spirt/
context.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
//! [`Context`](struct.Context.html) and related types/traits.

use crate::spv::spec::ExtInstSetDesc;
use rustc_hash::FxHashMap;
use std::hash::Hash;
use std::mem;
use std::num::NonZeroU32;
use std::ops::{Deref, DerefMut};

/// Context object with global resources for SPIR-T.
///
/// Those resources currently are:
/// * interners, for anything without an identity, and which can be deduplicated
/// * "entity" allocators, for everything else - i.e. anything with an identity
///   that needs to remain unique across an entire [`Context`]
///   * the *definition* of an entity isn't kept in the [`Context`], but rather in
///     some [`EntityDefs`] collection somewhere in a [`Module`](crate::Module) (or further nested),
///     with only the entity *indices* being allocated by the [`Context`]
/// * custom SPIR-V "extended instruction set" descriptions, which can be
///   dynamically registered, to account for any such "extended instruction set"
///   not covered by [`spv::spec::Spec`](crate::spv::spec::Spec)'s built-in list
///   (e.g. non-standard tool-specific sets), and only used for pretty-printing
#[derive(Default)]
pub struct Context {
    interners: Interners,
    entity_allocs: EntityAllocs,

    custom_spv_ext_inst_set_descs: elsa::FrozenBTreeMap<String, Box<ExtInstSetDesc>>,
}

impl Context {
    /// Register a custom [`ExtInstSetDesc`] with name `ext_inst_set_name`,
    /// to be used by pretty-printing when using this [`Context`].
    pub fn register_custom_ext_inst_set(
        &self,
        ext_inst_set_name: &str,
        ext_inst_set_desc: ExtInstSetDesc,
    ) {
        let lowercase_ext_inst_set_name = ext_inst_set_name.to_ascii_lowercase();
        assert!(
            self.get_custom_ext_inst_set_by_lowercase_name(&lowercase_ext_inst_set_name).is_none(),
            "already registered {lowercase_ext_inst_set_name:?} \
             (name before lowercasing: {ext_inst_set_name})"
        );
        self.custom_spv_ext_inst_set_descs
            .insert(lowercase_ext_inst_set_name, Box::new(ext_inst_set_desc));
    }

    /// Return a custom [`ExtInstSetDesc`], if one was registered on this [`Context`],
    /// for this `OpExtInstImport` name (required to be lowercase, due to Khronos'
    /// choice of case insensitivity, but **not checked by this function**).
    pub fn get_custom_ext_inst_set_by_lowercase_name(
        &self,
        lowercase_ext_inst_set_name: &str,
    ) -> Option<&ExtInstSetDesc> {
        self.custom_spv_ext_inst_set_descs.get(lowercase_ext_inst_set_name)
    }
}

/// Private module containing traits (and related types) used in public APIs,
/// but which should not be usable outside of the `context` module.
mod sealed {
    use std::cell::Cell;
    use std::num::NonZeroU32;

    pub trait Interned: Sized + 'static {
        type Def: ?Sized + Eq + std::hash::Hash;

        fn preintern(_interner: &Interner<Self>) {}
        fn from_u32(i: u32) -> Self;
        fn to_u32(self) -> u32;
        fn cx_interner(cx: &super::Context) -> &Interner<Self>;
    }

    // FIXME(eddyb) one `Box` per element is inefficient, figure out if e.g.
    // the `rental` crate could allow keeping an `arena: TypedArena<I::Def>`
    // alongside the `FrozenIndexSet` (which would then use `&'arena I::Def`).
    pub struct Interner<I: Interned>(
        elsa::FrozenIndexSet<Box<I::Def>, std::hash::BuildHasherDefault<rustc_hash::FxHasher>>,
    );

    impl<I: Interned> Default for Interner<I> {
        fn default() -> Self {
            let interner = Self(Default::default());
            I::preintern(&interner);
            interner
        }
    }

    impl<I: Interned> Interner<I> {
        #[track_caller]
        pub(super) fn intern(&self, value: impl AsRef<I::Def> + Into<Box<I::Def>>) -> I {
            if let Some((i, _)) = self.0.get_full(value.as_ref()) {
                return I::from_u32(i as u32);
            }
            let (i, _) = self.0.insert_full(value.into());
            I::from_u32(i.try_into().expect("interner overflowed u32"))
        }
    }

    impl<I: Interned> std::ops::Index<I> for Interner<I> {
        type Output = I::Def;

        fn index(&self, interned: I) -> &Self::Output {
            &self.0[interned.to_u32() as usize]
        }
    }

    // FIXME(eddyb) reflect "is an `Entity`" in a non-sealed way, by having an
    // e.g. `pub trait IsEntity: Entity {}` w/ a blanket impl, that users could
    // not implement themselves because of the `Entity` requirement, but could
    // still bound on, and it would imply `Entity` as needed - this could even
    // be named `Entity`, with `sealed::Entity` only used (by `context`) for:
    // - `impl sealed::Entity for $name` to define an entity
    // - `use sealed::Entity as _;` to use associated items from the trait
    pub trait Entity: Sized + Copy + Eq + std::hash::Hash + 'static {
        type Def;

        const CHUNK_SIZE: u32;
        const CHUNK_MASK: u32 = {
            assert!(Self::CHUNK_SIZE.is_power_of_two());
            assert!(Self::CHUNK_SIZE as usize as u32 == Self::CHUNK_SIZE);
            Self::CHUNK_SIZE - 1
        };

        fn from_non_zero_u32(i: NonZeroU32) -> Self;
        fn to_non_zero_u32(self) -> NonZeroU32;
        fn cx_entity_alloc(cx: &super::Context) -> &EntityAlloc<Self>;

        #[inline(always)]
        fn to_chunk_start_and_intra_chunk_idx(self) -> (Self, usize) {
            let self_u32 = self.to_non_zero_u32().get();
            (
                Self::from_non_zero_u32(NonZeroU32::new(self_u32 & !Self::CHUNK_MASK).unwrap()),
                (self_u32 & Self::CHUNK_MASK) as usize,
            )
        }
    }

    pub struct EntityAlloc<E: Entity>(Cell<E>);

    impl<E: Entity> Default for EntityAlloc<E> {
        fn default() -> Self {
            // NOTE(eddyb) always skip chunk `0`, as a sort of "null page",
            // to allow using `NonZeroU32` instead of merely `u32`.
            Self(Cell::new(E::from_non_zero_u32(NonZeroU32::new(E::CHUNK_SIZE).unwrap())))
        }
    }

    impl<E: Entity> EntityAlloc<E> {
        #[track_caller]
        pub(super) fn alloc_chunk(&self) -> E {
            let chunk_start = self.0.get();
            let next_chunk_start = E::from_non_zero_u32(
                chunk_start
                    .to_non_zero_u32()
                    .checked_add(E::CHUNK_SIZE)
                    .expect("entity index overflowed u32"),
            );
            self.0.set(next_chunk_start);
            chunk_start
        }
    }
}
use sealed::Entity as _;

/// Dispatch helper, to allow implementing interning logic on
/// the type passed to `cx.intern(...)`.
pub trait InternInCx<I> {
    #[track_caller]
    fn intern_in_cx(self, cx: &Context) -> I;
}

impl Context {
    pub fn new() -> Self {
        Self::default()
    }

    #[track_caller]
    pub fn intern<T: InternInCx<I>, I>(&self, x: T) -> I {
        x.intern_in_cx(self)
    }
}

impl<I: sealed::Interned> std::ops::Index<I> for Context {
    type Output = I::Def;

    fn index(&self, interned: I) -> &Self::Output {
        &I::cx_interner(self)[interned]
    }
}

// FIXME(eddyb) consider including `Rc<Context>` in `EntityDefs` to avoid having
// to pass it manually to the `EntityDefs::define` methods (which feels dangerous!).
//
/// Collection holding the actual definitions for [`Context`]-allocated entities.
///
/// By design there is no way to iterate the contents of an [`EntityDefs`], or
/// generate entity indices without defining the entity in an [`EntityDefs`].
#[derive(Clone)]
pub struct EntityDefs<E: sealed::Entity> {
    /// Entities are grouped into chunks, with per-entity-type chunk sizes
    /// (powers of 2) specified via `entities!` below.
    /// This allows different [`EntityDefs`]s to independently define more
    /// entities, without losing compactness (until a whole chunk is filled).
    //
    // FIXME(eddyb) consider using `u32` instead of `usize` for the "flattened base".
    complete_chunk_start_to_flattened_base: FxHashMap<E, usize>,

    /// Similar to a single entry in `complete_chunk_start_to_flattened_base`,
    /// but kept outside of the map for efficiency. Also, this is the only
    /// chunk that doesn't have its full size already (and therefore allows
    /// defining more entities into it, without allocating new chunks).
    incomplete_chunk_start_and_flattened_base: Option<(E, usize)>,

    /// All chunks' definitions are flattened into one contiguous [`Vec`], where
    /// the start of each chunk's definitions in `flattened` is indicated by
    /// either `complete_chunk_start_to_flattened_base` (for completed chunks)
    /// or `incomplete_chunk_start_and_flattened_base`.
    flattened: Vec<E::Def>,
}

impl<E: sealed::Entity> Default for EntityDefs<E> {
    fn default() -> Self {
        Self {
            complete_chunk_start_to_flattened_base: FxHashMap::default(),
            incomplete_chunk_start_and_flattened_base: None,
            flattened: vec![],
        }
    }
}

impl<E: sealed::Entity> EntityDefs<E> {
    pub fn new() -> Self {
        Self::default()
    }

    #[track_caller]
    pub fn define(&mut self, cx: &Context, def: E::Def) -> E {
        let entity = match self.incomplete_chunk_start_and_flattened_base {
            Some((chunk_start, flattened_base)) => {
                let chunk_len = self.flattened.len() - flattened_base;

                // This is the last entity in this chunk, completing it.
                // NB: no new chunk is allocated here, but instead the next
                // `define` call will find no incomplete chunk, which will
                // prompt it to allocate a new chunk itself.
                if chunk_len == (E::CHUNK_SIZE - 1) as usize {
                    self.complete_chunk_start_to_flattened_base
                        .extend(self.incomplete_chunk_start_and_flattened_base.take());
                }

                E::from_non_zero_u32(
                    NonZeroU32::new(chunk_start.to_non_zero_u32().get() + chunk_len as u32)
                        .unwrap(),
                )
            }
            None => {
                let chunk_start = E::cx_entity_alloc(cx).alloc_chunk();

                self.incomplete_chunk_start_and_flattened_base =
                    Some((chunk_start, self.flattened.len()));

                chunk_start
            }
        };
        self.flattened.push(def);
        entity
    }

    fn entity_to_flattened(&self, entity: E) -> Option<usize> {
        let (chunk_start, intra_chunk_idx) = entity.to_chunk_start_and_intra_chunk_idx();
        let flattened_base = match self.incomplete_chunk_start_and_flattened_base {
            Some((incomplete_chunk_start, incomplete_flattened_base))
                if chunk_start == incomplete_chunk_start =>
            {
                incomplete_flattened_base
            }
            _ => *self.complete_chunk_start_to_flattened_base.get(&chunk_start)?,
        };
        Some(flattened_base + intra_chunk_idx)
    }
}

impl<E: sealed::Entity> std::ops::Index<E> for EntityDefs<E> {
    type Output = E::Def;

    fn index(&self, entity: E) -> &Self::Output {
        self.entity_to_flattened(entity).and_then(|i| self.flattened.get(i)).unwrap()
    }
}

impl<E: sealed::Entity> std::ops::IndexMut<E> for EntityDefs<E> {
    fn index_mut(&mut self, entity: E) -> &mut Self::Output {
        self.entity_to_flattened(entity).and_then(|i| self.flattened.get_mut(i)).unwrap()
    }
}

/// `EntityOriented*Map<Self, V>` support trait, implemented for entity types,
/// but which can also be implemented by users for their own newtypes and other
/// types wrapping entity types (such as finite `enum`s).
pub trait EntityOrientedMapKey<V>: Copy {
    /// The entity type that appears exactly once in every value of `Self`.
    type Entity: sealed::Entity;
    fn to_entity(key: Self) -> Self::Entity;

    /// A type holding enough different `Option<V>` slots, for all possible
    /// values of `Self`, for a given `Self::Entity` value contained inside.
    //
    // FIXME(eddyb) consider making this just an array length?
    type DenseValueSlots: Default;
    fn get_dense_value_slot(key: Self, slots: &Self::DenseValueSlots) -> &Option<V>;
    fn get_dense_value_slot_mut(key: Self, slots: &mut Self::DenseValueSlots) -> &mut Option<V>;
}

impl<E: sealed::Entity, V> EntityOrientedMapKey<V> for E {
    type Entity = E;
    fn to_entity(key: E) -> E {
        key
    }

    type DenseValueSlots = Option<V>;
    fn get_dense_value_slot(_: Self, slot: &Option<V>) -> &Option<V> {
        slot
    }
    fn get_dense_value_slot_mut(_: Self, slot: &mut Option<V>) -> &mut Option<V> {
        slot
    }
}

/// Map with `K` keys and `V` values, that is:
/// * "entity-oriented" `K` keys, i.e. that are or contain exactly one entity
///   (supported via [`K: EntityOrientedMapKey<V>`](EntityOrientedMapKey) for extensibility)
/// * "dense" in the sense of few (or no) gaps in (the entities in) its keys
///   (relative to the entities defined in the corresponding [`EntityDefs`])
///
/// By design there is no way to iterate the entries in an [`EntityOrientedDenseMap`].
//
// FIXME(eddyb) implement a "sparse" version as well, and maybe some bitsets?
#[derive(Clone)]
pub struct EntityOrientedDenseMap<K: EntityOrientedMapKey<V>, V> {
    /// Like in [`EntityDefs`], entities are grouped into chunks, but there is no
    /// flattening, since arbitrary insertion orders have to be supported.
    chunk_start_to_value_slots: SmallFxHashMap<K::Entity, Vec<K::DenseValueSlots>>,
}

// FIXME(eddyb) find a better "small map" design and/or fine-tune this - though,
// since the ideal state is one chunk per map, the slow case might never be hit,
// unless one `EntityOrientedDenseMap` is used with more than one `EntityDefs`,
// which could still maybe be implemented more efficiently than `FxHashMap`.
#[derive(Clone)]
enum SmallFxHashMap<K, V> {
    Empty,
    One(K, V),
    More(FxHashMap<K, V>),
}

impl<K, V> Default for SmallFxHashMap<K, V> {
    fn default() -> Self {
        Self::Empty
    }
}

impl<K: Copy + Eq + Hash, V: Default> SmallFxHashMap<K, V> {
    fn get_mut_or_insert_default(&mut self, k: K) -> &mut V {
        // HACK(eddyb) to avoid borrowing issues, this is done in two stages:
        // 1. ensure `self` is `One(k, _) | More`, i.e. `One` implies same key
        match *self {
            Self::Empty => {
                *self = Self::One(k, V::default());
            }
            Self::One(old_k, _) => {
                if old_k != k {
                    let old = mem::replace(self, Self::More(Default::default()));
                    match (old, &mut *self) {
                        (Self::One(_, old_v), Self::More(map)) => {
                            map.insert(old_k, old_v);
                        }
                        _ => unreachable!(),
                    }
                }
            }
            Self::More(_) => {}
        }

        // 2. get the value from `One` or potentially insert one into `More`
        match self {
            Self::Empty => unreachable!(),
            Self::One(_, v) => v,
            Self::More(map) => map.entry(k).or_default(),
        }
    }

    fn get(&self, k: K) -> Option<&V> {
        #[allow(clippy::match_same_arms)]
        match self {
            Self::Empty => None,
            Self::One(old_k, old_v) if *old_k == k => Some(old_v),
            Self::One(..) => None,
            Self::More(map) => map.get(&k),
        }
    }

    fn get_mut(&mut self, k: K) -> Option<&mut V> {
        #[allow(clippy::match_same_arms)]
        match self {
            Self::Empty => None,
            Self::One(old_k, old_v) if *old_k == k => Some(old_v),
            Self::One(..) => None,
            Self::More(map) => map.get_mut(&k),
        }
    }
}

impl<K: EntityOrientedMapKey<V>, V> Default for EntityOrientedDenseMap<K, V> {
    fn default() -> Self {
        Self { chunk_start_to_value_slots: Default::default() }
    }
}

impl<K: EntityOrientedMapKey<V>, V> EntityOrientedDenseMap<K, V> {
    pub fn new() -> Self {
        Self::default()
    }

    // FIXME(eddyb) this should not allocate space unconditionally, but offer an
    // API where "vacant entry" may or may not have a `&mut Option<V>` in it.
    pub fn entry(&mut self, key: K) -> &mut Option<V> {
        let entity = K::to_entity(key);
        let (chunk_start, intra_chunk_idx) = entity.to_chunk_start_and_intra_chunk_idx();
        let chunk_value_slots =
            self.chunk_start_to_value_slots.get_mut_or_insert_default(chunk_start);

        // Ensure there are enough slots for the new entry.
        let needed_len = intra_chunk_idx + 1;
        if chunk_value_slots.len() < needed_len {
            chunk_value_slots.resize_with(needed_len, Default::default);
        }

        let value_slots = &mut chunk_value_slots[intra_chunk_idx];
        K::get_dense_value_slot_mut(key, value_slots)
    }

    pub fn insert(&mut self, key: K, value: V) -> Option<V> {
        self.entry(key).replace(value)
    }

    pub fn get(&self, key: K) -> Option<&V> {
        let entity = K::to_entity(key);
        let (chunk_start, intra_chunk_idx) = entity.to_chunk_start_and_intra_chunk_idx();
        let value_slots = self.chunk_start_to_value_slots.get(chunk_start)?.get(intra_chunk_idx)?;
        K::get_dense_value_slot(key, value_slots).as_ref()
    }

    pub fn get_mut(&mut self, key: K) -> Option<&mut V> {
        self.get_slot_mut(key)?.as_mut()
    }

    pub fn remove(&mut self, key: K) -> Option<V> {
        self.get_slot_mut(key)?.take()
    }

    // FIXME(eddyb) deduplicate with `entry`.
    fn get_slot_mut(&mut self, key: K) -> Option<&mut Option<V>> {
        let entity = K::to_entity(key);
        let (chunk_start, intra_chunk_idx) = entity.to_chunk_start_and_intra_chunk_idx();
        let value_slots =
            self.chunk_start_to_value_slots.get_mut(chunk_start)?.get_mut(intra_chunk_idx)?;
        Some(K::get_dense_value_slot_mut(key, value_slots))
    }
}

impl<K: EntityOrientedMapKey<V>, V> std::ops::Index<K> for EntityOrientedDenseMap<K, V> {
    type Output = V;

    fn index(&self, key: K) -> &V {
        self.get(key).expect("no entry found for key")
    }
}

impl<K: EntityOrientedMapKey<V>, V> std::ops::IndexMut<K> for EntityOrientedDenseMap<K, V> {
    fn index_mut(&mut self, key: K) -> &mut V {
        self.get_mut(key).expect("no entry found for key")
    }
}

#[allow(rustdoc::private_intra_doc_links)]
/// Doubly-linked list, "intrusively" going through `E::Def`, which must be an
/// [`EntityListNode<E, _>`] (to hold the "previous/next node" links).
///
/// Fields are private to avoid arbitrary user interactions.
#[derive(Copy, Clone)]
pub struct EntityList<E: sealed::Entity>(Option<FirstLast<E, E>>);

// HACK(eddyb) this only exists to give field names to the non-empty case.
#[derive(Copy, Clone)]
struct FirstLast<F, L> {
    first: F,
    last: L,
}

impl<E: sealed::Entity> Default for EntityList<E> {
    fn default() -> Self {
        Self(None)
    }
}

impl<E: sealed::Entity<Def = EntityListNode<E, D>>, D> EntityList<E> {
    pub fn empty() -> Self {
        Self::default()
    }

    pub fn is_empty(self) -> bool {
        self.0.is_none()
    }

    pub fn iter(self) -> EntityListIter<E> {
        EntityListIter { first: self.0.map(|list| list.first), last: self.0.map(|list| list.last) }
    }

    /// Insert `new_node` (defined in `defs`) at the start of `self`.
    #[track_caller]
    pub fn insert_first(&mut self, new_node: E, defs: &mut EntityDefs<E>) {
        let new_node_def = &mut defs[new_node];
        assert!(
            new_node_def.prev.is_none() && new_node_def.next.is_none(),
            "EntityList::insert_first: new node already linked into a (different?) list"
        );

        new_node_def.next = self.0.map(|this| this.first);
        if let Some(old_first) = new_node_def.next {
            let old_first_def = &mut defs[old_first];

            // FIXME(eddyb) this situation should be impossible anyway, as it
            // involves the `EntityListNode`s links, which should be unforgeable,
            // but it's still possible to keep around outdated `EntityList`s
            // (should `EntityList` not implement `Copy`/`Clone` *at all*?)
            assert!(old_first_def.prev.is_none(), "invalid EntityList: `first->prev != None`");

            old_first_def.prev = Some(new_node);
        }

        self.0 =
            Some(FirstLast { first: new_node, last: self.0.map_or(new_node, |this| this.last) });
    }

    /// Insert `new_node` (defined in `defs`) at the end of `self`.
    #[track_caller]
    pub fn insert_last(&mut self, new_node: E, defs: &mut EntityDefs<E>) {
        let new_node_def = &mut defs[new_node];
        assert!(
            new_node_def.prev.is_none() && new_node_def.next.is_none(),
            "EntityList::insert_last: new node already linked into a (different?) list"
        );

        new_node_def.prev = self.0.map(|this| this.last);
        if let Some(old_last) = new_node_def.prev {
            let old_last_def = &mut defs[old_last];

            // FIXME(eddyb) this situation should be impossible anyway, as it
            // involves the `EntityListNode`s links, which should be unforgeable,
            // but it's still possible to keep around outdated `EntityList`s
            // (should `EntityList` not implement `Copy`/`Clone` *at all*?)
            assert!(old_last_def.next.is_none(), "invalid EntityList: `last->next != None`");

            old_last_def.next = Some(new_node);
        }

        self.0 =
            Some(FirstLast { first: self.0.map_or(new_node, |this| this.first), last: new_node });
    }

    /// Insert `new_node` (defined in `defs`) into `self`, before `next`.
    //
    // FIXME(eddyb) unify this with the other insert methods, maybe with a new
    // "insert position" type?
    #[track_caller]
    pub fn insert_before(&mut self, new_node: E, next: E, defs: &mut EntityDefs<E>) {
        let prev = defs[next].prev.replace(new_node);

        let new_node_def = &mut defs[new_node];
        assert!(
            new_node_def.prev.is_none() && new_node_def.next.is_none(),
            "EntityList::insert_before: new node already linked into a (different?) list"
        );

        new_node_def.prev = prev;
        new_node_def.next = Some(next);

        match prev {
            Some(prev) => {
                let old_prev_next = defs[prev].next.replace(new_node);

                // FIXME(eddyb) this situation should be impossible anyway, as it
                // involves the `EntityListNode`s links, which should be unforgeable.
                assert!(
                    old_prev_next == Some(next),
                    "invalid EntityListNode: `node->prev->next != node`"
                );
            }
            None => {
                // FIXME(eddyb) this situation should be impossible anyway, as it
                // involves the `EntityListNode`s links, which should be unforgeable,
                // but it's still possible to keep around outdated `EntityList`s
                // (should `EntityList` not implement `Copy`/`Clone` *at all*?)
                assert!(
                    self.0.map(|this| this.first) == Some(next),
                    "invalid EntityList: `node->prev == None` but `node != first`"
                );

                self.0.as_mut().unwrap().first = new_node;
            }
        }
    }

    /// Insert all of `list_to_prepend`'s nodes at the start of `self`.
    #[track_caller]
    pub fn prepend(&mut self, list_to_prepend: Self, defs: &mut EntityDefs<E>) {
        *self = Self::concat(list_to_prepend, *self, defs);
    }

    /// Insert all of `list_to_append`'s nodes at the end of `self`.
    #[track_caller]
    pub fn append(&mut self, list_to_append: Self, defs: &mut EntityDefs<E>) {
        *self = Self::concat(*self, list_to_append, defs);
    }

    /// Private helper for `prepend`/`append`.
    #[track_caller]
    fn concat(a: Self, b: Self, defs: &mut EntityDefs<E>) -> Self {
        let (a, b) = match (a.0, b.0) {
            (Some(a), Some(b)) => (a, b),
            (a, b) => return Self(a.or(b)),
        };

        {
            let a_last_def = &mut defs[a.last];

            // FIXME(eddyb) this situation should be impossible anyway, as it
            // involves the `EntityListNode`s links, which should be unforgeable,
            // but it's still possible to keep around outdated `EntityList`s
            // (should `EntityList` not implement `Copy`/`Clone` *at all*?)
            assert!(a_last_def.next.is_none(), "invalid EntityList: `last->next != None`");

            a_last_def.next = Some(b.first);
        }
        {
            let b_first_def = &mut defs[b.first];

            // FIXME(eddyb) this situation should be impossible anyway, as it
            // involves the `EntityListNode`s links, which should be unforgeable,
            // but it's still possible to keep around outdated `EntityList`s
            // (should `EntityList` not implement `Copy`/`Clone` *at all*?)
            assert!(b_first_def.prev.is_none(), "invalid EntityList: `first->prev != None`");

            b_first_def.prev = Some(a.last);
        }

        Self(Some(FirstLast { first: a.first, last: b.last }))
    }

    /// Remove `node` (defined in `defs`) from `self`.
    #[track_caller]
    pub fn remove(&mut self, node: E, defs: &mut EntityDefs<E>) {
        // Unlink `node->{prev,next}` first (also allowing re-insertion elsewhere).
        let (prev, next) = {
            let node_def = &mut defs[node];
            (node_def.prev.take(), node_def.next.take())
        };

        // Unlink `prev->next = node` (or validate `first = node`).
        match prev {
            Some(prev) => {
                let old_prev_next = mem::replace(&mut defs[prev].next, next);

                // FIXME(eddyb) this situation should be impossible anyway, as it
                // involves the `EntityListNode`s links, which should be unforgeable.
                assert!(
                    old_prev_next == Some(node),
                    "invalid EntityListNode: `node->prev->next != node`"
                );
            }
            None => {
                // FIXME(eddyb) this situation should be impossible anyway, as it
                // involves the `EntityListNode`s links, which should be unforgeable,
                // but it's still possible to keep around outdated `EntityList`s
                // (should `EntityList` not implement `Copy`/`Clone` *at all*?)
                assert!(
                    self.0.map(|this| this.first) == Some(node),
                    "invalid EntityList: `node->prev == None` but `node != first`"
                );
            }
        }

        // Unlink `next->prev = node` (or validate `last = node`).
        match next {
            Some(next) => {
                let old_next_prev = mem::replace(&mut defs[next].prev, prev);

                // FIXME(eddyb) this situation should be impossible anyway, as it
                // involves the `EntityListNode`s links, which should be unforgeable.
                assert!(
                    old_next_prev == Some(node),
                    "invalid EntityListNode: `node->next->prev != node`"
                );
            }
            None => {
                // FIXME(eddyb) this situation should be impossible anyway, as it
                // involves the `EntityListNode`s links, which should be unforgeable,
                // but it's still possible to keep around outdated `EntityList`s
                // (should `EntityList` not implement `Copy`/`Clone` *at all*?)
                assert!(
                    self.0.map(|this| this.last) == Some(node),
                    "invalid EntityList: `node->next == None` but `node != last`"
                );
            }
        }

        // Update list end-points (overwritten `first`/`last` validated above).
        match (prev, next) {
            (Some(_), Some(_)) => {}
            (None, Some(next)) => self.0.as_mut().unwrap().first = next,
            (Some(prev), None) => self.0.as_mut().unwrap().last = prev,
            (None, None) => self.0 = None,
        }
    }
}

/// [`EntityList<E>`] iterator, but with a different API than [`Iterator`].
///
/// This can also be considered a (non-random-access) "subslice" of the list.
#[derive(Copy, Clone)]
pub struct EntityListIter<E: sealed::Entity> {
    pub first: Option<E>,
    pub last: Option<E>,
}

impl<E: sealed::Entity<Def = EntityListNode<E, D>>, D> EntityListIter<E> {
    #[track_caller]
    pub fn split_first(self, defs: &EntityDefs<E>) -> Option<(E, Self)> {
        let Self { first, last } = self;
        let current = first?;
        let next = defs[current].next;
        match next {
            // FIXME(eddyb) this situation should be impossible anyway, as it
            // involves the `EntityListNode`s links, which should be unforgeable.
            Some(next) => assert!(
                defs[next].prev == Some(current),
                "invalid EntityListNode: `node->next->prev != node`"
            ),

            None => assert!(
                Some(current) == last,
                "invalid EntityListIter: `first->next->...->next != last`"
            ),
        }
        Some((current, Self { first: next, last }))
    }

    #[track_caller]
    pub fn split_last(self, defs: &EntityDefs<E>) -> Option<(E, Self)> {
        let Self { first, last } = self;
        let current = last?;
        let prev = defs[current].prev;
        match prev {
            // FIXME(eddyb) this situation should be impossible anyway, as it
            // involves the `EntityListNode`s links, which should be unforgeable.
            Some(prev) => assert!(
                defs[prev].next == Some(current),
                "invalid EntityListNode: `node->prev->next != node`"
            ),

            None => assert!(
                Some(current) == first,
                "invalid EntityListIter: `last->prev->...->prev != first`"
            ),
        }
        Some((current, Self { first, last: prev }))
    }
}

/// [`EntityList<E>`] node, containing the "intrusive" list links, and the rest of
/// the entity definition (the `inner_def` field of type `D`).
///
/// Fields are private to avoid arbitrary user interactions outside of special
/// methods and [`Deref`]/[`DerefMut`].
//
// FIXME(eddyb) `Deref`/`DerefMut` aren't the best API, could this be hidden
// further by making `EntityDefs` hide the list links in the `Index` impl?
#[derive(Clone)]
pub struct EntityListNode<E: sealed::Entity<Def = Self>, D> {
    prev: Option<E>,
    next: Option<E>,

    inner_def: D,
}

impl<E: sealed::Entity<Def = Self>, D> From<D> for EntityListNode<E, D> {
    fn from(inner_def: D) -> Self {
        Self { prev: None, next: None, inner_def }
    }
}

impl<E: sealed::Entity<Def = Self>, D> EntityListNode<E, D> {
    pub fn prev_in_list(&self) -> Option<E> {
        self.prev
    }
    pub fn next_in_list(&self) -> Option<E> {
        self.next
    }
}

impl<E: sealed::Entity<Def = Self>, D> Deref for EntityListNode<E, D> {
    type Target = D;
    fn deref(&self) -> &D {
        &self.inner_def
    }
}

impl<E: sealed::Entity<Def = Self>, D> DerefMut for EntityListNode<E, D> {
    fn deref_mut(&mut self) -> &mut D {
        &mut self.inner_def
    }
}

macro_rules! interners {
    (
        needs_as_ref { $($needs_as_ref_ty:ty),* $(,)? }
        $($name:ident $(default($default:expr))? => $ty:ty),+ $(,)?
    ) => {
        $(impl AsRef<Self> for $needs_as_ref_ty {
            fn as_ref(&self) -> &Self {
                self
            }
        })*

        #[allow(non_snake_case)]
        #[derive(Default)]
        struct Interners {
            $($name: sealed::Interner<$name>),*
        }

        $(
            // NOTE(eddyb) never derive `PartialOrd, Ord` for these types, as
            // observing the interning order shouldn't be allowed.
            #[derive(Copy, Clone, PartialEq, Eq, Hash)]
            pub struct $name(
                // FIXME(eddyb) figure out how to sneak niches into these types, to
                // allow e.g. `Option` around them to not increase the size.
                #[doc(hidden)] u32,
            );

            $(impl Default for $name {
                fn default() -> Self {
                    // HACK(eddyb) have to mention `$default` in this `$(...)?`
                    // to gate its presence on `$default`'s presence.
                    if false { let _ = $default; }

                    Self(0)
                }
            })?

            impl sealed::Interned for $name {
                type Def = $ty;

                $(fn preintern(interner: &sealed::Interner<Self>) {
                    interner.intern($default);
                })?
                #[inline(always)]
                fn from_u32(i: u32) -> Self {
                    Self(i)
                }
                #[inline(always)]
                fn to_u32(self) -> u32 {
                    self.0
                }
                #[inline(always)]
                fn cx_interner(cx: &Context) -> &sealed::Interner<Self> {
                    &cx.interners.$name
                }
            }
        )*
    };
}

interners! {
    needs_as_ref {
        crate::AttrSetDef,
        crate::TypeDef,
        crate::ConstDef,
        crate::DataInstFormDef,
    }

    // FIXME(eddyb) consider a more uniform naming scheme than the combination
    // of `InternedFoo => Foo` and `Foo => FooDef`.
    InternedStr => str,
    AttrSet default(crate::AttrSetDef::default()) => crate::AttrSetDef,
    Type => crate::TypeDef,
    Const => crate::ConstDef,
    DataInstForm => crate::DataInstFormDef,
}

impl<I: sealed::Interned> InternInCx<I> for I::Def
where
    I::Def: Sized + AsRef<I::Def>,
{
    fn intern_in_cx(self, cx: &Context) -> I {
        I::cx_interner(cx).intern(self)
    }
}

impl InternInCx<InternedStr> for &'_ str {
    fn intern_in_cx(self, cx: &Context) -> InternedStr {
        cx.interners.InternedStr.intern(self)
    }
}

impl InternInCx<InternedStr> for String {
    fn intern_in_cx(self, cx: &Context) -> InternedStr {
        cx.interners.InternedStr.intern(self)
    }
}

macro_rules! entities {
    (
        $($name:ident => chunk_size($chunk_size:literal) $def:ty),+ $(,)?
    ) => {
        #[allow(non_snake_case)]
        #[derive(Default)]
        struct EntityAllocs {
            $($name: sealed::EntityAlloc<$name>),*
        }

        $(
            // NOTE(eddyb) never derive `PartialOrd, Ord` for these types, as
            // observing the entity index allocation order shouldn't be allowed.
            #[derive(Copy, Clone, PartialEq, Eq, Hash)]
            pub struct $name(#[doc(hidden)] NonZeroU32);

            impl sealed::Entity for $name {
                type Def = $def;

                const CHUNK_SIZE: u32 = $chunk_size;

                #[inline(always)]
                fn from_non_zero_u32(i: NonZeroU32) -> Self {
                    Self(i)
                }
                #[inline(always)]
                fn to_non_zero_u32(self) -> NonZeroU32 {
                    self.0
                }
                #[inline(always)]
                fn cx_entity_alloc(cx: &Context) -> &sealed::EntityAlloc<Self> {
                    &cx.entity_allocs.$name
                }
            }
        )*
    };
}

entities! {
    GlobalVar => chunk_size(0x1_0000) crate::GlobalVarDecl,
    Func => chunk_size(0x1_0000) crate::FuncDecl,
    ControlRegion => chunk_size(0x1000) crate::ControlRegionDef,
    ControlNode => chunk_size(0x1000) EntityListNode<ControlNode, crate::ControlNodeDef>,
    DataInst => chunk_size(0x1000) EntityListNode<DataInst, crate::DataInstDef>,
}