spirt/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
//! > <div style="font-size:small;border:1px solid;padding:1em;padding-top:0">
//! > <div align="center">
//! >
//! > ## `SPIR-🇹`
//! >
//! > **⋯🢒 🇹arget 🠆 🇹ransform 🠆 🇹ranslate ⋯🢒**
//! >
//! > </div><br>
//! >
//! > **SPIR-🇹** is a research project aimed at exploring shader-oriented IR designs
//! > derived from SPIR-V, and producing a framework around such an IR to facilitate
//! > advanced compilation pipelines, beyond what existing SPIR-V tooling allows for.
//! >
//! > 🚧 *This project is in active design and development, many details can and will change* 🚧
//! >
//! > </div>
//! >
//! > *&mdash;
#![cfg_attr(
    docsrs,
    // NOTE(eddyb) this requires updating `repository` before every release to
    // end in `/tree/` followed by the tag name, in order to be useful.
    doc = concat!(
        "[`", env!("CARGO_PKG_NAME"), " ", env!("CARGO_PKG_VERSION"), "`'s `README`]",
        "(", env!("CARGO_PKG_REPOSITORY"), "#readme)*  "
    )
)]
#![cfg_attr(
    git_main_docs,
    doc = concat!(
        "[`", env!("CARGO_PKG_NAME"), " @ ", env!("GIT_MAIN_DESCRIBE"), "`'s `README`]",
        "(https://github.com/rust-gpu/spirt/tree/", env!("GIT_MAIN_COMMIT"), "#readme)*  "
    )
)]
#![cfg_attr(
    any(docsrs, git_main_docs),
    doc = "<sup>&nbsp;&nbsp;&nbsp;&nbsp;*(click through for the full version)*</sup>"
)]
// HACK(eddyb) this is only relevant for local builds (which don't need a link).
#![cfg_attr(
    not(any(docsrs, git_main_docs)),
    doc = concat!("`", env!("CARGO_PKG_NAME"), "`'s `README`*  ")
)]
//!
//! *Check out also [the `rust-gpu/spirt` GitHub repository](https://github.com/rust-gpu/spirt),
//! for any additional developments.*
//!
//! #### Notable types/modules
//!
//! ##### IR data types
// HACK(eddyb) using `(struct.Context.html)` to link `Context`, not `context::Context`.
//! * [`Context`](struct.Context.html): handles interning ([`Type`]s, [`Const`]s, etc.) and allocating entity handles
//! * [`Module`]: owns [`Func`]s and [`GlobalVar`]s (rooted by [`exports`](Module::exports))
//! * [`FuncDefBody`]: owns [`ControlRegion`]s and [DataInst]s (rooted by [`body`](FuncDefBody::body))
//!
//! ##### Utilities and passes
//! * [`print`](mod@print): pretty-printer with (styled and hyperlinked) HTML output
//! * [`spv::lower`]/[`spv::lift`]: conversion from/to SPIR-V
//! * [`cfg::Structurizer`]: (re)structurization from arbitrary control-flow
//!

// BEGIN - Embark standard lints v6 for Rust 1.55+
// do not change or add/remove here, but one can add exceptions after this section
// for more info see: <https://github.com/EmbarkStudios/rust-ecosystem/issues/59>
#![deny(unsafe_code)]
#![warn(
    clippy::all,
    clippy::await_holding_lock,
    clippy::char_lit_as_u8,
    clippy::checked_conversions,
    clippy::dbg_macro,
    clippy::debug_assert_with_mut_call,
    clippy::doc_markdown,
    clippy::empty_enum,
    clippy::enum_glob_use,
    clippy::exit,
    clippy::expl_impl_clone_on_copy,
    clippy::explicit_deref_methods,
    clippy::explicit_into_iter_loop,
    clippy::fallible_impl_from,
    clippy::filter_map_next,
    clippy::flat_map_option,
    clippy::float_cmp_const,
    clippy::fn_params_excessive_bools,
    clippy::from_iter_instead_of_collect,
    clippy::if_let_mutex,
    clippy::implicit_clone,
    clippy::imprecise_flops,
    clippy::inefficient_to_string,
    clippy::invalid_upcast_comparisons,
    clippy::large_digit_groups,
    clippy::large_stack_arrays,
    clippy::large_types_passed_by_value,
    clippy::let_unit_value,
    clippy::linkedlist,
    clippy::lossy_float_literal,
    clippy::macro_use_imports,
    clippy::manual_ok_or,
    clippy::map_err_ignore,
    clippy::map_flatten,
    clippy::map_unwrap_or,
    clippy::match_on_vec_items,
    clippy::match_same_arms,
    clippy::match_wild_err_arm,
    clippy::match_wildcard_for_single_variants,
    clippy::mem_forget,
    clippy::missing_enforced_import_renames,
    clippy::mut_mut,
    clippy::mutex_integer,
    clippy::needless_borrow,
    clippy::needless_continue,
    clippy::needless_for_each,
    clippy::option_option,
    clippy::path_buf_push_overwrite,
    clippy::ptr_as_ptr,
    clippy::rc_mutex,
    clippy::ref_option_ref,
    clippy::rest_pat_in_fully_bound_structs,
    clippy::same_functions_in_if_condition,
    clippy::semicolon_if_nothing_returned,
    clippy::single_match_else,
    clippy::string_add_assign,
    clippy::string_add,
    clippy::string_lit_as_bytes,
    clippy::string_to_string,
    clippy::todo,
    clippy::trait_duplication_in_bounds,
    clippy::unimplemented,
    clippy::unnested_or_patterns,
    clippy::unused_self,
    clippy::useless_transmute,
    clippy::verbose_file_reads,
    clippy::zero_sized_map_values,
    future_incompatible,
    nonstandard_style,
    rust_2018_idioms
)]
// END - Embark standard lints v6 for Rust 1.55+
// crate-specific exceptions:
#![allow(
    // NOTE(eddyb) ignored for readability (`match` used when `if let` is too long).
    clippy::single_match_else,

    // NOTE(eddyb) ignored because it's misguided to suggest `let mut s = ...;`
    // and `s.push_str(...);` when `+` is equivalent and does not require `let`.
    clippy::string_add,

    // FIXME(eddyb) rework doc comments to conform to linted expectations.
    clippy::too_long_first_doc_paragraph,
)]
// NOTE(eddyb) this is stronger than the "Embark standard lints" above, because
// we almost never need `unsafe` code and this is a further "speed bump" to it.
#![forbid(unsafe_code)]

// NOTE(eddyb) all the modules are declared here, but they're documented "inside"
// (i.e. using inner doc comments).
pub mod cfg;
pub mod cfgssa;
mod context;
pub mod func_at;
pub mod print;
pub mod transform;
pub mod visit;
pub mod passes {
    //! IR transformations (typically whole-[`Module`](crate::Module)).
    //
    // NOTE(eddyb) inline `mod` to avoid adding APIs here, it's just namespacing.

    pub mod legalize;
    pub mod link;
    pub mod qptr;
}
pub mod qptr;
pub mod spv;

use smallvec::SmallVec;
use std::borrow::Cow;
use std::collections::BTreeSet;
use std::rc::Rc;

// HACK(eddyb) work around the lack of `FxIndex{Map,Set}` type aliases elsewhere.
#[doc(hidden)]
type FxIndexMap<K, V> =
    indexmap::IndexMap<K, V, std::hash::BuildHasherDefault<rustc_hash::FxHasher>>;
#[doc(hidden)]
type FxIndexSet<V> = indexmap::IndexSet<V, std::hash::BuildHasherDefault<rustc_hash::FxHasher>>;

// NOTE(eddyb) these reexports are all documented inside `context`.
// FIXME(eddyb) maybe make an `entity` module to move either the definitions,
// or at least the re-exports - an `ir` module might help too, organizationally?
pub use context::{
    Context, EntityDefs, EntityList, EntityListIter, EntityOrientedDenseMap, EntityOrientedMapKey,
};

/// Interned handle for a [`str`].
pub use context::InternedStr;

// HACK(eddyb) this only serves to disallow modifying the `cx` field of `Module`.
#[doc(hidden)]
mod sealed {
    use super::*;
    use std::rc::Rc;

    #[derive(Clone)]
    pub struct Module {
        /// Context used for everything interned, in this module.
        ///
        /// Notable choices made for this field:
        /// * private to disallow switching the context of a module
        /// * [`Rc`] sharing to allow multiple modules to use the same context
        ///   (`Context: !Sync` because of the interners so it can't be `Arc`)
        cx: Rc<Context>,

        pub dialect: ModuleDialect,
        pub debug_info: ModuleDebugInfo,

        pub global_vars: EntityDefs<GlobalVar>,
        pub funcs: EntityDefs<Func>,

        pub exports: FxIndexMap<ExportKey, Exportee>,
    }

    impl Module {
        pub fn new(cx: Rc<Context>, dialect: ModuleDialect, debug_info: ModuleDebugInfo) -> Self {
            Self {
                cx,

                dialect,
                debug_info,

                global_vars: Default::default(),
                funcs: Default::default(),

                exports: Default::default(),
            }
        }

        // FIXME(eddyb) `cx_ref` might be the better default in situations where
        // the module doesn't need to be modified, figure out if that's common.
        pub fn cx(&self) -> Rc<Context> {
            self.cx.clone()
        }

        pub fn cx_ref(&self) -> &Rc<Context> {
            &self.cx
        }
    }
}
pub use sealed::Module;

/// Semantic properties of a SPIR-T module (not tied to any declarations/definitions).
#[derive(Clone)]
pub enum ModuleDialect {
    Spv(spv::Dialect),
}

/// Non-semantic details (i.e. debuginfo) of a SPIR-Y module (not tied to any
/// declarations/definitions).
#[derive(Clone)]
pub enum ModuleDebugInfo {
    Spv(spv::ModuleDebugInfo),
}

/// An unique identifier (e.g. a link name, or "symbol") for a module export.
#[derive(Clone, PartialEq, Eq, Hash)]
pub enum ExportKey {
    LinkName(InternedStr),

    SpvEntryPoint {
        imms: SmallVec<[spv::Imm; 2]>,
        // FIXME(eddyb) remove this by recomputing the interface vars.
        interface_global_vars: SmallVec<[GlobalVar; 4]>,
    },
}

/// A definition exported out of a module (see also [`ExportKey`]).
#[derive(Copy, Clone)]
pub enum Exportee {
    GlobalVar(GlobalVar),
    Func(Func),
}

/// Interned handle for an [`AttrSetDef`](crate::AttrSetDef)
/// (a set of [`Attr`](crate::Attr)s).
pub use context::AttrSet;

/// Definition for an [`AttrSet`]: a set of [`Attr`]s.
#[derive(Default, PartialEq, Eq, Hash)]
pub struct AttrSetDef {
    // FIXME(eddyb) use `BTreeMap<Attr, AttrValue>` and split some of the params
    // between the `Attr` and `AttrValue` based on specified uniquness.
    // FIXME(eddyb) don't put debuginfo in here, but rather at use sites
    // (for e.g. types, with component types also having the debuginfo
    // bundled at the use site of the composite type) in order to allow
    // deduplicating definitions that only differ in debuginfo, in SPIR-T,
    // and still lift SPIR-V with duplicate definitions, out of that.
    pub attrs: BTreeSet<Attr>,
}

impl AttrSetDef {
    pub fn push_diag(&mut self, diag: Diag) {
        // FIXME(eddyb) seriously consider moving to `BTreeMap` (see above).
        // HACK(eddyb) this assumes `Attr::Diagnostics` is the last of `Attr`!
        let mut attr = if let Some(Attr::Diagnostics(_)) = self.attrs.last() {
            self.attrs.pop_last().unwrap()
        } else {
            Attr::Diagnostics(OrdAssertEq(vec![]))
        };
        match &mut attr {
            Attr::Diagnostics(OrdAssertEq(diags)) => diags.push(diag),
            _ => unreachable!(),
        }
        self.attrs.insert(attr);
    }

    // FIXME(eddyb) should this be hidden in favor of `AttrSet::append_diag`?
    pub fn append_diag(&self, diag: Diag) -> Self {
        let mut new_attrs = Self { attrs: self.attrs.clone() };
        new_attrs.push_diag(diag);
        new_attrs
    }
}

// FIXME(eddyb) should these methods be elsewhere?
impl AttrSet {
    // FIXME(eddyb) should this be hidden in favor of `push_diag`?
    // FIXME(eddyb) should these methods always take multiple values?
    pub fn append_diag(self, cx: &Context, diag: Diag) -> Self {
        cx.intern(cx[self].append_diag(diag))
    }

    pub fn push_diag(&mut self, cx: &Context, diag: Diag) {
        *self = self.append_diag(cx, diag);
    }
}

/// Any semantic or non-semantic (debuginfo) decoration/modifier, that can be
/// *optionally* applied to some declaration/definition.
///
/// Always used via [`AttrSetDef`] (interned as [`AttrSet`]).
//
// FIXME(eddyb) consider interning individual attrs, not just `AttrSet`s.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, derive_more::From)]
pub enum Attr {
    /// `QPtr`-specific attributes (see [`qptr::QPtrAttr`]).
    #[from]
    QPtr(qptr::QPtrAttr),

    SpvAnnotation(spv::Inst),

    SpvDebugLine {
        file_path: OrdAssertEq<InternedStr>,
        line: u32,
        col: u32,
    },

    /// Some SPIR-V instructions, like `OpFunction`, take a bitflags operand
    /// that is effectively an optimization over using `OpDecorate`.
    //
    // FIXME(eddyb) handle flags having further operands as parameters.
    SpvBitflagsOperand(spv::Imm),

    /// Can be used anywhere to record [`Diag`]nostics produced during a pass,
    /// while allowing the pass to continue (and its output to be pretty-printed).
    //
    // HACK(eddyb) this is the last variant to control printing order, but also
    // to make `push_diag`/`append_diag` above work correctly!
    Diagnostics(OrdAssertEq<Vec<Diag>>),
}

/// Diagnostics produced by SPIR-T passes, and recorded in [`Attr::Diagnostics`].
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Diag {
    pub level: DiagLevel,
    // FIXME(eddyb) this may want to be `SmallVec` and/or `Rc`?
    pub message: Vec<DiagMsgPart>,
}

impl Diag {
    pub fn new(level: DiagLevel, message: impl IntoIterator<Item = DiagMsgPart>) -> Self {
        Self { level, message: message.into_iter().collect() }
    }

    // FIMXE(eddyb) make macros more ergonomic than this, for interpolation.
    #[track_caller]
    pub fn bug(message: impl IntoIterator<Item = DiagMsgPart>) -> Self {
        Self::new(DiagLevel::Bug(std::panic::Location::caller()), message)
    }

    pub fn err(message: impl IntoIterator<Item = DiagMsgPart>) -> Self {
        Self::new(DiagLevel::Error, message)
    }

    pub fn warn(message: impl IntoIterator<Item = DiagMsgPart>) -> Self {
        Self::new(DiagLevel::Warning, message)
    }
}

/// The "severity" level of a [`Diag`]nostic.
///
/// Note: `Bug` diagnostics track their emission point for easier identification.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub enum DiagLevel {
    Bug(&'static std::panic::Location<'static>),
    Error,
    Warning,
}

/// One part of a [`Diag`]nostic message, allowing rich interpolation.
///
/// Note: [`visit::Visitor`] and [`transform::Transformer`] *do not* interact
/// with any interpolated information, and it's instead treated as "frozen" data.
#[derive(Clone, PartialEq, Eq, Hash, derive_more::From)]
// HACK(eddyb) this sets the default as "opt-out", to avoid `#[from(forward)]`
// on the `Plain` variant from making it "opt-in" for all variants.
#[from]
pub enum DiagMsgPart {
    #[from(forward)]
    Plain(Cow<'static, str>),

    // FIXME(eddyb) use `dyn Trait` instead of listing out a few cases.
    Attrs(AttrSet),
    Type(Type),
    Const(Const),
    QPtrUsage(qptr::QPtrUsage),
}

/// Wrapper to limit `Ord` for interned index types (e.g. [`InternedStr`])
/// to only situations where the interned index reflects contents (i.e. equality).
//
// FIXME(eddyb) this is not ideal, and it might be more useful to replace the
// `BTreeSet<Attr>` with an `BTreeMap<Attr, AttrValue>`, where only `Attr` needs
// to be `Ord`, and the details that cannot be `Ord`, can be moved to `AttrValue`.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct OrdAssertEq<T>(pub T);

impl<T: Eq> PartialOrd for OrdAssertEq<T> {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl<T: Eq> Ord for OrdAssertEq<T> {
    #[track_caller]
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        assert!(
            self == other,
            "OrdAssertEq<{}>::cmp called with unequal values",
            std::any::type_name::<T>(),
        );
        std::cmp::Ordering::Equal
    }
}

/// Interned handle for a [`TypeDef`](crate::TypeDef).
pub use context::Type;

/// Definition for a [`Type`].
//
// FIXME(eddyb) maybe special-case some basic types like integers.
#[derive(PartialEq, Eq, Hash)]
pub struct TypeDef {
    pub attrs: AttrSet,
    pub kind: TypeKind,
}

#[derive(Clone, PartialEq, Eq, Hash)]
pub enum TypeKind {
    /// "Quasi-pointer", an untyped pointer-like abstract scalar that can represent
    /// both memory locations (in any address space) and other kinds of locations
    /// (e.g. SPIR-V `OpVariable`s in non-memory "storage classes").
    ///
    /// This flexibility can be used to represent pointers from source languages
    /// that expect/are defined to operate on untyped memory (C, C++, Rust, etc.),
    /// that can then be legalized away (e.g. via inlining) or even emulated.
    ///
    /// Information narrowing down how values of the type may be created/used
    /// (e.g. "points to variable `x`" or "accessed at offset `y`") can be found
    /// attached as `Attr`s on those `Value`s (see [`Attr::QPtr`]).
    //
    // FIXME(eddyb) a "refinement system" that's orthogonal from types, and kept
    // separately in e.g. `ControlRegionInputDecl`, might be a better approach?
    QPtr,

    SpvInst {
        spv_inst: spv::Inst,
        // FIXME(eddyb) find a better name.
        type_and_const_inputs: SmallVec<[TypeOrConst; 2]>,
    },

    /// The type of a [`ConstKind::SpvStringLiteralForExtInst`] constant, i.e.
    /// a SPIR-V `OpString` with no actual type in SPIR-V.
    SpvStringLiteralForExtInst,
}

// HACK(eddyb) this behaves like an implicit conversion for `cx.intern(...)`.
impl context::InternInCx<Type> for TypeKind {
    fn intern_in_cx(self, cx: &Context) -> Type {
        cx.intern(TypeDef { attrs: Default::default(), kind: self })
    }
}

// HACK(eddyb) this is like `Either<Type, Const>`, only used in `TypeKind::SpvInst`,
// and only because SPIR-V type definitions can references both types and consts.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub enum TypeOrConst {
    Type(Type),
    Const(Const),
}

/// Interned handle for a [`ConstDef`](crate::ConstDef) (a constant value).
pub use context::Const;

/// Definition for a [`Const`]: a constant value.
//
// FIXME(eddyb) maybe special-case some basic consts like integer literals.
#[derive(PartialEq, Eq, Hash)]
pub struct ConstDef {
    pub attrs: AttrSet,
    pub ty: Type,
    pub kind: ConstKind,
}

#[derive(Clone, PartialEq, Eq, Hash)]
pub enum ConstKind {
    PtrToGlobalVar(GlobalVar),

    // HACK(eddyb) this is a fallback case that should become increasingly rare
    // (especially wrt recursive consts), `Rc` means it can't bloat `ConstDef`.
    SpvInst {
        spv_inst_and_const_inputs: Rc<(spv::Inst, SmallVec<[Const; 4]>)>,
    },

    /// SPIR-V `OpString`, but only when used as an operand for an `OpExtInst`,
    /// which can't have literals itself - for non-string literals `OpConstant*`
    /// are readily usable, but only `OpString` is supported for string literals.
    SpvStringLiteralForExtInst(InternedStr),
}

/// Declarations ([`GlobalVarDecl`], [`FuncDecl`]) can contain a full definition,
/// or only be an import of a definition (e.g. from another module).
#[derive(Clone)]
pub enum DeclDef<D> {
    Imported(Import),
    Present(D),
}

/// An identifier (e.g. a link name, or "symbol") for an import declaration.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub enum Import {
    LinkName(InternedStr),
}

/// Entity handle for a [`GlobalVarDecl`](crate::GlobalVarDecl) (a global variable).
pub use context::GlobalVar;

/// Declaration/definition for a [`GlobalVar`]: a global variable.
//
// FIXME(eddyb) mark any `GlobalVar` not *controlled* by the SPIR-V module
// (roughly: storage classes that don't allow initializers, i.e. most of them),
// as an "import" from "the shader interface", and therefore "externally visible",
// to implicitly distinguish it from `GlobalVar`s internal to the module
// (such as any constants that may need to be reshaped for legalization).
#[derive(Clone)]
pub struct GlobalVarDecl {
    pub attrs: AttrSet,

    /// The type of a pointer to the global variable (as opposed to the value type).
    // FIXME(eddyb) try to replace with value type (or at least have that too).
    pub type_of_ptr_to: Type,

    /// When `type_of_ptr_to` is `QPtr`, `shape` must be used to describe the
    /// global variable (see `GlobalVarShape`'s documentation for more details).
    pub shape: Option<qptr::shapes::GlobalVarShape>,

    /// The address space the global variable will be allocated into.
    pub addr_space: AddrSpace,

    pub def: DeclDef<GlobalVarDefBody>,
}

#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub enum AddrSpace {
    /// Placeholder for `GlobalVar`s with `GlobalVarShape::Handles`.
    ///
    /// In SPIR-V, this corresponds to `UniformConstant` for `Handle::Opaque`,
    /// or the buffer's storage class for `Handle::Buffer`.
    Handles,

    SpvStorageClass(u32),
}

/// The body of a [`GlobalVar`] definition.
#[derive(Clone)]
pub struct GlobalVarDefBody {
    /// If `Some`, the global variable will start out with the specified value.
    pub initializer: Option<Const>,
}

/// Entity handle for a [`FuncDecl`](crate::FuncDecl) (a function).
pub use context::Func;

/// Declaration/definition for a [`Func`]: a function.
#[derive(Clone)]
pub struct FuncDecl {
    pub attrs: AttrSet,

    pub ret_type: Type,

    pub params: SmallVec<[FuncParam; 2]>,

    pub def: DeclDef<FuncDefBody>,
}

#[derive(Copy, Clone)]
pub struct FuncParam {
    pub attrs: AttrSet,

    pub ty: Type,
}

/// The body of a [`Func`] definition.
//
// FIXME(eddyb) `FuncDefBody`/`func_def_body` are too long, find shorter names.
#[derive(Clone)]
pub struct FuncDefBody {
    pub control_regions: EntityDefs<ControlRegion>,
    pub control_nodes: EntityDefs<ControlNode>,
    pub data_insts: EntityDefs<DataInst>,

    /// The [`ControlRegion`] representing the whole body of the function.
    ///
    /// Function parameters are provided via `body.inputs`, i.e. they can be
    /// only accessed with `Value::ControlRegionInputs { region: body, idx }`.
    ///
    /// When `unstructured_cfg` is `None`, this includes the structured return
    /// of the function, with `body.outputs` as the returned values.
    pub body: ControlRegion,

    /// The unstructured (part of the) control-flow graph of the function.
    ///
    /// Only present if structurization wasn't attempted, or if was only partial
    /// (leaving behind a mix of structured and unstructured control-flow).
    ///
    /// When present, it starts at `body` (more specifically, its exit),
    /// effectively replacing the structured return `body` otherwise implies,
    /// with `body` (or rather, its `children`) always being fully structured.
    pub unstructured_cfg: Option<cfg::ControlFlowGraph>,
}

/// Entity handle for a [`ControlRegionDef`](crate::ControlRegionDef)
/// (a control-flow region).
///
/// A [`ControlRegion`] ("control-flow region") is a linear chain of [`ControlNode`]s,
/// describing a single-entry single-exit (SESE) control-flow "region" (subgraph)
/// in a function's control-flow graph (CFG).
///
/// # Control-flow
///
/// In SPIR-T, two forms of control-flow are used:
/// * "structured": [`ControlRegion`]s and [`ControlNode`]s in a "mutual tree"
///   * i.e. each such [`ControlRegion`] can only appear in exactly one [`ControlNode`],
///     and each [`ControlNode`] can only appear in exactly one [`ControlRegion`]
///   * a region is either the function's body, or used as part of [`ControlNode`]
///     (e.g. the "then" case of an `if`-`else`), itself part of a larger region
///   * when inside a region, reaching any other part of the function (or any
///     other function on call stack) requires leaving through the region's
///     single exit (also called "merge") point, i.e. its execution is either:
///     * "convergent": the region completes and continues into its parent
///       [`ControlNode`], or function (the latter being a "structured return")
///     * "divergent": execution gets stuck in the region (an infinite loop),
///       or is aborted (e.g. `OpTerminateInvocation` from SPIR-V)
/// * "unstructured": [`ControlRegion`]s which connect to other [`ControlRegion`]s
///   using [`cfg::ControlInst`](crate::cfg::ControlInst)s (as described by a
///   [`cfg::ControlFlowGraph`](crate::cfg::ControlFlowGraph))
///
/// When a function's entire body can be described by a single [`ControlRegion`],
/// that function is said to have (entirely) "structured control-flow".
///
/// Mixing "structured" and "unstructured" control-flow is supported because:
/// * during structurization, it allows structured subgraphs to remain connected
///   by the same CFG edges that were connecting smaller [`ControlRegion`]s before
/// * structurization doesn't have to fail in the cases it doesn't fully support
///   yet, but can instead result in a "maximally structured" function
///
/// Other IRs may use different "structured control-flow" definitions, notably:
/// * SPIR-V uses a laxer definition, that corresponds more to the constraints
///   of the GLSL language, and is single-entry multiple-exit (SEME) with
///   "alternate exits" consisting of `break`s out of `switch`es and loops,
///   and `return`s (making it non-trivial to inline one function into another)
/// * RVSDG inspired SPIR-T's design, but its regions are (acyclic) graphs, it
///   makes no distinction between control-flow and "computational" nodes, and
///   its execution order is determined by value/state dependencies alone
///   (SPIR-T may get closer to it in the future, but the initial compromise
///   was chosen to limit the effort of lowering/lifting from/to SPIR-V)
///
/// # Data-flow interactions
///
/// SPIR-T [`Value`](crate::Value)s follow "single static assignment" (SSA), just like SPIR-V:
/// * inside a function, any new value is produced (or "defined") as an output
///   of [`DataInst`]/[`ControlNode`], and "uses" of that value are [`Value`](crate::Value)s
///   variants which refer to the defining [`DataInst`]/[`ControlNode`] directly
///   (guaranteeing the "single" and "static" of "SSA", by construction)
/// * the definition of a value must "dominate" all of its uses
///   (i.e. in all possible execution paths, the definition precedes all uses)
///
/// But unlike SPIR-V, SPIR-T's structured control-flow has implications for SSA:
/// * dominance is simpler, so values defined in a [`ControlRegion`](crate::ControlRegion) can be used:
///   * later in that region, including in the region's `outputs`
///     (which allows "exporting" values out to the rest of the function)
///   * outside that region, but *only* if the parent [`ControlNode`](crate::ControlNode)
///     is a `Loop` (that is, when the region is a loop's body)
///     * this is an "emergent" property, stemming from the region having to
///       execute (at least once) before the parent [`ControlNode`](crate::ControlNode)
///       can complete, but is not is not ideal and should eventually be replaced
///       with passing all such values through loop (body) `outputs`
/// * instead of φ ("phi") nodes, SPIR-T uses region `outputs` to merge values
///   coming from separate control-flow paths (i.e. the cases of a `Select`),
///   and region `inputs` for passing values back along loop backedges
///   (additionally, the body's `inputs` are used for function parameters)
///   * like the "block arguments" alternative to SSA phi nodes (which some
///     other SSA IRs use), this has the advantage of keeping the uses of the
///     "source" values in their respective paths (where they're dominated),
///     instead of in the merge (where phi nodes require special-casing, as
///     their "uses" of all the "source" values would normally be illegal)
///   * in unstructured control-flow, region `inputs` are additionally used for
///     representing phi nodes, as [`cfg::ControlInst`](crate::cfg::ControlInst)s
///     passing values to their target regions
///     * all value uses across unstructured control-flow edges (i.e. not in the
///       same region containing the value definition) *require* explicit passing,
///       as unstructured control-flow [`ControlRegion`](crate::ControlRegion)s
///       do *not* themselves get *any* implied dominance relations from the
///       shape of the control-flow graph (unlike most typical CFG+SSA IRs)
pub use context::ControlRegion;

/// Definition for a [`ControlRegion`]: a control-flow region.
#[derive(Clone, Default)]
pub struct ControlRegionDef {
    /// Inputs to this [`ControlRegion`]:
    /// * accessed using [`Value::ControlRegionInput`]
    /// * values provided by the parent:
    ///   * when this is the function body: the function's parameters
    pub inputs: SmallVec<[ControlRegionInputDecl; 2]>,

    pub children: EntityList<ControlNode>,

    /// Output values from this [`ControlRegion`], provided to the parent:
    /// * when this is the function body: these are the structured return values
    /// * when this is a `Select` case: these are the values for the parent
    ///   [`ControlNode`]'s outputs (accessed using [`Value::ControlNodeOutput`])
    /// * when this is a `Loop` body: these are the values to be used for the
    ///   next loop iteration's body `inputs`
    ///   * **not** accessible through [`Value::ControlNodeOutput`] on the `Loop`,
    ///     as it's both confusing regarding [`Value::ControlRegionInput`], and
    ///     also there's nothing stopping body-defined values from directly being
    ///     used outside the loop (once that changes, this aspect can be flipped)
    pub outputs: SmallVec<[Value; 2]>,
}

#[derive(Copy, Clone)]
pub struct ControlRegionInputDecl {
    pub attrs: AttrSet,

    pub ty: Type,
}

/// Entity handle for a [`ControlNodeDef`](crate::ControlNodeDef)
/// (a control-flow operator or leaf).
///
/// See [`ControlRegion`] docs for more on control-flow in SPIR-T.
pub use context::ControlNode;

/// Definition for a [`ControlNode`]: a control-flow operator or leaf.
///
/// See [`ControlRegion`] docs for more on control-flow in SPIR-T.
#[derive(Clone)]
pub struct ControlNodeDef {
    pub kind: ControlNodeKind,

    /// Outputs from this [`ControlNode`]:
    /// * accessed using [`Value::ControlNodeOutput`]
    /// * values provided by `region.outputs`, where `region` is the executed
    ///   child [`ControlRegion`]:
    ///   * when this is a `Select`: the case that was chosen
    pub outputs: SmallVec<[ControlNodeOutputDecl; 2]>,
}

#[derive(Copy, Clone)]
pub struct ControlNodeOutputDecl {
    pub attrs: AttrSet,

    pub ty: Type,
}

#[derive(Clone)]
pub enum ControlNodeKind {
    /// Linear chain of [`DataInst`]s, executing in sequence.
    ///
    /// This is only an optimization over keeping [`DataInst`]s in [`ControlRegion`]
    /// linear chains directly, or even merging [`DataInst`] with [`ControlNode`].
    Block {
        // FIXME(eddyb) should empty blocks be allowed? should `DataInst`s be
        // linked directly into the `ControlRegion` `children` list?
        insts: EntityList<DataInst>,
    },

    /// Choose one [`ControlRegion`] out of `cases` to execute, based on a single
    /// value input (`scrutinee`) interpreted according to [`SelectionKind`].
    ///
    /// This corresponds to "gamma" (`γ`) nodes in (R)VSDG, though those are
    /// sometimes limited only to a two-way selection on a boolean condition.
    Select { kind: SelectionKind, scrutinee: Value, cases: SmallVec<[ControlRegion; 2]> },

    /// Execute `body` repeatedly, until `repeat_condition` evaluates to `false`.
    ///
    /// To represent "loop state", `body` can take `inputs`, getting values from:
    /// * on the first iteration: `initial_inputs`
    /// * on later iterations: `body`'s own `outputs` (from the last iteration)
    ///
    /// As the condition is checked only *after* the body, this type of loop is
    /// sometimes described as "tail-controlled", and is also equivalent to the
    /// C-like `do { body; } while(repeat_condition)` construct.
    ///
    /// This corresponds to "theta" (`θ`) nodes in (R)VSDG.
    Loop {
        initial_inputs: SmallVec<[Value; 2]>,

        body: ControlRegion,

        // FIXME(eddyb) should this be kept in `body.outputs`? (that would not
        // have any ambiguity as to whether it can see `body`-computed values)
        repeat_condition: Value,
    },

    /// Leave the current invocation, similar to returning from every function
    /// call in the stack (up to and including the entry-point), but potentially
    /// indicating a fatal error as well.
    //
    // FIXME(eddyb) make this less shader-controlflow-centric.
    ExitInvocation {
        kind: cfg::ExitInvocationKind,

        // FIXME(eddyb) centralize `Value` inputs across `ControlNode`s,
        // and only use stricter types for building/traversing the IR.
        inputs: SmallVec<[Value; 2]>,
    },
}

#[derive(Clone)]
pub enum SelectionKind {
    /// Two-case selection based on boolean condition, i.e. `if`-`else`, with
    /// the two cases being "then" and "else" (in that order).
    BoolCond,

    SpvInst(spv::Inst),
}

/// Entity handle for a [`DataInstDef`](crate::DataInstDef) (a leaf instruction).
pub use context::DataInst;

/// Definition for a [`DataInst`]: a leaf (non-control-flow) instruction.
//
// FIXME(eddyb) `DataInstKind::FuncCall` should probably be a `ControlNodeKind`,
// but also `DataInst` vs `ControlNode` is a purely artificial distinction.
#[derive(Clone)]
pub struct DataInstDef {
    pub attrs: AttrSet,

    pub form: DataInstForm,

    // FIXME(eddyb) change the inline size of this to fit most instructions.
    pub inputs: SmallVec<[Value; 2]>,
}

/// Interned handle for a [`DataInstFormDef`](crate::DataInstFormDef)
/// (a "form", or "template", for [`DataInstDef`](crate::DataInstDef)s).
pub use context::DataInstForm;

/// "Form" (or "template") definition for [`DataInstFormDef`]s, which includes
/// most of their common *static* information (notably excluding `attrs`, as
/// they vary more often due to handling diagnostics, debuginfo, refinement etc.).
//
// FIXME(eddyb) now that this is interned, try to find all the code that was
// working around needing to borrow `DataInstKind`, just because it was owned
// by a `FuncDefBody` (instead of interned in the `Context`).
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct DataInstFormDef {
    pub kind: DataInstKind,

    pub output_type: Option<Type>,
}

#[derive(Clone, PartialEq, Eq, Hash, derive_more::From)]
pub enum DataInstKind {
    // FIXME(eddyb) try to split this into recursive and non-recursive calls,
    // to avoid needing special handling for recursion where it's impossible.
    FuncCall(Func),

    /// `QPtr`-specific operations (see [`qptr::QPtrOp`]).
    #[from]
    QPtr(qptr::QPtrOp),

    // FIXME(eddyb) should this have `#[from]`?
    SpvInst(spv::Inst),
    SpvExtInst {
        ext_set: InternedStr,
        inst: u32,
    },
}

#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub enum Value {
    Const(Const),

    /// One of the inputs to a [`ControlRegion`]:
    /// * declared by `region.inputs[input_idx]`
    /// * value provided by the parent of the `region`:
    ///   * when `region` is the function body: `input_idx`th function parameter
    ControlRegionInput {
        region: ControlRegion,
        input_idx: u32,
    },

    /// One of the outputs produced by a [`ControlNode`]:
    /// * declared by `control_node.outputs[output_idx]`
    /// * value provided by `region.outputs[output_idx]`, where `region` is the
    ///   executed child [`ControlRegion`] (of `control_node`):
    ///   * when `control_node` is a `Select`: the case that was chosen
    ControlNodeOutput {
        control_node: ControlNode,
        output_idx: u32,
    },

    /// The output value of a [`DataInst`].
    DataInstOutput(DataInst),
}