spirt/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
//! > <div style="font-size:small;border:1px solid;padding:1em;padding-top:0">
//! > <div align="center">
//! >
//! > ## `SPIR-🇹`
//! >
//! > **⋯🢒 🇹arget 🠆 🇹ransform 🠆 🇹ranslate ⋯🢒**
//! >
//! > </div><br>
//! >
//! > **SPIR-🇹** is a research project aimed at exploring shader-oriented IR designs
//! > derived from SPIR-V, and producing a framework around such an IR to facilitate
//! > advanced compilation pipelines, beyond what existing SPIR-V tooling allows for.
//! >
//! > 🚧 *This project is in active design and development, many details can and will change* 🚧
//! >
//! > </div>
//! >
//! > *—
#![cfg_attr(
docsrs,
// NOTE(eddyb) this requires updating `repository` before every release to
// end in `/tree/` followed by the tag name, in order to be useful.
doc = concat!(
"[`", env!("CARGO_PKG_NAME"), " ", env!("CARGO_PKG_VERSION"), "`'s `README`]",
"(", env!("CARGO_PKG_REPOSITORY"), "#readme)* "
)
)]
#![cfg_attr(
git_main_docs,
doc = concat!(
"[`", env!("CARGO_PKG_NAME"), " @ ", env!("GIT_MAIN_DESCRIBE"), "`'s `README`]",
"(https://github.com/rust-gpu/spirt/tree/", env!("GIT_MAIN_COMMIT"), "#readme)* "
)
)]
#![cfg_attr(
any(docsrs, git_main_docs),
doc = "<sup> *(click through for the full version)*</sup>"
)]
// HACK(eddyb) this is only relevant for local builds (which don't need a link).
#![cfg_attr(
not(any(docsrs, git_main_docs)),
doc = concat!("`", env!("CARGO_PKG_NAME"), "`'s `README`* ")
)]
//!
//! *Check out also [the `rust-gpu/spirt` GitHub repository](https://github.com/rust-gpu/spirt),
//! for any additional developments.*
//!
//! #### Notable types/modules
//!
//! ##### IR data types
// HACK(eddyb) using `(struct.Context.html)` to link `Context`, not `context::Context`.
//! * [`Context`](struct.Context.html): handles interning ([`Type`]s, [`Const`]s, etc.) and allocating entity handles
//! * [`Module`]: owns [`Func`]s and [`GlobalVar`]s (rooted by [`exports`](Module::exports))
//! * [`FuncDefBody`]: owns [`ControlRegion`]s and [DataInst]s (rooted by [`body`](FuncDefBody::body))
//!
//! ##### Utilities and passes
//! * [`print`](mod@print): pretty-printer with (styled and hyperlinked) HTML output
//! * [`spv::lower`]/[`spv::lift`]: conversion from/to SPIR-V
//! * [`cfg::Structurizer`]: (re)structurization from arbitrary control-flow
//!
// BEGIN - Embark standard lints v6 for Rust 1.55+
// do not change or add/remove here, but one can add exceptions after this section
// for more info see: <https://github.com/EmbarkStudios/rust-ecosystem/issues/59>
#![deny(unsafe_code)]
#![warn(
clippy::all,
clippy::await_holding_lock,
clippy::char_lit_as_u8,
clippy::checked_conversions,
clippy::dbg_macro,
clippy::debug_assert_with_mut_call,
clippy::doc_markdown,
clippy::empty_enum,
clippy::enum_glob_use,
clippy::exit,
clippy::expl_impl_clone_on_copy,
clippy::explicit_deref_methods,
clippy::explicit_into_iter_loop,
clippy::fallible_impl_from,
clippy::filter_map_next,
clippy::flat_map_option,
clippy::float_cmp_const,
clippy::fn_params_excessive_bools,
clippy::from_iter_instead_of_collect,
clippy::if_let_mutex,
clippy::implicit_clone,
clippy::imprecise_flops,
clippy::inefficient_to_string,
clippy::invalid_upcast_comparisons,
clippy::large_digit_groups,
clippy::large_stack_arrays,
clippy::large_types_passed_by_value,
clippy::let_unit_value,
clippy::linkedlist,
clippy::lossy_float_literal,
clippy::macro_use_imports,
clippy::manual_ok_or,
clippy::map_err_ignore,
clippy::map_flatten,
clippy::map_unwrap_or,
clippy::match_on_vec_items,
clippy::match_same_arms,
clippy::match_wild_err_arm,
clippy::match_wildcard_for_single_variants,
clippy::mem_forget,
clippy::missing_enforced_import_renames,
clippy::mut_mut,
clippy::mutex_integer,
clippy::needless_borrow,
clippy::needless_continue,
clippy::needless_for_each,
clippy::option_option,
clippy::path_buf_push_overwrite,
clippy::ptr_as_ptr,
clippy::rc_mutex,
clippy::ref_option_ref,
clippy::rest_pat_in_fully_bound_structs,
clippy::same_functions_in_if_condition,
clippy::semicolon_if_nothing_returned,
clippy::single_match_else,
clippy::string_add_assign,
clippy::string_add,
clippy::string_lit_as_bytes,
clippy::string_to_string,
clippy::todo,
clippy::trait_duplication_in_bounds,
clippy::unimplemented,
clippy::unnested_or_patterns,
clippy::unused_self,
clippy::useless_transmute,
clippy::verbose_file_reads,
clippy::zero_sized_map_values,
future_incompatible,
nonstandard_style,
rust_2018_idioms
)]
// END - Embark standard lints v6 for Rust 1.55+
// crate-specific exceptions:
#![allow(
// NOTE(eddyb) ignored for readability (`match` used when `if let` is too long).
clippy::single_match_else,
// NOTE(eddyb) ignored because it's misguided to suggest `let mut s = ...;`
// and `s.push_str(...);` when `+` is equivalent and does not require `let`.
clippy::string_add,
// FIXME(eddyb) rework doc comments to conform to linted expectations.
clippy::too_long_first_doc_paragraph,
)]
// NOTE(eddyb) this is stronger than the "Embark standard lints" above, because
// we almost never need `unsafe` code and this is a further "speed bump" to it.
#![forbid(unsafe_code)]
// NOTE(eddyb) all the modules are declared here, but they're documented "inside"
// (i.e. using inner doc comments).
pub mod cfg;
pub mod cfgssa;
mod context;
pub mod func_at;
pub mod print;
pub mod transform;
pub mod visit;
pub mod passes {
//! IR transformations (typically whole-[`Module`](crate::Module)).
//
// NOTE(eddyb) inline `mod` to avoid adding APIs here, it's just namespacing.
pub mod legalize;
pub mod link;
pub mod qptr;
}
pub mod qptr;
pub mod spv;
use smallvec::SmallVec;
use std::borrow::Cow;
use std::collections::BTreeSet;
use std::rc::Rc;
// HACK(eddyb) work around the lack of `FxIndex{Map,Set}` type aliases elsewhere.
#[doc(hidden)]
type FxIndexMap<K, V> =
indexmap::IndexMap<K, V, std::hash::BuildHasherDefault<rustc_hash::FxHasher>>;
#[doc(hidden)]
type FxIndexSet<V> = indexmap::IndexSet<V, std::hash::BuildHasherDefault<rustc_hash::FxHasher>>;
// NOTE(eddyb) these reexports are all documented inside `context`.
// FIXME(eddyb) maybe make an `entity` module to move either the definitions,
// or at least the re-exports - an `ir` module might help too, organizationally?
pub use context::{
Context, EntityDefs, EntityList, EntityListIter, EntityOrientedDenseMap, EntityOrientedMapKey,
};
/// Interned handle for a [`str`].
pub use context::InternedStr;
// HACK(eddyb) this only serves to disallow modifying the `cx` field of `Module`.
#[doc(hidden)]
mod sealed {
use super::*;
use std::rc::Rc;
#[derive(Clone)]
pub struct Module {
/// Context used for everything interned, in this module.
///
/// Notable choices made for this field:
/// * private to disallow switching the context of a module
/// * [`Rc`] sharing to allow multiple modules to use the same context
/// (`Context: !Sync` because of the interners so it can't be `Arc`)
cx: Rc<Context>,
pub dialect: ModuleDialect,
pub debug_info: ModuleDebugInfo,
pub global_vars: EntityDefs<GlobalVar>,
pub funcs: EntityDefs<Func>,
pub exports: FxIndexMap<ExportKey, Exportee>,
}
impl Module {
pub fn new(cx: Rc<Context>, dialect: ModuleDialect, debug_info: ModuleDebugInfo) -> Self {
Self {
cx,
dialect,
debug_info,
global_vars: Default::default(),
funcs: Default::default(),
exports: Default::default(),
}
}
// FIXME(eddyb) `cx_ref` might be the better default in situations where
// the module doesn't need to be modified, figure out if that's common.
pub fn cx(&self) -> Rc<Context> {
self.cx.clone()
}
pub fn cx_ref(&self) -> &Rc<Context> {
&self.cx
}
}
}
pub use sealed::Module;
/// Semantic properties of a SPIR-T module (not tied to any declarations/definitions).
#[derive(Clone)]
pub enum ModuleDialect {
Spv(spv::Dialect),
}
/// Non-semantic details (i.e. debuginfo) of a SPIR-Y module (not tied to any
/// declarations/definitions).
#[derive(Clone)]
pub enum ModuleDebugInfo {
Spv(spv::ModuleDebugInfo),
}
/// An unique identifier (e.g. a link name, or "symbol") for a module export.
#[derive(Clone, PartialEq, Eq, Hash)]
pub enum ExportKey {
LinkName(InternedStr),
SpvEntryPoint {
imms: SmallVec<[spv::Imm; 2]>,
// FIXME(eddyb) remove this by recomputing the interface vars.
interface_global_vars: SmallVec<[GlobalVar; 4]>,
},
}
/// A definition exported out of a module (see also [`ExportKey`]).
#[derive(Copy, Clone)]
pub enum Exportee {
GlobalVar(GlobalVar),
Func(Func),
}
/// Interned handle for an [`AttrSetDef`](crate::AttrSetDef)
/// (a set of [`Attr`](crate::Attr)s).
pub use context::AttrSet;
/// Definition for an [`AttrSet`]: a set of [`Attr`]s.
#[derive(Default, PartialEq, Eq, Hash)]
pub struct AttrSetDef {
// FIXME(eddyb) use `BTreeMap<Attr, AttrValue>` and split some of the params
// between the `Attr` and `AttrValue` based on specified uniquness.
// FIXME(eddyb) don't put debuginfo in here, but rather at use sites
// (for e.g. types, with component types also having the debuginfo
// bundled at the use site of the composite type) in order to allow
// deduplicating definitions that only differ in debuginfo, in SPIR-T,
// and still lift SPIR-V with duplicate definitions, out of that.
pub attrs: BTreeSet<Attr>,
}
impl AttrSetDef {
pub fn push_diag(&mut self, diag: Diag) {
// FIXME(eddyb) seriously consider moving to `BTreeMap` (see above).
// HACK(eddyb) this assumes `Attr::Diagnostics` is the last of `Attr`!
let mut attr = if let Some(Attr::Diagnostics(_)) = self.attrs.last() {
self.attrs.pop_last().unwrap()
} else {
Attr::Diagnostics(OrdAssertEq(vec![]))
};
match &mut attr {
Attr::Diagnostics(OrdAssertEq(diags)) => diags.push(diag),
_ => unreachable!(),
}
self.attrs.insert(attr);
}
// FIXME(eddyb) should this be hidden in favor of `AttrSet::append_diag`?
pub fn append_diag(&self, diag: Diag) -> Self {
let mut new_attrs = Self { attrs: self.attrs.clone() };
new_attrs.push_diag(diag);
new_attrs
}
}
// FIXME(eddyb) should these methods be elsewhere?
impl AttrSet {
// FIXME(eddyb) should this be hidden in favor of `push_diag`?
// FIXME(eddyb) should these methods always take multiple values?
pub fn append_diag(self, cx: &Context, diag: Diag) -> Self {
cx.intern(cx[self].append_diag(diag))
}
pub fn push_diag(&mut self, cx: &Context, diag: Diag) {
*self = self.append_diag(cx, diag);
}
}
/// Any semantic or non-semantic (debuginfo) decoration/modifier, that can be
/// *optionally* applied to some declaration/definition.
///
/// Always used via [`AttrSetDef`] (interned as [`AttrSet`]).
//
// FIXME(eddyb) consider interning individual attrs, not just `AttrSet`s.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, derive_more::From)]
pub enum Attr {
/// `QPtr`-specific attributes (see [`qptr::QPtrAttr`]).
#[from]
QPtr(qptr::QPtrAttr),
SpvAnnotation(spv::Inst),
SpvDebugLine {
file_path: OrdAssertEq<InternedStr>,
line: u32,
col: u32,
},
/// Some SPIR-V instructions, like `OpFunction`, take a bitflags operand
/// that is effectively an optimization over using `OpDecorate`.
//
// FIXME(eddyb) handle flags having further operands as parameters.
SpvBitflagsOperand(spv::Imm),
/// Can be used anywhere to record [`Diag`]nostics produced during a pass,
/// while allowing the pass to continue (and its output to be pretty-printed).
//
// HACK(eddyb) this is the last variant to control printing order, but also
// to make `push_diag`/`append_diag` above work correctly!
Diagnostics(OrdAssertEq<Vec<Diag>>),
}
/// Diagnostics produced by SPIR-T passes, and recorded in [`Attr::Diagnostics`].
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Diag {
pub level: DiagLevel,
// FIXME(eddyb) this may want to be `SmallVec` and/or `Rc`?
pub message: Vec<DiagMsgPart>,
}
impl Diag {
pub fn new(level: DiagLevel, message: impl IntoIterator<Item = DiagMsgPart>) -> Self {
Self { level, message: message.into_iter().collect() }
}
// FIMXE(eddyb) make macros more ergonomic than this, for interpolation.
#[track_caller]
pub fn bug(message: impl IntoIterator<Item = DiagMsgPart>) -> Self {
Self::new(DiagLevel::Bug(std::panic::Location::caller()), message)
}
pub fn err(message: impl IntoIterator<Item = DiagMsgPart>) -> Self {
Self::new(DiagLevel::Error, message)
}
pub fn warn(message: impl IntoIterator<Item = DiagMsgPart>) -> Self {
Self::new(DiagLevel::Warning, message)
}
}
/// The "severity" level of a [`Diag`]nostic.
///
/// Note: `Bug` diagnostics track their emission point for easier identification.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub enum DiagLevel {
Bug(&'static std::panic::Location<'static>),
Error,
Warning,
}
/// One part of a [`Diag`]nostic message, allowing rich interpolation.
///
/// Note: [`visit::Visitor`] and [`transform::Transformer`] *do not* interact
/// with any interpolated information, and it's instead treated as "frozen" data.
#[derive(Clone, PartialEq, Eq, Hash, derive_more::From)]
// HACK(eddyb) this sets the default as "opt-out", to avoid `#[from(forward)]`
// on the `Plain` variant from making it "opt-in" for all variants.
#[from]
pub enum DiagMsgPart {
#[from(forward)]
Plain(Cow<'static, str>),
// FIXME(eddyb) use `dyn Trait` instead of listing out a few cases.
Attrs(AttrSet),
Type(Type),
Const(Const),
QPtrUsage(qptr::QPtrUsage),
}
/// Wrapper to limit `Ord` for interned index types (e.g. [`InternedStr`])
/// to only situations where the interned index reflects contents (i.e. equality).
//
// FIXME(eddyb) this is not ideal, and it might be more useful to replace the
// `BTreeSet<Attr>` with an `BTreeMap<Attr, AttrValue>`, where only `Attr` needs
// to be `Ord`, and the details that cannot be `Ord`, can be moved to `AttrValue`.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct OrdAssertEq<T>(pub T);
impl<T: Eq> PartialOrd for OrdAssertEq<T> {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl<T: Eq> Ord for OrdAssertEq<T> {
#[track_caller]
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
assert!(
self == other,
"OrdAssertEq<{}>::cmp called with unequal values",
std::any::type_name::<T>(),
);
std::cmp::Ordering::Equal
}
}
/// Interned handle for a [`TypeDef`](crate::TypeDef).
pub use context::Type;
/// Definition for a [`Type`].
//
// FIXME(eddyb) maybe special-case some basic types like integers.
#[derive(PartialEq, Eq, Hash)]
pub struct TypeDef {
pub attrs: AttrSet,
pub kind: TypeKind,
}
#[derive(Clone, PartialEq, Eq, Hash)]
pub enum TypeKind {
/// "Quasi-pointer", an untyped pointer-like abstract scalar that can represent
/// both memory locations (in any address space) and other kinds of locations
/// (e.g. SPIR-V `OpVariable`s in non-memory "storage classes").
///
/// This flexibility can be used to represent pointers from source languages
/// that expect/are defined to operate on untyped memory (C, C++, Rust, etc.),
/// that can then be legalized away (e.g. via inlining) or even emulated.
///
/// Information narrowing down how values of the type may be created/used
/// (e.g. "points to variable `x`" or "accessed at offset `y`") can be found
/// attached as `Attr`s on those `Value`s (see [`Attr::QPtr`]).
//
// FIXME(eddyb) a "refinement system" that's orthogonal from types, and kept
// separately in e.g. `ControlRegionInputDecl`, might be a better approach?
QPtr,
SpvInst {
spv_inst: spv::Inst,
// FIXME(eddyb) find a better name.
type_and_const_inputs: SmallVec<[TypeOrConst; 2]>,
},
/// The type of a [`ConstKind::SpvStringLiteralForExtInst`] constant, i.e.
/// a SPIR-V `OpString` with no actual type in SPIR-V.
SpvStringLiteralForExtInst,
}
// HACK(eddyb) this behaves like an implicit conversion for `cx.intern(...)`.
impl context::InternInCx<Type> for TypeKind {
fn intern_in_cx(self, cx: &Context) -> Type {
cx.intern(TypeDef { attrs: Default::default(), kind: self })
}
}
// HACK(eddyb) this is like `Either<Type, Const>`, only used in `TypeKind::SpvInst`,
// and only because SPIR-V type definitions can references both types and consts.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub enum TypeOrConst {
Type(Type),
Const(Const),
}
/// Interned handle for a [`ConstDef`](crate::ConstDef) (a constant value).
pub use context::Const;
/// Definition for a [`Const`]: a constant value.
//
// FIXME(eddyb) maybe special-case some basic consts like integer literals.
#[derive(PartialEq, Eq, Hash)]
pub struct ConstDef {
pub attrs: AttrSet,
pub ty: Type,
pub kind: ConstKind,
}
#[derive(Clone, PartialEq, Eq, Hash)]
pub enum ConstKind {
PtrToGlobalVar(GlobalVar),
// HACK(eddyb) this is a fallback case that should become increasingly rare
// (especially wrt recursive consts), `Rc` means it can't bloat `ConstDef`.
SpvInst {
spv_inst_and_const_inputs: Rc<(spv::Inst, SmallVec<[Const; 4]>)>,
},
/// SPIR-V `OpString`, but only when used as an operand for an `OpExtInst`,
/// which can't have literals itself - for non-string literals `OpConstant*`
/// are readily usable, but only `OpString` is supported for string literals.
SpvStringLiteralForExtInst(InternedStr),
}
/// Declarations ([`GlobalVarDecl`], [`FuncDecl`]) can contain a full definition,
/// or only be an import of a definition (e.g. from another module).
#[derive(Clone)]
pub enum DeclDef<D> {
Imported(Import),
Present(D),
}
/// An identifier (e.g. a link name, or "symbol") for an import declaration.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub enum Import {
LinkName(InternedStr),
}
/// Entity handle for a [`GlobalVarDecl`](crate::GlobalVarDecl) (a global variable).
pub use context::GlobalVar;
/// Declaration/definition for a [`GlobalVar`]: a global variable.
//
// FIXME(eddyb) mark any `GlobalVar` not *controlled* by the SPIR-V module
// (roughly: storage classes that don't allow initializers, i.e. most of them),
// as an "import" from "the shader interface", and therefore "externally visible",
// to implicitly distinguish it from `GlobalVar`s internal to the module
// (such as any constants that may need to be reshaped for legalization).
#[derive(Clone)]
pub struct GlobalVarDecl {
pub attrs: AttrSet,
/// The type of a pointer to the global variable (as opposed to the value type).
// FIXME(eddyb) try to replace with value type (or at least have that too).
pub type_of_ptr_to: Type,
/// When `type_of_ptr_to` is `QPtr`, `shape` must be used to describe the
/// global variable (see `GlobalVarShape`'s documentation for more details).
pub shape: Option<qptr::shapes::GlobalVarShape>,
/// The address space the global variable will be allocated into.
pub addr_space: AddrSpace,
pub def: DeclDef<GlobalVarDefBody>,
}
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub enum AddrSpace {
/// Placeholder for `GlobalVar`s with `GlobalVarShape::Handles`.
///
/// In SPIR-V, this corresponds to `UniformConstant` for `Handle::Opaque`,
/// or the buffer's storage class for `Handle::Buffer`.
Handles,
SpvStorageClass(u32),
}
/// The body of a [`GlobalVar`] definition.
#[derive(Clone)]
pub struct GlobalVarDefBody {
/// If `Some`, the global variable will start out with the specified value.
pub initializer: Option<Const>,
}
/// Entity handle for a [`FuncDecl`](crate::FuncDecl) (a function).
pub use context::Func;
/// Declaration/definition for a [`Func`]: a function.
#[derive(Clone)]
pub struct FuncDecl {
pub attrs: AttrSet,
pub ret_type: Type,
pub params: SmallVec<[FuncParam; 2]>,
pub def: DeclDef<FuncDefBody>,
}
#[derive(Copy, Clone)]
pub struct FuncParam {
pub attrs: AttrSet,
pub ty: Type,
}
/// The body of a [`Func`] definition.
//
// FIXME(eddyb) `FuncDefBody`/`func_def_body` are too long, find shorter names.
#[derive(Clone)]
pub struct FuncDefBody {
pub control_regions: EntityDefs<ControlRegion>,
pub control_nodes: EntityDefs<ControlNode>,
pub data_insts: EntityDefs<DataInst>,
/// The [`ControlRegion`] representing the whole body of the function.
///
/// Function parameters are provided via `body.inputs`, i.e. they can be
/// only accessed with `Value::ControlRegionInputs { region: body, idx }`.
///
/// When `unstructured_cfg` is `None`, this includes the structured return
/// of the function, with `body.outputs` as the returned values.
pub body: ControlRegion,
/// The unstructured (part of the) control-flow graph of the function.
///
/// Only present if structurization wasn't attempted, or if was only partial
/// (leaving behind a mix of structured and unstructured control-flow).
///
/// When present, it starts at `body` (more specifically, its exit),
/// effectively replacing the structured return `body` otherwise implies,
/// with `body` (or rather, its `children`) always being fully structured.
pub unstructured_cfg: Option<cfg::ControlFlowGraph>,
}
/// Entity handle for a [`ControlRegionDef`](crate::ControlRegionDef)
/// (a control-flow region).
///
/// A [`ControlRegion`] ("control-flow region") is a linear chain of [`ControlNode`]s,
/// describing a single-entry single-exit (SESE) control-flow "region" (subgraph)
/// in a function's control-flow graph (CFG).
///
/// # Control-flow
///
/// In SPIR-T, two forms of control-flow are used:
/// * "structured": [`ControlRegion`]s and [`ControlNode`]s in a "mutual tree"
/// * i.e. each such [`ControlRegion`] can only appear in exactly one [`ControlNode`],
/// and each [`ControlNode`] can only appear in exactly one [`ControlRegion`]
/// * a region is either the function's body, or used as part of [`ControlNode`]
/// (e.g. the "then" case of an `if`-`else`), itself part of a larger region
/// * when inside a region, reaching any other part of the function (or any
/// other function on call stack) requires leaving through the region's
/// single exit (also called "merge") point, i.e. its execution is either:
/// * "convergent": the region completes and continues into its parent
/// [`ControlNode`], or function (the latter being a "structured return")
/// * "divergent": execution gets stuck in the region (an infinite loop),
/// or is aborted (e.g. `OpTerminateInvocation` from SPIR-V)
/// * "unstructured": [`ControlRegion`]s which connect to other [`ControlRegion`]s
/// using [`cfg::ControlInst`](crate::cfg::ControlInst)s (as described by a
/// [`cfg::ControlFlowGraph`](crate::cfg::ControlFlowGraph))
///
/// When a function's entire body can be described by a single [`ControlRegion`],
/// that function is said to have (entirely) "structured control-flow".
///
/// Mixing "structured" and "unstructured" control-flow is supported because:
/// * during structurization, it allows structured subgraphs to remain connected
/// by the same CFG edges that were connecting smaller [`ControlRegion`]s before
/// * structurization doesn't have to fail in the cases it doesn't fully support
/// yet, but can instead result in a "maximally structured" function
///
/// Other IRs may use different "structured control-flow" definitions, notably:
/// * SPIR-V uses a laxer definition, that corresponds more to the constraints
/// of the GLSL language, and is single-entry multiple-exit (SEME) with
/// "alternate exits" consisting of `break`s out of `switch`es and loops,
/// and `return`s (making it non-trivial to inline one function into another)
/// * RVSDG inspired SPIR-T's design, but its regions are (acyclic) graphs, it
/// makes no distinction between control-flow and "computational" nodes, and
/// its execution order is determined by value/state dependencies alone
/// (SPIR-T may get closer to it in the future, but the initial compromise
/// was chosen to limit the effort of lowering/lifting from/to SPIR-V)
///
/// # Data-flow interactions
///
/// SPIR-T [`Value`](crate::Value)s follow "single static assignment" (SSA), just like SPIR-V:
/// * inside a function, any new value is produced (or "defined") as an output
/// of [`DataInst`]/[`ControlNode`], and "uses" of that value are [`Value`](crate::Value)s
/// variants which refer to the defining [`DataInst`]/[`ControlNode`] directly
/// (guaranteeing the "single" and "static" of "SSA", by construction)
/// * the definition of a value must "dominate" all of its uses
/// (i.e. in all possible execution paths, the definition precedes all uses)
///
/// But unlike SPIR-V, SPIR-T's structured control-flow has implications for SSA:
/// * dominance is simpler, so values defined in a [`ControlRegion`](crate::ControlRegion) can be used:
/// * later in that region, including in the region's `outputs`
/// (which allows "exporting" values out to the rest of the function)
/// * outside that region, but *only* if the parent [`ControlNode`](crate::ControlNode)
/// is a `Loop` (that is, when the region is a loop's body)
/// * this is an "emergent" property, stemming from the region having to
/// execute (at least once) before the parent [`ControlNode`](crate::ControlNode)
/// can complete, but is not is not ideal and should eventually be replaced
/// with passing all such values through loop (body) `outputs`
/// * instead of φ ("phi") nodes, SPIR-T uses region `outputs` to merge values
/// coming from separate control-flow paths (i.e. the cases of a `Select`),
/// and region `inputs` for passing values back along loop backedges
/// (additionally, the body's `inputs` are used for function parameters)
/// * like the "block arguments" alternative to SSA phi nodes (which some
/// other SSA IRs use), this has the advantage of keeping the uses of the
/// "source" values in their respective paths (where they're dominated),
/// instead of in the merge (where phi nodes require special-casing, as
/// their "uses" of all the "source" values would normally be illegal)
/// * in unstructured control-flow, region `inputs` are additionally used for
/// representing phi nodes, as [`cfg::ControlInst`](crate::cfg::ControlInst)s
/// passing values to their target regions
/// * all value uses across unstructured control-flow edges (i.e. not in the
/// same region containing the value definition) *require* explicit passing,
/// as unstructured control-flow [`ControlRegion`](crate::ControlRegion)s
/// do *not* themselves get *any* implied dominance relations from the
/// shape of the control-flow graph (unlike most typical CFG+SSA IRs)
pub use context::ControlRegion;
/// Definition for a [`ControlRegion`]: a control-flow region.
#[derive(Clone, Default)]
pub struct ControlRegionDef {
/// Inputs to this [`ControlRegion`]:
/// * accessed using [`Value::ControlRegionInput`]
/// * values provided by the parent:
/// * when this is the function body: the function's parameters
pub inputs: SmallVec<[ControlRegionInputDecl; 2]>,
pub children: EntityList<ControlNode>,
/// Output values from this [`ControlRegion`], provided to the parent:
/// * when this is the function body: these are the structured return values
/// * when this is a `Select` case: these are the values for the parent
/// [`ControlNode`]'s outputs (accessed using [`Value::ControlNodeOutput`])
/// * when this is a `Loop` body: these are the values to be used for the
/// next loop iteration's body `inputs`
/// * **not** accessible through [`Value::ControlNodeOutput`] on the `Loop`,
/// as it's both confusing regarding [`Value::ControlRegionInput`], and
/// also there's nothing stopping body-defined values from directly being
/// used outside the loop (once that changes, this aspect can be flipped)
pub outputs: SmallVec<[Value; 2]>,
}
#[derive(Copy, Clone)]
pub struct ControlRegionInputDecl {
pub attrs: AttrSet,
pub ty: Type,
}
/// Entity handle for a [`ControlNodeDef`](crate::ControlNodeDef)
/// (a control-flow operator or leaf).
///
/// See [`ControlRegion`] docs for more on control-flow in SPIR-T.
pub use context::ControlNode;
/// Definition for a [`ControlNode`]: a control-flow operator or leaf.
///
/// See [`ControlRegion`] docs for more on control-flow in SPIR-T.
#[derive(Clone)]
pub struct ControlNodeDef {
pub kind: ControlNodeKind,
/// Outputs from this [`ControlNode`]:
/// * accessed using [`Value::ControlNodeOutput`]
/// * values provided by `region.outputs`, where `region` is the executed
/// child [`ControlRegion`]:
/// * when this is a `Select`: the case that was chosen
pub outputs: SmallVec<[ControlNodeOutputDecl; 2]>,
}
#[derive(Copy, Clone)]
pub struct ControlNodeOutputDecl {
pub attrs: AttrSet,
pub ty: Type,
}
#[derive(Clone)]
pub enum ControlNodeKind {
/// Linear chain of [`DataInst`]s, executing in sequence.
///
/// This is only an optimization over keeping [`DataInst`]s in [`ControlRegion`]
/// linear chains directly, or even merging [`DataInst`] with [`ControlNode`].
Block {
// FIXME(eddyb) should empty blocks be allowed? should `DataInst`s be
// linked directly into the `ControlRegion` `children` list?
insts: EntityList<DataInst>,
},
/// Choose one [`ControlRegion`] out of `cases` to execute, based on a single
/// value input (`scrutinee`) interpreted according to [`SelectionKind`].
///
/// This corresponds to "gamma" (`γ`) nodes in (R)VSDG, though those are
/// sometimes limited only to a two-way selection on a boolean condition.
Select { kind: SelectionKind, scrutinee: Value, cases: SmallVec<[ControlRegion; 2]> },
/// Execute `body` repeatedly, until `repeat_condition` evaluates to `false`.
///
/// To represent "loop state", `body` can take `inputs`, getting values from:
/// * on the first iteration: `initial_inputs`
/// * on later iterations: `body`'s own `outputs` (from the last iteration)
///
/// As the condition is checked only *after* the body, this type of loop is
/// sometimes described as "tail-controlled", and is also equivalent to the
/// C-like `do { body; } while(repeat_condition)` construct.
///
/// This corresponds to "theta" (`θ`) nodes in (R)VSDG.
Loop {
initial_inputs: SmallVec<[Value; 2]>,
body: ControlRegion,
// FIXME(eddyb) should this be kept in `body.outputs`? (that would not
// have any ambiguity as to whether it can see `body`-computed values)
repeat_condition: Value,
},
/// Leave the current invocation, similar to returning from every function
/// call in the stack (up to and including the entry-point), but potentially
/// indicating a fatal error as well.
//
// FIXME(eddyb) make this less shader-controlflow-centric.
ExitInvocation {
kind: cfg::ExitInvocationKind,
// FIXME(eddyb) centralize `Value` inputs across `ControlNode`s,
// and only use stricter types for building/traversing the IR.
inputs: SmallVec<[Value; 2]>,
},
}
#[derive(Clone)]
pub enum SelectionKind {
/// Two-case selection based on boolean condition, i.e. `if`-`else`, with
/// the two cases being "then" and "else" (in that order).
BoolCond,
SpvInst(spv::Inst),
}
/// Entity handle for a [`DataInstDef`](crate::DataInstDef) (a leaf instruction).
pub use context::DataInst;
/// Definition for a [`DataInst`]: a leaf (non-control-flow) instruction.
//
// FIXME(eddyb) `DataInstKind::FuncCall` should probably be a `ControlNodeKind`,
// but also `DataInst` vs `ControlNode` is a purely artificial distinction.
#[derive(Clone)]
pub struct DataInstDef {
pub attrs: AttrSet,
pub form: DataInstForm,
// FIXME(eddyb) change the inline size of this to fit most instructions.
pub inputs: SmallVec<[Value; 2]>,
}
/// Interned handle for a [`DataInstFormDef`](crate::DataInstFormDef)
/// (a "form", or "template", for [`DataInstDef`](crate::DataInstDef)s).
pub use context::DataInstForm;
/// "Form" (or "template") definition for [`DataInstFormDef`]s, which includes
/// most of their common *static* information (notably excluding `attrs`, as
/// they vary more often due to handling diagnostics, debuginfo, refinement etc.).
//
// FIXME(eddyb) now that this is interned, try to find all the code that was
// working around needing to borrow `DataInstKind`, just because it was owned
// by a `FuncDefBody` (instead of interned in the `Context`).
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct DataInstFormDef {
pub kind: DataInstKind,
pub output_type: Option<Type>,
}
#[derive(Clone, PartialEq, Eq, Hash, derive_more::From)]
pub enum DataInstKind {
// FIXME(eddyb) try to split this into recursive and non-recursive calls,
// to avoid needing special handling for recursion where it's impossible.
FuncCall(Func),
/// `QPtr`-specific operations (see [`qptr::QPtrOp`]).
#[from]
QPtr(qptr::QPtrOp),
// FIXME(eddyb) should this have `#[from]`?
SpvInst(spv::Inst),
SpvExtInst {
ext_set: InternedStr,
inst: u32,
},
}
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub enum Value {
Const(Const),
/// One of the inputs to a [`ControlRegion`]:
/// * declared by `region.inputs[input_idx]`
/// * value provided by the parent of the `region`:
/// * when `region` is the function body: `input_idx`th function parameter
ControlRegionInput {
region: ControlRegion,
input_idx: u32,
},
/// One of the outputs produced by a [`ControlNode`]:
/// * declared by `control_node.outputs[output_idx]`
/// * value provided by `region.outputs[output_idx]`, where `region` is the
/// executed child [`ControlRegion`] (of `control_node`):
/// * when `control_node` is a `Select`: the case that was chosen
ControlNodeOutput {
control_node: ControlNode,
output_idx: u32,
},
/// The output value of a [`DataInst`].
DataInstOutput(DataInst),
}