SccStackIdx(u32);

#[derive(PartialEq, Eq)]
enum SccState {
    /// CFG node has been reached and ended up somewhere on the `scc_stack`,
    /// where it will remain until the SCC it's part of will be completed.
    Pending(SccStackIdx),

    /// CFG node had been reached once, but is no longer on the `scc_stack`, its
    /// parent SCC having been completed (or it wasn't in an SCC to begin with).
    Complete(EventualCfgExits),
}

/// Summary of all the ways in which a CFG node may eventually leave the CFG.
///
// HACK(eddyb) a loop can reach a CFG subgraph that happens to always "diverge"
// (e.g. ending in `unreachable`, `ExitInvocation`, or even infinite loops,
// though those have other issues) and strictly speaking that would always be
// an edge leaving the SCC of the loop (as it can't reach a backedge), but it
// still shouldn't be treated as an exit because it doesn't reconverge to the
// rest of the function, i.e. it can't reach any `return`s, which is what this
// tracks in order to later make a more accurate decision wrt loop exits.
//
// NOTE(eddyb) only in the case where a loop *also* has non-"diverging" exits,
// do the "diverging" ones not get treated as exits, as the presence of both
// disambiguates `break`s from naturally "diverging" sections of the loop body
// (at least for CFGs built from languages without labelled `break` or `goto`,
// but even then it would be pretty convoluted to set up `break` to diverge,
// while `break some_outer_label` to reconverge to the rest of the function).
#[derive(Copy, Clone, Default, PartialEq, Eq)]
struct EventualCfgExits {
    // FIXME(eddyb) do the other situations need their own flags here?
    may_return_from_func: bool,
}

impl std::ops::BitOr for EventualCfgExits {
    type Output = Self;
    fn bitor(self, other: Self) -> Self {
        Self { may_return_from_func: self.may_return_from_func | other.may_return_from_func }
    }
}
impl std::ops::BitOrAssign for EventualCfgExits {
    fn bitor_assign(&mut self, other: Self) {
        *self = *self | other;
    }
}

impl<'a> LoopFinder<'a> {
    fn new(cfg: &'a ControlFlowGraph) -> Self {
        Self {
            cfg,
            loop_header_to_exit_targets: FxIndexMap::default(),
            scc_stack: vec![],
            scc_state: EntityOrientedDenseMap::new(),
        }
    }

    /// Tarjan's SCC algorithm works by computing the "earliest" reachable node,
    /// from every node (often using the name `lowlink`), which will be equal
    /// to the origin node itself iff that node is an "SCC root" (loop header),
    /// and always point to an "earlier" node if a cycle (via loop backedge) was
    /// found from somewhere else in the SCC (i.e. from inside the loop body).
    ///
    /// Here we track stack indices (as the stack order is the traversal order),
    /// and distinguish the acyclic case to avoid treating most nodes as self-loops.
    //
    // FIXME(eddyb) name of the function is a bit clunky wrt its return type.
    fn find_earliest_scc_root_of(
        &mut self,
        node: ControlRegion,
    ) -> (Option<SccStackIdx>, EventualCfgExits) {
        let state_entry = self.scc_state.entry(node);
        if let Some(state) = &state_entry {
            return match *state {
                SccState::Pending(scc_stack_idx) => {
                    // HACK(eddyb) this means that `EventualCfgExits`s will be
                    // inconsistently observed across the `Pending` nodes of a
                    // loop body, but that is sound as it cannot feed into any
                    // `Complete` state until the loop header itself is complete,
                    // and the monotonic nature of `EventualCfgExits` means that
                    // the loop header will still get to see the complete picture.
                    (Some(scc_stack_idx), EventualCfgExits::default())
                }
                SccState::Complete(eventual_cfg_exits) => (None, eventual_cfg_exits),
            };
        }
        let scc_stack_idx = SccStackIdx(self.scc_stack.len().try_into().unwrap());
        self.scc_stack.push(node);
        *state_entry = Some(SccState::Pending(scc_stack_idx));

        let control_inst = self
            .cfg
            .control_inst_on_exit_from
            .get(node)
            .expect("cfg: missing `ControlInst`, despite having left structured control-flow");

        let mut eventual_cfg_exits = EventualCfgExits::default();

        if let ControlInstKind::Return = control_inst.kind {
            eventual_cfg_exits.may_return_from_func = true;
        }

        let earliest_scc_root = control_inst
            .targets
            .iter()
            .flat_map(|&target| {
                let (earliest_scc_root_of_target, eventual_cfg_exits_of_target) =
                    self.find_earliest_scc_root_of(target);
                eventual_cfg_exits |= eventual_cfg_exits_of_target;

                // HACK(eddyb) if one of the edges is already known to be a loop exit
                // (from `OpLoopMerge` specifically), treat it almost like a backedge,
                // but with the additional requirement that the loop header is already
                // on the stack (i.e. this `node` is reachable from that loop header).
                let root_candidate_from_loop_merge =
                    self.cfg.loop_merge_to_loop_header.get(&target).and_then(|&loop_header| {
                        match self.scc_state.get(loop_header) {
                            Some(&SccState::Pending(scc_stack_idx)) => Some(scc_stack_idx),
                            _ => None,
                        }
                    });

                earliest_scc_root_of_target.into_iter().chain(root_candidate_from_loop_merge)
            })
            .min();

        // If this node has been chosen as the root of an SCC, complete that SCC.
        if earliest_scc_root == Some(scc_stack_idx) {
            let scc_start = scc_stack_idx.0 as usize;

            // It's now possible to find all the loop exits: they're all the
            // edges from nodes of this SCC (loop) to nodes not in the SCC.
            let target_is_exit = |target| {
                match self.scc_state[target] {
                    SccState::Pending(i) => {
                        assert!(i >= scc_stack_idx);
                        false
                    }
                    SccState::Complete(eventual_cfg_exits_of_target) => {
                        let EventualCfgExits { may_return_from_func: loop_may_reconverge } =
                            eventual_cfg_exits;
                        let EventualCfgExits { may_return_from_func: target_may_reconverge } =
                            eventual_cfg_exits_of_target;

                        // HACK(eddyb) see comment on `EventualCfgExits` for why
                        // edges leaving the SCC aren't treated as loop exits
                        // when they're "more divergent" than the loop itself,
                        // i.e. if any edges leaving the SCC can reconverge,
                        // (and therefore the loop as a whole can reconverge)
                        // only those edges are kept as loop exits.
                        target_may_reconverge == loop_may_reconverge
                    }
                }
            };
            self.loop_header_to_exit_targets.insert(
                node,
                self.scc_stack[scc_start..]
                    .iter()
                    .flat_map(|&scc_node| {
                        self.cfg.control_inst_on_exit_from[scc_node].targets.iter().copied()
                    })
                    .filter(|&target| target_is_exit(target))
                    .collect(),
            );

            // Find nested loops by marking *only* the loop header as complete,
            // clearing loop body nodes' state, and recursing on them: all the
            // nodes outside the loop (otherwise reachable from within), and the
            // loop header itself, are already marked as complete, meaning that
            // all exits and backedges will be ignored, and the recursion will
            // only find more SCCs within the loop body (i.e. nested loops).
            self.scc_state[node] = SccState::Complete(eventual_cfg_exits);
            let loop_body_range = scc_start + 1..self.scc_stack.len();
            for &scc_node in &self.scc_stack[loop_body_range.clone()] {
                self.scc_state.remove(scc_node);
            }
            for i in loop_body_range.clone() {
                self.find_earliest_scc_root_of(self.scc_stack[i]);
            }
            assert_eq!(self.scc_stack.len(), loop_body_range.end);

            // Remove the entire SCC from the accumulation stack all at once.
            self.scc_stack.truncate(scc_start);

            return (None, eventual_cfg_exits);
        }

        // Not actually in an SCC at all, just some node outside any CFG cycles.
        if earliest_scc_root.is_none() {
            assert!(self.scc_stack.pop() == Some(node));
            self.scc_state[node] = SccState::Complete(eventual_cfg_exits);
        }

        (earliest_scc_root, eventual_cfg_exits)
    }
}

#[allow(rustdoc::private_intra_doc_links)]
/// Control-flow "structurizer", which attempts to convert as much of the CFG
/// as possible into structural control-flow (regions).
///
/// See [`StructurizeRegionState`]'s docs for more details on the algorithm.
//
// FIXME(eddyb) document this (instead of having it on `StructurizeRegionState`).
//
// NOTE(eddyb) CFG structurizer has these stages (per-region):
//   1. absorb any deferred exits that finally have 100% refcount
//   2. absorb a single backedge deferred exit to the same region
//
//   What we could add is a third step, to handle irreducible controlflow:
//   3. check for groups of exits that have fully satisfied refcounts iff the
//     rest of the exits in the group are all added together - if so, the group
//     is *irreducible* and a single "loop header" can be created, that gets
//     the group of deferred exits, and any other occurrence of the deferred
//     exits (in either the original region, or amongst themselves) can be
//     replaced with the "loop header" with appropriate selector inputs
//
//   Sadly 3. requires a bunch of tests that are hard to craft (can rustc MIR
//   even end up in the right shape?).
//   OpenCL has `goto` so maybe it can also be used for this worse-than-diamond
//   example: `entry -> a,b,d` `a,b -> c` `a,b,c -> d` `a,b,c,d <-> a,b,c,d`
//   (the goal is avoiding a "flat group", i.e. where there is only one step
//   between every exit in the group and another exit)
pub struct Structurizer<'a> {
    cx: &'a Context,

    /// Scrutinee type for [`SelectionKind::BoolCond`].
    type_bool: Type,

    /// Scrutinee value for [`SelectionKind::BoolCond`], for the "then" case.
    const_true: Const,

    /// Scrutinee value for [`SelectionKind::BoolCond`], for the "else" case.
    const_false: Const,

    func_def_body: &'a mut FuncDefBody,

    // FIXME(eddyb) this feels a bit inefficient (are many-exit loops rare?).
    loop_header_to_exit_targets: FxIndexMap<ControlRegion, FxIndexSet<ControlRegion>>,

    // HACK(eddyb) this also tracks all of `loop_header_to_exit_targets`, as
    // "false edges" from every loop header to each exit target of that loop,
    // which structurizing that loop consumes to "unlock" its own exits.
    incoming_edge_counts_including_loop_exits:
        EntityOrientedDenseMap<ControlRegion, IncomingEdgeCount>,

    /// `structurize_region_state[region]` tracks `.structurize_region(region)`
    /// progress/results (see also [`StructurizeRegionState`]'s docs).
    //
    // FIXME(eddyb) use `EntityOrientedDenseMap` (which lacks iteration by design).
    structurize_region_state: FxIndexMap<ControlRegion, StructurizeRegionState>,

    /// Accumulated rewrites (caused by e.g. `target_inputs`s, but not only),
    /// i.e.: `Value::ControlRegionInput { region, input_idx }` must be
    /// rewritten based on `control_region_input_rewrites[region]`, as either
    /// the original `region` wasn't reused, or its inputs were renumbered.
    control_region_input_rewrites:
        EntityOrientedDenseMap<ControlRegion, ControlRegionInputRewrites>,
}

/// How all `Value::ControlRegionInput { region, input_idx }` for a `region`
/// must be rewritten (see also `control_region_input_rewrites` docs).
enum ControlRegionInputRewrites {
    /// Complete replacement with another value (which can take any form), as
    /// `region` wasn't kept in its original form in the final structured IR.
    ///
    /// **Note**: such replacement can be chained, i.e. a replacement value can
    /// be `Value::ControlRegionInput { region: other_region, .. }`, and then
    /// `other_region` itself may have its inputs written.
    ReplaceWith(SmallVec<[Value; 2]>),

    /// The value may remain an input of the same `region`, only changing its
    /// `input_idx` (e.g. if indices need compaction after removing some inputs),
    /// or get replaced anyway, depending on the `Result` for `input_idx`.
    ///
    /// **Note**: renumbering can only be the last rewrite step of a value,
    /// as `region` must've been chosen to be kept in the final structured IR,
    /// but the `Err` cases are transitive just like `ReplaceWith`.
    //
    // FIXME(eddyb) this is a bit silly, maybe try to rely more on hermeticity
    // to get rid of this?
    RenumberOrReplaceWith(SmallVec<[Result<u32, Value>; 2]>),
}

impl ControlRegionInputRewrites {
    // HACK(eddyb) this is here because it depends on a field of `Structurizer`
    // and borrowing issues ensue if it's made a method of `Structurizer`.
    fn rewrite_all(
        rewrites: &EntityOrientedDenseMap<ControlRegion, Self>,
    ) -> impl crate::transform::Transformer + '_ {
        // FIXME(eddyb) maybe this should be provided by `transform`.
        use crate::transform::*;
        struct ReplaceValueWith<F>(F);
        impl<F: Fn(Value) -> Option<Value>> Transformer for ReplaceValueWith<F> {
            fn transform_value_use(&mut self, v: &Value) -> Transformed<Value> {
                self.0(*v).map_or(Transformed::Unchanged, Transformed::Changed)
            }
        }

        ReplaceValueWith(move |v| {
            let mut new_v = v;
            while let Value::ControlRegionInput { region, input_idx } = new_v {
                match rewrites.get(region) {
                    // NOTE(eddyb) this needs to be able to apply multiple replacements,
                    // due to the input potentially having redundantly chained `OpPhi`s.
                    //
                    // FIXME(eddyb) union-find-style "path compression" could record the
                    // final value inside `rewrites` while replacements are being made,
                    // to avoid going through a chain more than once (and some of these
                    // replacements could also be applied early).
                    Some(ControlRegionInputRewrites::ReplaceWith(replacements)) => {
                        new_v = replacements[input_idx as usize];
                    }
                    Some(ControlRegionInputRewrites::RenumberOrReplaceWith(
                        renumbering_and_replacements,
                    )) => match renumbering_and_replacements[input_idx as usize] {
                        Ok(new_idx) => {
                            new_v = Value::ControlRegionInput { region, input_idx: new_idx };
                            break;
                        }
                        Err(replacement) => new_v = replacement,
                    },
                    None => break,
                }
            }
            (v != new_v).then_some(new_v)
        })
    }
}

/// The state of one `.structurize_region(region)` invocation, and its result.
///
/// There is a fourth (or 0th) implicit state, which is where nothing has yet
/// observed some region, and [`Structurizer`] isn't tracking it at all.
//
// FIXME(eddyb) make the 0th state explicit and move `incoming_edge_counts` to it.
enum StructurizeRegionState {
    /// Structurization is still running, and observing this is a cycle.
    InProgress,

    /// Structurization completed, and this region can now be claimed.
    Ready {
        /// Cached `region_deferred_edges[region].edge_bundle.accumulated_count`,
        /// i.e. the total count of backedges (if any exist) pointing to `region`
        /// from the CFG subgraph that `region` itself dominates.
        ///
        /// Claiming a region with backedges can combine them with the bundled
        /// edges coming into the CFG cycle from outside, and instead of failing
        /// due to the latter not being enough to claim the region on their own,
        /// actually perform loop structurization.
        accumulated_backedge_count: IncomingEdgeCount,

        // HACK(eddyb) the only part of a `ClaimedRegion` that is computed by
        // `structurize_region` (the rest comes from `try_claim_edge_bundle`).
        region_deferred_edges: DeferredEdgeBundleSet,
    },

    /// Region was claimed (by an [`IncomingEdgeBundle`], with the appropriate
    /// total [`IncomingEdgeCount`], minus `accumulated_backedge_count`), and
    /// must eventually be incorporated as part of some larger region.
    Claimed,
}

/// An "(incoming) edge bundle" is a subset of the edges into a single `target`.
///
/// When `accumulated_count` reaches the total [`IncomingEdgeCount`] for `target`,
/// that [`IncomingEdgeBundle`] is said to "effectively own" its `target` (akin to
/// the more commonly used CFG domination relation, but more "incremental").
///
/// **Note**: `target` has a generic type `T` to reduce redundancy when it's
/// already implied (e.g. by the key in [`DeferredEdgeBundleSet`]'s map).
struct IncomingEdgeBundle<T> {
    target: T,
    accumulated_count: IncomingEdgeCount,

    /// The [`Value`]s that `Value::ControlRegionInput { region, .. }` will get
    /// on entry into `region`, through this "edge bundle".
    target_inputs: SmallVec<[Value; 2]>,
}

impl<T> IncomingEdgeBundle<T> {
    fn with_target<U>(self, target: U) -> IncomingEdgeBundle<U> {
        let IncomingEdgeBundle { target: _, accumulated_count, target_inputs } = self;
        IncomingEdgeBundle { target, accumulated_count, target_inputs }
    }
}

/// A "deferred (incoming) edge bundle" is an [`IncomingEdgeBundle`] that cannot
/// be structurized immediately, but instead waits for its `accumulated_count`
/// to reach the full count of its `target`, before it can grafted into some
/// structured control-flow region.
///
/// While in the "deferred" state, its can accumulate a non-trivial `condition`,
/// every time it's propagated to an "outer" region, e.g. for this pseudocode:
/// ```text
/// if a {
///     branch => label1
/// } else {
///     if b {
///         branch => label1
///     }
/// }
/// ```
/// the deferral of branches to `label1` will result in:
/// ```text
/// label1_condition = if a {
///     true
/// } else {
///     if b {
///         true
///     } else {
///         false
///     }
/// }
/// if label1_condition {
///     branch => label1
/// }
/// ```
/// which could theoretically be simplified (after the [`Structurizer`]) to:
/// ```text
/// label1_condition = a | b
/// if label1_condition {
///     branch => label1
/// }
/// ```
///
/// **Note**: `edge_bundle.target` has a generic type `T` to reduce redundancy
/// when it's already implied (e.g. by the key in [`DeferredEdgeBundleSet`]'s map).
struct DeferredEdgeBundle<T = DeferredTarget> {
    condition: LazyCond,
    edge_bundle: IncomingEdgeBundle<T>,
}

impl<T> DeferredEdgeBundle<T> {
    fn with_target<U>(self, target: U) -> DeferredEdgeBundle<U> {
        let DeferredEdgeBundle { condition, edge_bundle } = self;
        DeferredEdgeBundle { condition, edge_bundle: edge_bundle.with_target(target) }
    }
}

/// A recipe for computing a control-flow-sensitive (boolean) condition [`Value`],
/// potentially requiring merging through an arbitrary number of `Select`s
/// (via per-case outputs and [`Value::ControlNodeOutput`], for each `Select`).
///
/// This should largely be equivalent to eagerly generating all region outputs
/// that might be needed, and then removing the unused ones, but this way we
/// never generate unused outputs, and can potentially even optimize away some
/// redundant dataflow (e.g. `if cond { true } else { false }` is just `cond`).
#[derive(Clone)]
enum LazyCond {
    // HACK(eddyb) `Undef` is used when the condition comes from e.g. a `Select`
    // case that diverges and/or represents `unreachable`.
    Undef,

    False,
    True,

    Merge(Rc<LazyCondMerge>),
}

enum LazyCondMerge {
    Select {
        control_node: ControlNode,
        // FIXME(eddyb) the lowest level of `LazyCond` ends up containing only
        // `LazyCond::{Undef,False,True}`, and that could more efficiently be
        // expressed using e.g. bitsets, but the `Rc` in `LazyCond::Merge`
        // means that this is more compact than it would otherwise be.
        per_case_conds: SmallVec<[LazyCond; 4]>,
    },
}

/// A target for one of the edge bundles in a [`DeferredEdgeBundleSet`], mostly
/// separate from [`ControlRegion`] to allow expressing returns as well.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
enum DeferredTarget {
    Region(ControlRegion),

    /// Structured "return" out of the function (with `target_inputs` used for
    /// the function body `output`s, i.e. inputs of [`ControlInstKind::Return`]).
    Return,
}

/// Set of [`DeferredEdgeBundle`]s, uniquely keyed by their `target`s.
///
/// Semantically equivalent to an unordered series of conditional branches
/// to each possible `target`, which corresponds to an unenforced invariant
/// that exactly one [`DeferredEdgeBundle`] condition must be `true` at any
/// given time (the only non-trivial case, [`DeferredEdgeBundleSet::Choice`],
/// satisfies it because it's only used for merging `Select` cases, and so
/// all the conditions will end up using disjoint [`LazyCond::Merge`]s).
enum DeferredEdgeBundleSet {
    Unreachable,

    // NOTE(eddyb) this erases the condition (by not using `DeferredEdgeBundle`).
    Always {
        // HACK(eddyb) fields are split here to allow e.g. iteration.
        target: DeferredTarget,
        edge_bundle: IncomingEdgeBundle<()>,
    },

    Choice {
        target_to_deferred: FxIndexMap<DeferredTarget, DeferredEdgeBundle<()>>,
    },
}

impl FromIterator<DeferredEdgeBundle> for DeferredEdgeBundleSet {
    fn from_iter<T: IntoIterator<Item = DeferredEdgeBundle>>(iter: T) -> Self {
        let mut iter = iter.into_iter();
        match iter.next() {
            None => Self::Unreachable,
            Some(first) => match iter.next() {
                // NOTE(eddyb) this erases the condition (by not using `DeferredEdgeBundle`).
                None => Self::Always {
                    target: first.edge_bundle.target,
                    edge_bundle: first.edge_bundle.with_target(()),
                },
                Some(second) => Self::Choice {
                    target_to_deferred: ([first, second].into_iter().chain(iter))
                        .map(|d| (d.edge_bundle.target, d.with_target(())))
                        .collect(),
                },
            },
        }
    }
}

impl From<FxIndexMap<DeferredTarget, DeferredEdgeBundle<()>>> for DeferredEdgeBundleSet {
    fn from(target_to_deferred: FxIndexMap<DeferredTarget, DeferredEdgeBundle<()>>) -> Self {
        if target_to_deferred.len() <= 1 {
            target_to_deferred
                .into_iter()
                .map(|(target, deferred)| deferred.with_target(target))
                .collect()
        } else {
            Self::Choice { target_to_deferred }
        }
    }
}

// HACK(eddyb) this API is a mess, is there an uncompromising way to clean it up?
impl DeferredEdgeBundleSet {
    fn get_edge_bundle_by_target(
        &self,
        search_target: DeferredTarget,
    ) -> Option<&IncomingEdgeBundle<()>> {
        match self {
            DeferredEdgeBundleSet::Unreachable => None,
            DeferredEdgeBundleSet::Always { target, edge_bundle } => {
                (*target == search_target).then_some(edge_bundle)
            }
            DeferredEdgeBundleSet::Choice { target_to_deferred } => {
                Some(&target_to_deferred.get(&search_target)?.edge_bundle)
            }
        }
    }

    fn get_edge_bundle_mut_by_target(
        &mut self,
        search_target: DeferredTarget,
    ) -> Option<&mut IncomingEdgeBundle<()>> {
        match self {
            DeferredEdgeBundleSet::Unreachable => None,
            DeferredEdgeBundleSet::Always { target, edge_bundle } => {
                (*target == search_target).then_some(edge_bundle)
            }
            DeferredEdgeBundleSet::Choice { target_to_deferred } => {
                Some(&mut target_to_deferred.get_mut(&search_target)?.edge_bundle)
            }
        }
    }

    fn iter_targets_with_edge_bundle(
        &self,
    ) -> impl Iterator<Item = (DeferredTarget, &IncomingEdgeBundle<()>)> {
        match self {
            DeferredEdgeBundleSet::Unreachable => Either::Left(None.into_iter()),
            DeferredEdgeBundleSet::Always { target, edge_bundle } => {
                Either::Left(Some((*target, edge_bundle)).into_iter())
            }
            DeferredEdgeBundleSet::Choice { target_to_deferred } => Either::Right(
                target_to_deferred
                    .iter()
                    .map(|(&target, deferred)| (target, &deferred.edge_bundle)),
            ),
        }
    }

    fn iter_targets_with_edge_bundle_mut(
        &mut self,
    ) -> impl Iterator<Item = (DeferredTarget, &mut IncomingEdgeBundle<()>)> {
        match self {
            DeferredEdgeBundleSet::Unreachable => Either::Left(None.into_iter()),
            DeferredEdgeBundleSet::Always { target, edge_bundle } => {
                Either::Left(Some((*target, edge_bundle)).into_iter())
            }
            DeferredEdgeBundleSet::Choice { target_to_deferred } => Either::Right(
                target_to_deferred
                    .iter_mut()
                    .map(|(&target, deferred)| (target, &mut deferred.edge_bundle)),
            ),
        }
    }

    // HACK(eddyb) this only exists because of `DeferredEdgeBundleSet`'s lossy
    // representation wrt conditions, so removal from a `DeferredEdgeBundleSet`
    // cannot be used for e.g. `Select` iterating over per-case deferreds.
    fn steal_deferred_by_target_without_removal(
        &mut self,
        search_target: DeferredTarget,
    ) -> Option<DeferredEdgeBundle<()>> {
        let steal_edge_bundle = |edge_bundle: &mut IncomingEdgeBundle<()>| IncomingEdgeBundle {
            target: (),
            accumulated_count: edge_bundle.accumulated_count,
            target_inputs: mem::take(&mut edge_bundle.target_inputs),
        };
        match self {
            DeferredEdgeBundleSet::Unreachable => None,
            DeferredEdgeBundleSet::Always { target, edge_bundle } => (*target == search_target)
                .then(|| DeferredEdgeBundle {
                    condition: LazyCond::True,
                    edge_bundle: steal_edge_bundle(edge_bundle),
                }),
            DeferredEdgeBundleSet::Choice { target_to_deferred } => {
                let DeferredEdgeBundle { condition, edge_bundle } =
                    target_to_deferred.get_mut(&search_target)?;
                Some(DeferredEdgeBundle {
                    condition: mem::replace(condition, LazyCond::False),
                    edge_bundle: steal_edge_bundle(edge_bundle),
                })
            }
        }
    }

    // NOTE(eddyb) the returned `DeferredEdgeBundleSet` exists under the assumption
    // that `split_target` is not reachable from it, so this method is not suitable
    // for e.g. uniformly draining `DeferredEdgeBundleSet` in a way that preserves
    // conditions (but rather it's almost a kind of control-flow "slicing").
    fn split_out_target(self, split_target: DeferredTarget) -> (Option<DeferredEdgeBundle>, Self) {
        match self {
            DeferredEdgeBundleSet::Unreachable => (None, DeferredEdgeBundleSet::Unreachable),
            DeferredEdgeBundleSet::Always { target, edge_bundle } => {
                if target == split_target {
                    (
                        Some(DeferredEdgeBundle {
                            condition: LazyCond::True,
                            edge_bundle: edge_bundle.with_target(target),
                        }),
                        DeferredEdgeBundleSet::Unreachable,
                    )
                } else {
                    (None, DeferredEdgeBundleSet::Always { target, edge_bundle })
                }
            }
            DeferredEdgeBundleSet::Choice { mut target_to_deferred } => {
                // FIXME(eddyb) should this use `shift_remove` and/or emulate
                // extra tombstones, to avoid impacting the order?
                (
                    target_to_deferred
                        .swap_remove(&split_target)
                        .map(|d| d.with_target(split_target)),
                    Self::from(target_to_deferred),
                )
            }
        }
    }

    // HACK(eddyb) the strange signature is overfitted to its own callsite.
    fn split_out_matching<T>(
        self,
        mut matches: impl FnMut(DeferredEdgeBundle) -> Result<T, DeferredEdgeBundle>,
    ) -> (Option<T>, Self) {
        match self {
            DeferredEdgeBundleSet::Unreachable => (None, DeferredEdgeBundleSet::Unreachable),
            DeferredEdgeBundleSet::Always { target, edge_bundle } => {
                match matches(DeferredEdgeBundle {
                    condition: LazyCond::True,
                    edge_bundle: edge_bundle.with_target(target),
                }) {
                    Ok(x) => (Some(x), DeferredEdgeBundleSet::Unreachable),
                    Err(new_deferred) => {
                        assert!(new_deferred.edge_bundle.target == target);
                        assert!(matches!(new_deferred.condition, LazyCond::True));
                        (None, DeferredEdgeBundleSet::Always {
                            target,
                            edge_bundle: new_deferred.edge_bundle.with_target(()),
                        })
                    }
                }
            }
            DeferredEdgeBundleSet::Choice { mut target_to_deferred } => {
                let mut result = None;
                for (i, (&target, deferred)) in target_to_deferred.iter_mut().enumerate() {
                    // HACK(eddyb) "take" `deferred` so it can be passed to
                    // `matches` (and put back if that returned `Err`).
                    let taken_deferred = mem::replace(deferred, DeferredEdgeBundle {
                        condition: LazyCond::False,
                        edge_bundle: IncomingEdgeBundle {
                            target: Default::default(),
                            accumulated_count: Default::default(),
                            target_inputs: Default::default(),
                        },
                    });

                    match matches(taken_deferred.with_target(target)) {
                        Ok(x) => {
                            result = Some(x);
                            // FIXME(eddyb) should this use `swap_remove_index`?
                            target_to_deferred.shift_remove_index(i).unwrap();
                            break;
                        }

                        // Put back the `DeferredEdgeBundle` and keep looking.
                        Err(new_deferred) => {
                            assert!(new_deferred.edge_bundle.target == target);
                            *deferred = new_deferred.with_target(());
                        }
                    }
                }
                (result, Self::from(target_to_deferred))
            }
        }
    }
}

/// A successfully "claimed" (via `try_claim_edge_bundle`) partially structurized
/// CFG subgraph (i.e. set of [`ControlRegion`]s previously connected by CFG edges),
/// which is effectively owned by the "claimer" and **must** be used for:
/// - the whole function body (if `deferred_edges` only contains `Return`)
/// - one of the cases of a `Select` node
/// - merging into a larger region (i.e. its nearest dominator)
//
// FIXME(eddyb) consider never having to claim the function body itself,
// by wrapping the CFG in a `ControlNode` instead.
struct ClaimedRegion {
    // FIXME(eddyb) find a way to clarify that this can differ from the target
    // of `try_claim_edge_bundle`, and also that `deferred_edges` are from the
    // perspective of being "inside" `structured_body` (wrt hermeticity).
    structured_body: ControlRegion,

    /// The [`Value`]s that `Value::ControlRegionInput { region: structured_body, .. }`
    /// will get on entry into `structured_body`, when this region ends up
    /// merged into a larger region, or as a child of a new [`ControlNode`].
    //
    // FIXME(eddyb) don't replace `Value::ControlRegionInput { region: structured_body, .. }`
    // with `region_inputs` when `structured_body` ends up a `ControlNode` child,
    // but instead make all `ControlRegion`s entirely hermetic wrt inputs.
    structured_body_inputs: SmallVec<[Value; 2]>,

    /// The transitive targets which couldn't be claimed into `structured_body`
    /// remain as deferred exits, and will block further structurization until
    /// all other edges to those same targets are gathered together.
    ///
    /// **Note**: this will only be empty if the region can never exit,
    /// i.e. it has divergent control-flow (such as an infinite loop), as any
    /// control-flow path that can (eventually) return from the function, will
    /// end up using a deferred target for that (see [`DeferredTarget::Return`]).
    deferred_edges: DeferredEdgeBundleSet,
}

impl<'a> Structurizer<'a> {
    pub fn new(cx: &'a Context, func_def_body: &'a mut FuncDefBody) -> Self {
        // FIXME(eddyb) SPIR-T should have native booleans itself.
        let wk = &spv::spec::Spec::get().well_known;
        let type_bool = cx.intern(TypeKind::SpvInst {
            spv_inst: wk.OpTypeBool.into(),
            type_and_const_inputs: [].into_iter().collect(),
        });
        let const_true = cx.intern(ConstDef {
            attrs: AttrSet::default(),
            ty: type_bool,
            kind: ConstKind::SpvInst {
                spv_inst_and_const_inputs: Rc::new((
                    wk.OpConstantTrue.into(),
                    [].into_iter().collect(),
                )),
            },
        });
        let const_false = cx.intern(ConstDef {
            attrs: AttrSet::default(),
            ty: type_bool,
            kind: ConstKind::SpvInst {
                spv_inst_and_const_inputs: Rc::new((
                    wk.OpConstantFalse.into(),
                    [].into_iter().collect(),
                )),
            },
        });

        let (loop_header_to_exit_targets, incoming_edge_counts_including_loop_exits) =
            func_def_body
                .unstructured_cfg
                .as_ref()
                .map(|cfg| {
                    let loop_header_to_exit_targets = {
                        let mut loop_finder = LoopFinder::new(cfg);
                        loop_finder.find_earliest_scc_root_of(func_def_body.body);
                        loop_finder.loop_header_to_exit_targets
                    };

                    let mut state = TraversalState {
                        incoming_edge_counts: EntityOrientedDenseMap::new(),

                        pre_order_visit: |_| {},
                        post_order_visit: |_| {},
                        reverse_targets: false,
                    };
                    cfg.traverse_whole_func(func_def_body, &mut state);

                    // HACK(eddyb) treat loop exits as "false edges", that their
                    // respective loop header "owns", such that structurization
                    // naturally stops at those loop exits, instead of continuing
                    // greedily into the loop exterior (producing "maximal loops").
                    for loop_exit_targets in loop_header_to_exit_targets.values() {
                        for &exit_target in loop_exit_targets {
                            *state
                                .incoming_edge_counts
                                .entry(exit_target)
                                .get_or_insert(Default::default()) += IncomingEdgeCount::ONE;
                        }
                    }

                    (loop_header_to_exit_targets, state.incoming_edge_counts)
                })
                .unwrap_or_default();

        Self {
            cx,
            type_bool,
            const_true,
            const_false,

            func_def_body,

            loop_header_to_exit_targets,
            incoming_edge_counts_including_loop_exits,

            structurize_region_state: FxIndexMap::default(),
            control_region_input_rewrites: EntityOrientedDenseMap::new(),
        }
    }

    pub fn structurize_func(mut self) {
        // Don't even try to re-structurize functions.
        if self.func_def_body.unstructured_cfg.is_none() {
            return;
        }

        // FIXME(eddyb) it might work much better to have the unstructured CFG
        // wrapped in a `ControlNode` inside the function body, instead.
        let func_body_deferred_edges = {
            let func_entry_pseudo_edge = {
                let target = self.func_def_body.body;
                move || IncomingEdgeBundle {
                    target,
                    accumulated_count: IncomingEdgeCount::ONE,
                    target_inputs: [].into_iter().collect(),
                }
            };

            // HACK(eddyb) it's easier to assume the function never loops back
            // to its body, than fix up the broken CFG if that never happens.
            if self.incoming_edge_counts_including_loop_exits[func_entry_pseudo_edge().target]
                != func_entry_pseudo_edge().accumulated_count
            {
                // FIXME(eddyb) find a way to attach (diagnostic) attributes
                // to a `FuncDefBody`, would be useful to have that here.
                return;
            }

            let ClaimedRegion { structured_body, structured_body_inputs, deferred_edges } =
                self.try_claim_edge_bundle(func_entry_pseudo_edge()).ok().unwrap();
            assert!(structured_body == func_entry_pseudo_edge().target);
            assert!(structured_body_inputs == func_entry_pseudo_edge().target_inputs);
            deferred_edges
        };

        match func_body_deferred_edges {
            // FIXME(eddyb) also support structured return when the whole body
            // is divergent, by generating undef constants (needs access to the
            // whole `FuncDecl`, not just `FuncDefBody`, to get the right types).
            DeferredEdgeBundleSet::Unreachable => {
                // HACK(eddyb) replace the CFG with one that only contains an
                // `Unreachable` terminator for the body, comparable to what
                // `rebuild_cfg_from_unclaimed_region_deferred_edges` would do
                // in the general case (but special-cased because this is very
                // close to being structurizable, just needs a bit of plumbing).
                let mut control_inst_on_exit_from = EntityOrientedDenseMap::new();
                control_inst_on_exit_from.insert(self.func_def_body.body, ControlInst {
                    attrs: AttrSet::default(),
                    kind: ControlInstKind::Unreachable,
                    inputs: [].into_iter().collect(),
                    targets: [].into_iter().collect(),
                    target_inputs: FxIndexMap::default(),
                });
                self.func_def_body.unstructured_cfg = Some(ControlFlowGraph {
                    control_inst_on_exit_from,
                    loop_merge_to_loop_header: Default::default(),
                });
            }

            // Structured return, the function is fully structurized.
            DeferredEdgeBundleSet::Always { target: DeferredTarget::Return, edge_bundle } => {
                let body_def = self.func_def_body.at_mut_body().def();
                body_def.outputs = edge_bundle.target_inputs;
                self.func_def_body.unstructured_cfg = None;
            }

            _ => {
                // Repair all the regions that remain unclaimed, including the body.
                let structurize_region_state = mem::take(&mut self.structurize_region_state)
                    .into_iter()
                    .chain([(self.func_def_body.body, StructurizeRegionState::Ready {
                        accumulated_backedge_count: IncomingEdgeCount::default(),

                        region_deferred_edges: func_body_deferred_edges,
                    })]);
                for (target, state) in structurize_region_state {
                    if let StructurizeRegionState::Ready { region_deferred_edges, .. } = state {
                        self.rebuild_cfg_from_unclaimed_region_deferred_edges(
                            target,
                            region_deferred_edges,
                        );
                    }
                }
            }
        }

        // The last step of structurization is applying rewrites accumulated
        // while structurizing (i.e. `control_region_input_rewrites`).
        //
        // FIXME(eddyb) obsolete this by fully taking advantage of hermeticity,
        // and only replacing `Value::ControlRegionInput { region, .. }` within
        // `region`'s children, shallowly, whenever `region` gets claimed.
        self.func_def_body.inner_in_place_transform_with(
            &mut ControlRegionInputRewrites::rewrite_all(&self.control_region_input_rewrites),
        );
    }

    fn try_claim_edge_bundle(
        &mut self,
        edge_bundle: IncomingEdgeBundle<ControlRegion>,
    ) -> Result<ClaimedRegion, IncomingEdgeBundle<ControlRegion>> {
        let target = edge_bundle.target;

        // Always attempt structurization before checking the `IncomingEdgeCount`,
        // to be able to make use of backedges (if any were found).
        if self.structurize_region_state.get(&target).is_none() {
            self.structurize_region(target);
        }

        let backedge_count = match self.structurize_region_state[&target] {
            // This `try_claim_edge_bundle` call is itself a backedge, and it's
            // coherent to not let any of them claim the loop itself, and only
            // allow claiming the whole loop (if successfully structurized).
            StructurizeRegionState::InProgress => IncomingEdgeCount::default(),

            StructurizeRegionState::Ready { accumulated_backedge_count, .. } => {
                accumulated_backedge_count
            }

            StructurizeRegionState::Claimed => {
                unreachable!("cfg::Structurizer::try_claim_edge_bundle: already claimed");
            }
        };

        if self.incoming_edge_counts_including_loop_exits[target]
            != edge_bundle.accumulated_count + backedge_count
        {
            return Err(edge_bundle);
        }

        let state =
            self.structurize_region_state.insert(target, StructurizeRegionState::Claimed).unwrap();

        let mut deferred_edges = match state {
            StructurizeRegionState::InProgress => unreachable!(
                "cfg::Structurizer::try_claim_edge_bundle: cyclic calls \
                 should not get this far"
            ),

            StructurizeRegionState::Ready { region_deferred_edges, .. } => region_deferred_edges,

            StructurizeRegionState::Claimed => {
                // Handled above.
                unreachable!()
            }
        };

        let mut backedge = None;
        if backedge_count != IncomingEdgeCount::default() {
            (backedge, deferred_edges) =
                deferred_edges.split_out_target(DeferredTarget::Region(target));
        }

        // If the target contains any backedge to itself, that's a loop, with:
        // * entry: `edge_bundle` (unconditional, i.e. `do`-`while`-like)
        // * body: `target`
        // * repeat ("continue") edge: `backedge` (with its `condition`)
        // * exit ("break") edges: `deferred_edges`
        let structured_body = if let Some(backedge) = backedge {
            let DeferredEdgeBundle { condition: repeat_condition, edge_bundle: backedge } =
                backedge;
            let body = target;

            // HACK(eddyb) due to `Loop` `ControlNode`s not being hermetic on
            // the output side yet (i.e. they still have SSA-like semantics),
            // it gets wrapped in a `ControlRegion`, which can be as hermetic as
            // the loop body itself was originally.
            // NOTE(eddyb) both input declarations and the child `Loop` node are
            // added later down below, after the `Loop` node is created.
            let wrapper_region =
                self.func_def_body.control_regions.define(self.cx, ControlRegionDef::default());

            // Any loop body region inputs, which must receive values from both
            // the loop entry and the backedge, become explicit "loop state",
            // starting as `initial_inputs` and being replaced with body outputs
            // after every loop iteration.
            //
            // FIXME(eddyb) `Loop` `ControlNode`s should be changed to be hermetic
            // and have the loop state be output from the whole node itself,
            // for any outside uses of values defined within the loop body.
            let body_def = self.func_def_body.at_mut(body).def();
            let original_input_decls = mem::take(&mut body_def.inputs);
            assert!(body_def.outputs.is_empty());

            // HACK(eddyb) some dataflow through the loop body is redundant,
            // and can be lifted out of it, but the worst part is that applying
            // the replacement requires leaving alone all the non-redundant
            // `body` region inputs at the same time, and it's not really
            // feasible to move `body`'s children into a new region without
            // wasting it completely (i.e. can't swap with `wrapper_region`).
            let mut initial_inputs = SmallVec::<[_; 2]>::new();
            let body_input_rewrites = ControlRegionInputRewrites::RenumberOrReplaceWith(
                backedge
                    .target_inputs
                    .into_iter()
                    .enumerate()
                    .map(|(original_idx, mut backedge_value)| {
                        ControlRegionInputRewrites::rewrite_all(
                            &self.control_region_input_rewrites,
                        )
                        .transform_value_use(&backedge_value)
                        .apply_to(&mut backedge_value);

                        let original_idx = u32::try_from(original_idx).unwrap();
                        if backedge_value
                            == (Value::ControlRegionInput { region: body, input_idx: original_idx })
                        {
                            // FIXME(eddyb) does this have to be general purpose,
                            // or could this be handled as `None` with a single
                            // `wrapper_region` per `ControlRegionInputRewrites`?
                            Err(Value::ControlRegionInput {
                                region: wrapper_region,
                                input_idx: original_idx,
                            })
                        } else {
                            let renumbered_idx = u32::try_from(body_def.inputs.len()).unwrap();
                            initial_inputs.push(Value::ControlRegionInput {
                                region: wrapper_region,
                                input_idx: original_idx,
                            });
                            body_def.inputs.push(original_input_decls[original_idx as usize]);
                            body_def.outputs.push(backedge_value);
                            Ok(renumbered_idx)
                        }
                    })
                    .collect(),
            );
            self.control_region_input_rewrites.insert(body, body_input_rewrites);

            assert_eq!(initial_inputs.len(), body_def.inputs.len());
            assert_eq!(body_def.outputs.len(), body_def.inputs.len());

            let repeat_condition = self.materialize_lazy_cond(&repeat_condition);
            let loop_node = self.func_def_body.control_nodes.define(
                self.cx,
                ControlNodeDef {
                    kind: ControlNodeKind::Loop { initial_inputs, body, repeat_condition },
                    outputs: [].into_iter().collect(),
                }
                .into(),
            );

            let wrapper_region_def = &mut self.func_def_body.control_regions[wrapper_region];
            wrapper_region_def.inputs = original_input_decls;
            wrapper_region_def
                .children
                .insert_last(loop_node, &mut self.func_def_body.control_nodes);

            // HACK(eddyb) we've treated loop exits as extra "false edges", so
            // here they have to be added to the loop (potentially unlocking
            // structurization to the outside of the loop, in the caller).
            if let Some(exit_targets) = self.loop_header_to_exit_targets.get(&target) {
                for &exit_target in exit_targets {
                    // FIXME(eddyb) what if this is `None`, is that impossible?
                    if let Some(exit_edge_bundle) = deferred_edges
                        .get_edge_bundle_mut_by_target(DeferredTarget::Region(exit_target))
                    {
                        exit_edge_bundle.accumulated_count += IncomingEdgeCount::ONE;
                    }
                }
            }

            wrapper_region
        } else {
            target
        };
        Ok(ClaimedRegion {
            structured_body,
            structured_body_inputs: edge_bundle.target_inputs,
            deferred_edges,
        })
    }

    /// Structurize `region` by absorbing into it the entire CFG subgraph which
    /// it dominates (and deferring any other edges to the rest of the CFG).
    ///
    /// The output of this process is stored in, and any other bookkeeping is
    /// done through, `self.structurize_region_state[region]`.
    ///
    /// See also [`StructurizeRegionState`]'s docs.
    fn structurize_region(&mut self, region: ControlRegion) {
        {
            let old_state =
                self.structurize_region_state.insert(region, StructurizeRegionState::InProgress);
            if let Some(old_state) = old_state {
                unreachable!(
                    "cfg::Structurizer::structurize_region: \
                     already {}, when attempting to start structurization",
                    match old_state {
                        StructurizeRegionState::InProgress => "in progress (cycle detected)",
                        StructurizeRegionState::Ready { .. } => "completed",
                        StructurizeRegionState::Claimed => "claimed",
                    }
                );
            }
        }

        let control_inst_on_exit = self
            .func_def_body
            .unstructured_cfg
            .as_mut()
            .unwrap()
            .control_inst_on_exit_from
            .remove(region)
            .expect(
                "cfg::Structurizer::structurize_region: missing \
                   `ControlInst` (CFG wasn't unstructured in the first place?)",
            );

        // Start with the concatenation of `region` and `control_inst_on_exit`,
        // always appending `ControlNode`s (including the children of entire
        // `ClaimedRegion`s) to `region`'s definition itself.
        let mut deferred_edges = {
            let ControlInst { attrs, kind, inputs, targets, target_inputs } = control_inst_on_exit;

            // FIXME(eddyb) this loses `attrs`.
            let _ = attrs;

            let target_regions: SmallVec<[_; 8]> = targets
                .iter()
                .map(|&target| {
                    self.try_claim_edge_bundle(IncomingEdgeBundle {
                        target,
                        accumulated_count: IncomingEdgeCount::ONE,
                        target_inputs: target_inputs.get(&target).cloned().unwrap_or_default(),
                    })
                    .map_err(|edge_bundle| {
                        // HACK(eddyb) special-case "shared `unreachable`" to
                        // always inline it and avoid awkward "merges".
                        // FIXME(eddyb) should this be in a separate CFG pass?
                        // (i.e. is there a risk of other logic needing this?)
                        let target_is_trivial_unreachable =
                            match self.structurize_region_state.get(&edge_bundle.target) {
                                Some(StructurizeRegionState::Ready {
                                    region_deferred_edges: DeferredEdgeBundleSet::Unreachable,
                                    ..
                                }) => {
                                    // FIXME(eddyb) DRY this "is empty region" check.
                                    self.func_def_body
                                        .at(edge_bundle.target)
                                        .at_children()
                                        .into_iter()
                                        .next()
                                        .is_none()
                                }
                                _ => false,
                            };
                        if target_is_trivial_unreachable {
                            DeferredEdgeBundleSet::Unreachable
                        } else {
                            DeferredEdgeBundleSet::Always {
                                target: DeferredTarget::Region(edge_bundle.target),
                                edge_bundle: edge_bundle.with_target(()),
                            }
                        }
                    })
                })
                .collect();

            match kind {
                ControlInstKind::Unreachable => {
                    assert_eq!((inputs.len(), target_regions.len()), (0, 0));

                    // FIXME(eddyb) this may result in lost optimizations over
                    // actually encoding it in `ControlNode`/`ControlRegion`
                    // (e.g. a new `ControlNodeKind`, or replacing region `outputs`),
                    // but it's simpler to handle it like this.
                    //
                    // NOTE(eddyb) actually, this encoding is lossless *during*
                    // structurization, and a divergent region can only end up as:
                    // - the function body, where it implies the function can
                    //   never actually return: not fully structurized currently
                    //   (but only for a silly reason, and is entirely fixable)
                    // - a `Select` case, where it implies that case never merges
                    //   back into the `Select` node, and potentially that the
                    //   case can never be taken: this is where a structured
                    //   encoding can be introduced, by pruning unreachable
                    //   cases, and potentially even introducing `assume`s
                    // - a `Loop` body is not actually possible when divergent
                    //   (as there can be no backedge to form a cyclic CFG)
                    DeferredEdgeBundleSet::Unreachable
                }

                ControlInstKind::ExitInvocation(kind) => {
                    assert_eq!(target_regions.len(), 0);

                    let control_node = self.func_def_body.control_nodes.define(
                        self.cx,
                        ControlNodeDef {
                            kind: ControlNodeKind::ExitInvocation { kind, inputs },
                            outputs: [].into_iter().collect(),
                        }
                        .into(),
                    );
                    self.func_def_body.control_regions[region]
                        .children
                        .insert_last(control_node, &mut self.func_def_body.control_nodes);

                    DeferredEdgeBundleSet::Unreachable
                }

                ControlInstKind::Return => {
                    assert_eq!(target_regions.len(), 0);

                    DeferredEdgeBundleSet::Always {
                        target: DeferredTarget::Return,
                        edge_bundle: IncomingEdgeBundle {
                            accumulated_count: IncomingEdgeCount::default(),
                            target: (),
                            target_inputs: inputs,
                        },
                    }
                }

                ControlInstKind::Branch => {
                    assert_eq!((inputs.len(), target_regions.len()), (0, 1));

                    self.append_maybe_claimed_region(
                        region,
                        target_regions.into_iter().next().unwrap(),
                    )
                }

                ControlInstKind::SelectBranch(kind) => {
                    assert_eq!(inputs.len(), 1);

                    let scrutinee = inputs[0];

                    self.structurize_select_into(region, kind, Ok(scrutinee), target_regions)
                }
            }
        };

        // Try to resolve deferred edges that may have accumulated, and keep
        // going until there's no more deferred edges that can be claimed.
        loop {
            // FIXME(eddyb) this should try to take as many edges as possible,
            // and incorporate them all at once, potentially with a switch instead
            // of N individual branches with their own booleans etc.
            let (claimed, else_deferred_edges) = deferred_edges.split_out_matching(|deferred| {
                let deferred_target = deferred.edge_bundle.target;
                let DeferredEdgeBundle { condition, edge_bundle } = match deferred_target {
                    DeferredTarget::Region(target) => deferred.with_target(target),
                    DeferredTarget::Return => return Err(deferred),
                };

                match self.try_claim_edge_bundle(edge_bundle) {
                    Ok(claimed_region) => Ok((condition, claimed_region)),

                    Err(new_edge_bundle) => {
                        let new_target = DeferredTarget::Region(new_edge_bundle.target);
                        Err(DeferredEdgeBundle {
                            condition,
                            edge_bundle: new_edge_bundle.with_target(new_target),
                        })
                    }
                }
            });
            let Some((condition, then_region)) = claimed else {
                deferred_edges = else_deferred_edges;
                break;
            };

            deferred_edges = self.structurize_select_into(
                region,
                SelectionKind::BoolCond,
                Err(&condition),
                [Ok(then_region), Err(else_deferred_edges)].into_iter().collect(),
            );
        }

        // Cache the edge count for backedges (which later get turned into loops).
        let accumulated_backedge_count = deferred_edges
            .get_edge_bundle_by_target(DeferredTarget::Region(region))
            .map(|backedge| backedge.accumulated_count)
            .unwrap_or_default();

        let old_state =
            self.structurize_region_state.insert(region, StructurizeRegionState::Ready {
                accumulated_backedge_count,
                region_deferred_edges: deferred_edges,
            });
        if !matches!(old_state, Some(StructurizeRegionState::InProgress)) {
            unreachable!(
                "cfg::Structurizer::structurize_region: \
                 already {}, when attempting to store structurization result",
                match old_state {
                    None => "reverted to missing (removed from the map?)",
                    Some(StructurizeRegionState::InProgress) => unreachable!(),
                    Some(StructurizeRegionState::Ready { .. }) => "completed",
                    Some(StructurizeRegionState::Claimed) => "claimed",
                }
            );
        }
    }

    /// Append to `parent_region` a new `Select` [`ControlNode`] built from
    /// partially structured `cases`, merging all of their `deferred_edges`
    /// together into a combined `DeferredEdgeBundleSet` (which gets returned).
    //
    // FIXME(eddyb) handle `unreachable` cases losslessly.
    fn structurize_select_into(
        &mut self,
        parent_region: ControlRegion,
        kind: SelectionKind,
        scrutinee: Result<Value, &LazyCond>,
        mut cases: SmallVec<[Result<ClaimedRegion, DeferredEdgeBundleSet>; 8]>,
    ) -> DeferredEdgeBundleSet {
        // HACK(eddyb) don't nest a sole convergent case inside the `Select`,
        // and instead prefer early convergence (see also `EventualCfgExits`).
        // NOTE(eddyb) this also happens to handle the situation where `Select`
        // isn't even needed (i.e. the other cases don't even have side-effects),
        // via the `any_non_empty_case` check (after taking `convergent_case`).
        // FIXME(eddyb) consider introducing some kind of `assume` for `scrutinee`,
        // to preserve its known value (whenever `convergent_case` is reached).
        let convergent_cases = cases.iter_mut().filter(|case| match case {
            Ok(ClaimedRegion { deferred_edges, .. }) | Err(deferred_edges) => {
                !matches!(deferred_edges, DeferredEdgeBundleSet::Unreachable)
            }
        });
        if let Ok(convergent_case) = convergent_cases.exactly_one() {
            // HACK(eddyb) this relies on `structurize_select_into`'s behavior
            // for `unreachable` cases being largely equivalent to empty cases.
            let convergent_case =
                mem::replace(convergent_case, Err(DeferredEdgeBundleSet::Unreachable));

            // FIXME(eddyb) avoid needing recursion, by instead changing the
            // "`Select` node insertion cursor" (into `parent_region`), and
            // stashing `convergent_case`'s deferred edges to return later.
            let deferred_edges =
                self.structurize_select_into(parent_region, kind, scrutinee, cases);
            assert!(matches!(deferred_edges, DeferredEdgeBundleSet::Unreachable));

            // The sole convergent case goes in the `parent_region`, and its
            // relationship with the `Select` (if it was even necessary at all)
            // is only at most one of side-effect sequencing.
            return self.append_maybe_claimed_region(parent_region, convergent_case);
        }

        // Support lazily defining the `Select` node, as soon as it's necessary
        // (i.e. to plumb per-case dataflow through `Value::ControlNodeOutput`s),
        // but also if any of the cases actually have non-empty regions, which
        // is checked after the special-cases (which return w/o a `Select` at all).
        //
        // FIXME(eddyb) some cases may be `unreachable`, and that's erased here.
        let mut cached_select_node = None;
        let mut non_move_kind = Some(kind);
        let mut get_or_define_select_node = |this: &mut Self, cases: &[_]| {
            *cached_select_node.get_or_insert_with(|| {
                let kind = non_move_kind.take().unwrap();
                let cases = cases
                    .iter()
                    .map(|case| {
                        let case_region = match case {
                            &Ok(ClaimedRegion { structured_body, .. }) => structured_body,
                            Err(_) => this
                                .func_def_body
                                .control_regions
                                .define(this.cx, ControlRegionDef::default()),
                        };

                        // FIXME(eddyb) should these be asserts that it's already empty?
                        let case_region_def = this.func_def_body.at_mut(case_region).def();
                        case_region_def.outputs.clear();
                        case_region
                    })
                    .collect();
                let scrutinee =
                    scrutinee.unwrap_or_else(|lazy_cond| this.materialize_lazy_cond(lazy_cond));
                let select_node = this.func_def_body.control_nodes.define(
                    this.cx,
                    ControlNodeDef {
                        kind: ControlNodeKind::Select { kind, scrutinee, cases },
                        outputs: [].into_iter().collect(),
                    }
                    .into(),
                );
                this.func_def_body.control_regions[parent_region]
                    .children
                    .insert_last(select_node, &mut this.func_def_body.control_nodes);
                select_node
            })
        };

        // Ensure the `Select` exists if needed for any per-case side-effects.
        let any_non_empty_case = cases.iter().any(|case| {
            case.as_ref().is_ok_and(|&ClaimedRegion { structured_body, .. }| {
                self.func_def_body.at(structured_body).at_children().into_iter().next().is_some()
            })
        });
        if any_non_empty_case {
            get_or_define_select_node(self, &cases);
        }

        // Gather the full set of deferred edges (and returns).
        struct DeferredTargetSummary {
            input_count: usize,
            total_edge_count: IncomingEdgeCount,
        }
        let mut deferred_targets = FxIndexMap::default();
        for case in &cases {
            let case_deferred_edges = match case {
                Ok(ClaimedRegion { deferred_edges, .. }) | Err(deferred_edges) => deferred_edges,
            };
            for (target, edge_bundle) in case_deferred_edges.iter_targets_with_edge_bundle() {
                let input_count = edge_bundle.target_inputs.len();

                let summary = deferred_targets.entry(target).or_insert(DeferredTargetSummary {
                    input_count,
                    total_edge_count: IncomingEdgeCount::default(),
                });
                assert_eq!(summary.input_count, input_count);
                summary.total_edge_count += edge_bundle.accumulated_count;
            }
        }

        // FIXME(eddyb) `control_region_input_rewrites` mappings, generated
        // for every `ClaimedRegion` that has been merged into a larger region,
        // only get applied after structurization fully completes, but here it's
        // very useful to have the fully resolved values across all `cases`'
        // incoming/outgoing edges (note, however, that within outgoing edges,
        // i.e. `case_deferred_edges`' `target_inputs`, `Value::ControlRegionInput`
        // are not resolved using the contents of `case_structured_body_inputs`,
        // which is kept hermetic until just before `structurize_select` returns).
        for case in &mut cases {
            let (case_structured_body_inputs, case_deferred_edges) = match case {
                Ok(ClaimedRegion { structured_body_inputs, deferred_edges, .. }) => {
                    (&mut structured_body_inputs[..], deferred_edges)
                }
                Err(deferred_edges) => (&mut [][..], deferred_edges),
            };
            let all_values = case_structured_body_inputs.iter_mut().chain(
                case_deferred_edges
                    .iter_targets_with_edge_bundle_mut()
                    .flat_map(|(_, edge_bundle)| &mut edge_bundle.target_inputs),
            );
            for v in all_values {
                ControlRegionInputRewrites::rewrite_all(&self.control_region_input_rewrites)
                    .transform_value_use(v)
                    .apply_to(v);
            }
        }

        // Merge all `deferred_edges` by plumbing their per-case `target_input`s
        // (into per-case region outputs, and therefore the `Select` outputs)
        // out of all cases that can reach them, with undef constants used to
        // fill any gaps (i.e. for the targets not reached through each case),
        // while deferred conditions are collected separately (for `LazyCond`).
        let deferred_edges = deferred_targets.into_iter().map(|(target, target_summary)| {
            let DeferredTargetSummary { input_count, total_edge_count } = target_summary;

            // HACK(eddyb) `Err` wraps only `LazyCond::{Undef,False}`, which allows
            // distinguishing between "not taken" and "not even reachable".
            let per_case_deferred: SmallVec<[Result<DeferredEdgeBundle<()>, LazyCond>; 8]> = cases
                .iter_mut()
                .map(|case| match case {
                    Ok(ClaimedRegion { deferred_edges, .. }) | Err(deferred_edges) => {
                        if let DeferredEdgeBundleSet::Unreachable = deferred_edges {
                            Err(LazyCond::Undef)
                        } else {
                            deferred_edges
                                .steal_deferred_by_target_without_removal(target)
                                .ok_or(LazyCond::False)
                        }
                    }
                })
                .collect();

            let target_inputs = (0..input_count)
                .map(|target_input_idx| {
                    let per_case_target_input = per_case_deferred.iter().map(|per_case_deferred| {
                        per_case_deferred.as_ref().ok().map(
                            |DeferredEdgeBundle { edge_bundle, .. }| {
                                edge_bundle.target_inputs[target_input_idx]
                            },
                        )
                    });

                    // Avoid introducing dynamic dataflow when the same value is
                    // used across all cases (which can reach this `target`).
                    let unique_target_input_value = per_case_target_input
                        .clone()
                        .zip_eq(&cases)
                        .filter_map(|(v, case)| Some((v?, case)))
                        .map(|(v, case)| {
                            // If possible, resolve `v` to a `Value` valid in
                            // `parent_region` (i.e. the `Select` node parent).
                            match case {
                                // `case`'s `structured_body` effectively "wraps"
                                // its `deferred_edges` (where `v` came from),
                                // so values from `parent_region` can only be
                                // hermetically used via `structured_body` inputs.
                                Ok(ClaimedRegion {
                                    structured_body,
                                    structured_body_inputs,
                                    ..
                                }) => match v {
                                    Value::Const(_) => Ok(v),
                                    Value::ControlRegionInput { region, input_idx }
                                        if region == *structured_body =>
                                    {
                                        Ok(structured_body_inputs[input_idx as usize])
                                    }
                                    _ => Err(()),
                                },

                                // `case` has no region of its own, so everything
                                // it carries is already from within `parent_region`.
                                Err(_) => Ok(v),
                            }
                        })
                        .dedup()
                        .exactly_one();
                    if let Ok(Ok(v)) = unique_target_input_value {
                        return v;
                    }

                    let ty = match target {
                        DeferredTarget::Region(target) => {
                            self.func_def_body.at(target).def().inputs[target_input_idx].ty
                        }
                        // HACK(eddyb) in the absence of `FuncDecl`, infer the
                        // type from each returned value (and require they match).
                        DeferredTarget::Return => per_case_target_input
                            .clone()
                            .flatten()
                            .map(|v| self.func_def_body.at(v).type_of(self.cx))
                            .dedup()
                            .exactly_one()
                            .ok()
                            .expect("mismatched `return`ed value types"),
                    };

                    let select_node = get_or_define_select_node(self, &cases);
                    let output_decls = &mut self.func_def_body.at_mut(select_node).def().outputs;
                    let output_idx = output_decls.len();
                    output_decls.push(ControlNodeOutputDecl { attrs: AttrSet::default(), ty });
                    for (case_idx, v) in per_case_target_input.enumerate() {
                        let v = v.unwrap_or_else(|| Value::Const(self.const_undef(ty)));

                        let case_region = match &self.func_def_body.at(select_node).def().kind {
                            ControlNodeKind::Select { cases, .. } => cases[case_idx],
                            _ => unreachable!(),
                        };
                        let outputs = &mut self.func_def_body.at_mut(case_region).def().outputs;
                        assert_eq!(outputs.len(), output_idx);
                        outputs.push(v);
                    }
                    Value::ControlNodeOutput {
                        control_node: select_node,
                        output_idx: output_idx.try_into().unwrap(),
                    }
                })
                .collect();

            // Simplify `LazyCond`s eagerly, to reduce costs later on, or even
            // outright avoid defining the `Select` node in the first place.
            //
            // FIXME(eddyb) move all simplifications from `materialize_lazy_cond`
            // to here (allowing e.g. not defining the `Select` in more cases).
            let per_case_conds =
                per_case_deferred.iter().map(|per_case_deferred| match per_case_deferred {
                    Ok(DeferredEdgeBundle { condition, .. }) => condition,
                    Err(undef_or_false) => undef_or_false,
                });
            let condition = if per_case_conds
                .clone()
                .all(|cond| matches!(cond, LazyCond::Undef | LazyCond::True))
            {
                LazyCond::True
            } else {
                LazyCond::Merge(Rc::new(LazyCondMerge::Select {
                    control_node: get_or_define_select_node(self, &cases),
                    per_case_conds: per_case_conds.cloned().collect(),
                }))
            };

            DeferredEdgeBundle {
                condition,
                edge_bundle: IncomingEdgeBundle {
                    target,
                    accumulated_count: total_edge_count,
                    target_inputs,
                },
            }
        });
        let deferred_edges = deferred_edges.collect();

        // Only as the very last step, can per-case `region_inputs` be added to
        // `control_region_input_rewrites`.
        //
        // FIXME(eddyb) don't replace `Value::ControlRegionInput { region, .. }`
        // with `region_inputs` when the `region` ends up a `ControlNode` child,
        // but instead make all `ControlRegion`s entirely hermetic wrt inputs.
        #[allow(clippy::manual_flatten)]
        for case in cases {
            if let Ok(ClaimedRegion { structured_body, structured_body_inputs, .. }) = case {
                if !structured_body_inputs.is_empty() {
                    self.control_region_input_rewrites.insert(
                        structured_body,
                        ControlRegionInputRewrites::ReplaceWith(structured_body_inputs),
                    );
                    self.func_def_body.at_mut(structured_body).def().inputs.clear();
                }
            }
        }

        deferred_edges
    }

    // FIXME(eddyb) this should try to handle as many `LazyCond` as are available,
    // for incorporating them all at once, ideally with a switch instead
    // of N individual branches with their own booleans etc.
    fn materialize_lazy_cond(&mut self, cond: &LazyCond) -> Value {
        match cond {
            LazyCond::Undef => Value::Const(self.const_undef(self.type_bool)),
            LazyCond::False => Value::Const(self.const_false),
            LazyCond::True => Value::Const(self.const_true),

            // `LazyCond::Merge` was only created in the first place if a merge
            // was actually necessary, so there shouldn't be simplifications to
            // do here (i.e. the value provided is if `materialize_lazy_cond`
            // never gets called because the target has become unconditional).
            //
            // FIXME(eddyb) there is still an `if cond { true } else { false }`
            // special-case (repalcing with just `cond`), that cannot be expressed
            // currently in `LazyCond` itself (but maybe it should be).
            LazyCond::Merge(merge) => {
                let LazyCondMerge::Select { control_node, ref per_case_conds } = **merge;

                // HACK(eddyb) this won't actually allocate most of the time,
                // and avoids complications later below, when mutating the cases.
                let per_case_conds: SmallVec<[_; 8]> = per_case_conds
                    .into_iter()
                    .map(|cond| self.materialize_lazy_cond(cond))
                    .collect();

                let ControlNodeDef { kind, outputs: output_decls } =
                    &mut *self.func_def_body.control_nodes[control_node];
                let cases = match kind {
                    ControlNodeKind::Select { kind, scrutinee, cases } => {
                        assert_eq!(cases.len(), per_case_conds.len());

                        if let SelectionKind::BoolCond = kind {
                            let [val_false, val_true] =
                                [self.const_false, self.const_true].map(Value::Const);
                            if per_case_conds[..] == [val_true, val_false] {
                                return *scrutinee;
                            } else if per_case_conds[..] == [val_false, val_true] {
                                // FIXME(eddyb) this could also be special-cased,
                                // at least when called from the topmost level,
                                // where which side is `false`/`true` doesn't
                                // matter (or we could even generate `!cond`?).
                                let _not_cond = *scrutinee;
                            }
                        }

                        cases
                    }
                    _ => unreachable!(),
                };

                let output_idx = u32::try_from(output_decls.len()).unwrap();
                output_decls
                    .push(ControlNodeOutputDecl { attrs: AttrSet::default(), ty: self.type_bool });

                for (&case, cond) in cases.iter().zip_eq(per_case_conds) {
                    let ControlRegionDef { outputs, .. } =
                        &mut self.func_def_body.control_regions[case];
                    outputs.push(cond);
                    assert_eq!(outputs.len(), output_decls.len());
                }

                Value::ControlNodeOutput { control_node, output_idx }
            }
        }
    }

    /// Append to `parent_region` the children of `maybe_claimed_region` (if `Ok`),
    /// returning the `DeferredEdgeBundleSet` from `maybe_claimed_region`.
    //
    // FIXME(eddyb) the name isn't great, but e.g. "absorb into" would also be
    // weird (and on top of that, the append direction can be tricky to express).
    fn append_maybe_claimed_region(
        &mut self,
        parent_region: ControlRegion,
        maybe_claimed_region: Result<ClaimedRegion, DeferredEdgeBundleSet>,
    ) -> DeferredEdgeBundleSet {
        match maybe_claimed_region {
            Ok(ClaimedRegion { structured_body, structured_body_inputs, deferred_edges }) => {
                if !structured_body_inputs.is_empty() {
                    self.control_region_input_rewrites.insert(
                        structured_body,
                        ControlRegionInputRewrites::ReplaceWith(structured_body_inputs),
                    );
                }
                let new_children =
                    mem::take(&mut self.func_def_body.at_mut(structured_body).def().children);
                self.func_def_body.control_regions[parent_region]
                    .children
                    .append(new_children, &mut self.func_def_body.control_nodes);
                deferred_edges
            }
            Err(deferred_edges) => deferred_edges,
        }
    }

    /// When structurization is only partial, and there remain unclaimed regions,
    /// they have to be reintegrated into the CFG, putting back [`ControlInst`]s
    /// where `structurize_region` has taken them from.
    ///
    /// This function handles one region at a time to make it more manageable,
    /// despite it having a single call site (in a loop in `structurize_func`).
    fn rebuild_cfg_from_unclaimed_region_deferred_edges(
        &mut self,
        region: ControlRegion,
        mut deferred_edges: DeferredEdgeBundleSet,
    ) {
        assert!(
            self.structurize_region_state.is_empty(),
            "cfg::Structurizer::rebuild_cfg_from_unclaimed_region_deferred_edges:
             must only be called from `structurize_func`, \
             after it takes `structurize_region_state`"
        );

        // Build a chain of conditional branches to apply deferred edges.
        let mut control_source = Some(region);
        loop {
            let taken_then;
            (taken_then, deferred_edges) =
                deferred_edges.split_out_matching(|deferred| match deferred.edge_bundle.target {
                    DeferredTarget::Region(target) => {
                        Ok((deferred.condition, (target, deferred.edge_bundle.target_inputs)))
                    }
                    DeferredTarget::Return => Err(deferred),
                });
            let Some((condition, then_target_and_inputs)) = taken_then else {
                break;
            };
            let branch_source = control_source.take().unwrap();
            let else_target_and_inputs = match deferred_edges {
                // At most one deferral left, so it can be used as the "else"
                // case, or the branch left unconditional in its absence.
                DeferredEdgeBundleSet::Unreachable => None,
                DeferredEdgeBundleSet::Always {
                    target: DeferredTarget::Region(else_target),
                    edge_bundle,
                } => {
                    deferred_edges = DeferredEdgeBundleSet::Unreachable;
                    Some((else_target, edge_bundle.target_inputs))
                }

                // Either more branches, or a deferred return, are needed, so
                // the "else" case must be a `ControlRegion` that itself can
                // have a `ControlInst` attached to it later on.
                _ => {
                    let new_empty_region = self
                        .func_def_body
                        .control_regions
                        .define(self.cx, ControlRegionDef::default());
                    control_source = Some(new_empty_region);
                    Some((new_empty_region, [].into_iter().collect()))
                }
            };

            let condition = Some(condition)
                .filter(|_| else_target_and_inputs.is_some())
                .map(|cond| self.materialize_lazy_cond(&cond));
            let branch_control_inst = ControlInst {
                attrs: AttrSet::default(),
                kind: if condition.is_some() {
                    ControlInstKind::SelectBranch(SelectionKind::BoolCond)
                } else {
                    ControlInstKind::Branch
                },
                inputs: condition.into_iter().collect(),
                targets: [&then_target_and_inputs]
                    .into_iter()
                    .chain(&else_target_and_inputs)
                    .map(|&(target, _)| target)
                    .collect(),
                target_inputs: [then_target_and_inputs]
                    .into_iter()
                    .chain(else_target_and_inputs)
                    .filter(|(_, inputs)| !inputs.is_empty())
                    .collect(),
            };
            assert!(
                self.func_def_body
                    .unstructured_cfg
                    .as_mut()
                    .unwrap()
                    .control_inst_on_exit_from
                    .insert(branch_source, branch_control_inst)
                    .is_none()
            );
        }

        let deferred_return = match deferred_edges {
            DeferredEdgeBundleSet::Unreachable => None,
            DeferredEdgeBundleSet::Always { target: DeferredTarget::Return, edge_bundle } => {
                Some(edge_bundle.target_inputs)
            }
            _ => unreachable!(),
        };

        let final_source = match control_source {
            Some(region) => region,
            None => {
                // The loop above handled all the targets, nothing left to do.
                assert!(deferred_return.is_none());
                return;
            }
        };

        // Final deferral is either a `Return` (if needed), or an `Unreachable`
        // (only when truly divergent, i.e. no `deferred_edges`/`deferred_return`).
        let final_control_inst = {
            let (kind, inputs) = match deferred_return {
                Some(return_values) => (ControlInstKind::Return, return_values),
                None => (ControlInstKind::Unreachable, [].into_iter().collect()),
            };
            ControlInst {
                attrs: AttrSet::default(),
                kind,
                inputs,
                targets: [].into_iter().collect(),
                target_inputs: FxIndexMap::default(),
            }
        };
        assert!(
            self.func_def_body
                .unstructured_cfg
                .as_mut()
                .unwrap()
                .control_inst_on_exit_from
                .insert(final_source, final_control_inst)
                .is_none()
        );
    }

    /// Create an undefined constant (as a placeholder where a value needs to be
    /// present, but won't actually be used), of type `ty`.
    fn const_undef(&self, ty: Type) -> Const {
        // FIXME(eddyb) SPIR-T should have native undef itself.
        let wk = &spv::spec::Spec::get().well_known;
        self.cx.intern(ConstDef {
            attrs: AttrSet::default(),
            ty,
            kind: ConstKind::SpvInst {
                spv_inst_and_const_inputs: Rc::new((wk.OpUndef.into(), [].into_iter().collect())),
            },
        })
    }
}