spirt/qptr/layout.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
// FIXME(eddyb) layouts are a bit tricky: this recomputes them from several passes.
use crate::qptr::shapes;
use crate::{
AddrSpace, Attr, Const, ConstKind, Context, Diag, FxIndexMap, Type, TypeKind, TypeOrConst, spv,
};
use itertools::Either;
use smallvec::SmallVec;
use std::cell::RefCell;
use std::cmp::Ordering;
use std::num::NonZeroU32;
use std::ops::Range;
use std::rc::Rc;
/// Various toggles for layout-related behavior that is not unambiguous from the
/// SPIR-V alone, or involves intermediary illegal SPIR-V (during legalization).
//
// FIXME(eddyb) use proper newtypes (and log2 for align!).
pub struct LayoutConfig {
pub ignore_legacy_align: bool,
pub min_aggregate_legacy_align: u32,
/// Assumed size and alignment for `OpTypeBool`, even if unusable
/// with externally-visible concrete memory (i.e. buffers).
///
/// This is only useful for accurate handling of illegal SPIR-V relying on
/// e.g. pointer casts, and as such defaults to `(1, 1)`, to merely ensure
/// unique offsets and guarantee `qptr::lift` can tell fields apart.
//
// FIXME(eddyb) might be nice to default to an "offsets/sizes are abstract"
// mode, which disallows reinterpretation on the basis that the precise
// offsets/sizes may not match between types (but that's its own nightmare).
pub abstract_bool_size_align: (u32, u32),
/// Assumed size and alignment for logical `OpTypePointer`s, even if unusable
/// with externally-visible concrete memory (i.e. buffers).
///
/// This is only useful for accurate handling of illegal SPIR-V relying on
/// e.g. pointer casts, and as such defaults to `(1, 1)`, to merely ensure
/// unique offsets and guarantee `qptr::lift` can tell fields apart.
//
// FIXME(eddyb) might be nice to default to an "offsets/sizes are abstract"
// mode, which disallows reinterpretation on the basis that the precise
// offsets/sizes may not match between types (but that's its own nightmare).
pub logical_ptr_size_align: (u32, u32),
}
impl LayoutConfig {
pub const VULKAN_SCALAR_LAYOUT: Self = Self {
ignore_legacy_align: true,
min_aggregate_legacy_align: 1,
abstract_bool_size_align: (1, 1),
logical_ptr_size_align: (1, 1),
};
pub const VULKAN_STANDARD_LAYOUT: Self =
Self { ignore_legacy_align: false, ..Self::VULKAN_SCALAR_LAYOUT };
// FIXME(eddyb) is this even useful? (all the storage classes that have any
// kind of alignment requirements, require explicit offsets)
pub const VULKAN_EXTENDED_ALIGN_UBO_LAYOUT: Self =
Self { min_aggregate_legacy_align: 16, ..Self::VULKAN_STANDARD_LAYOUT };
}
pub(super) struct LayoutError(pub(super) Diag);
#[derive(Clone)]
pub(super) enum TypeLayout {
Handle(HandleLayout),
HandleArray(HandleLayout, Option<NonZeroU32>),
// FIXME(eddyb) unify terminology around "concrete"/"memory"/"untyped (data)".
Concrete(Rc<MemTypeLayout>),
}
// NOTE(eddyb) `Handle` is parameterized over the `Buffer` layout.
pub(super) type HandleLayout = shapes::Handle<Rc<MemTypeLayout>>;
pub(super) struct MemTypeLayout {
pub(super) original_type: Type,
pub(super) mem_layout: shapes::MaybeDynMemLayout,
pub(super) components: Components,
}
// FIXME(eddyb) use proper newtypes for byte sizes.
pub(super) enum Components {
Scalar,
/// Vector and array elements (all of them having the same `elem` layout).
Elements {
stride: NonZeroU32,
elem: Rc<MemTypeLayout>,
fixed_len: Option<NonZeroU32>,
},
Fields {
// FIXME(eddyb) should these be fused? (but `u32` is smaller than `Rc`)
offsets: SmallVec<[u32; 4]>,
layouts: SmallVec<[Rc<MemTypeLayout>; 4]>,
},
}
impl Components {
/// Return all components (by index), which completely contain `offset_range`.
///
/// If `offset_range` is zero-sized (`offset_range.start == offset_range.end`),
/// this can return multiple components, with at most one ever being non-ZST.
//
// FIXME(eddyb) be more aggressive in pruning ZSTs so this can be simpler.
pub(super) fn find_components_containing(
&self,
// FIXME(eddyb) consider renaming such offset ranges to "extent".
offset_range: Range<u32>,
) -> impl Iterator<Item = usize> + '_ {
match self {
Components::Scalar => Either::Left(None.into_iter()),
Components::Elements { stride, elem, fixed_len } => {
Either::Left(
Some(offset_range.start / stride.get())
.and_then(|elem_idx| {
let elem_idx_vs_len = fixed_len
.map_or(Ordering::Less, |fixed_len| elem_idx.cmp(&fixed_len.get()));
let elem_size = match elem_idx_vs_len {
Ordering::Less => elem.mem_layout.fixed_base.size,
// HACK(eddyb) this allows one-past-the-end pointers.
Ordering::Equal => 0,
Ordering::Greater => return None,
};
let elem_start = elem_idx * stride.get();
Some((elem_idx, elem_start..elem_start.checked_add(elem_size)?))
})
.filter(|(_, elem_range)| offset_range.end <= elem_range.end)
.and_then(|(elem_idx, _)| usize::try_from(elem_idx).ok())
.into_iter(),
)
}
// FIXME(eddyb) this is inefficient, we should be doing binary search
// on offsets if they're ordered (with an optional `BTreeMap<offset, idx>`?)
// - ideally this needs an abstraction tho, some kind of "binary-searchable array"?
Components::Fields { offsets, layouts } => Either::Right(
offsets
.iter()
.zip(layouts)
.map(|(&field_offset, field)| {
// HACK(eddyb) really need a maybe-open-ended range type.
if field.mem_layout.dyn_unit_stride.is_some() {
Err(field_offset..)
} else {
Ok(field_offset
..field_offset
.checked_add(field.mem_layout.fixed_base.size)
.unwrap())
}
})
.enumerate()
.filter(move |(_, field_range)| match field_range {
Ok(field_range) => {
field_range.start <= offset_range.start
&& offset_range.end <= field_range.end
}
Err(field_range) => field_range.start <= offset_range.start,
})
.map(|(field_idx, _)| field_idx),
),
}
}
}
/// Context for computing `TypeLayout`s from `Type`s (with caching).
pub(super) struct LayoutCache<'a> {
cx: Rc<Context>,
wk: &'static spv::spec::WellKnown,
config: &'a LayoutConfig,
cache: RefCell<FxIndexMap<Type, TypeLayout>>,
}
impl<'a> LayoutCache<'a> {
pub(super) fn new(cx: Rc<Context>, config: &'a LayoutConfig) -> Self {
Self { cx, wk: &spv::spec::Spec::get().well_known, config, cache: Default::default() }
}
// FIXME(eddyb) properly distinguish between zero-extension and sign-extension.
fn const_as_u32(&self, ct: Const) -> Option<u32> {
if let ConstKind::SpvInst { spv_inst_and_const_inputs } = &self.cx[ct].kind {
let (spv_inst, _const_inputs) = &**spv_inst_and_const_inputs;
if spv_inst.opcode == self.wk.OpConstant && spv_inst.imms.len() == 1 {
match spv_inst.imms[..] {
[spv::Imm::Short(_, x)] => return Some(x),
_ => unreachable!(),
}
}
}
None
}
/// Attempt to compute a `TypeLayout` for a given (SPIR-V) `Type`.
pub(super) fn layout_of(&self, ty: Type) -> Result<TypeLayout, LayoutError> {
if let Some(cached) = self.cache.borrow().get(&ty).cloned() {
return Ok(cached);
}
let cx = &self.cx;
let wk = self.wk;
let ty_def = &cx[ty];
let (spv_inst, type_and_const_inputs) = match &ty_def.kind {
// FIXME(eddyb) treat `QPtr`s as scalars.
TypeKind::QPtr => {
return Err(LayoutError(Diag::bug(
["`layout_of(qptr)` (already lowered?)".into()],
)));
}
TypeKind::SpvInst { spv_inst, type_and_const_inputs } => {
(spv_inst, type_and_const_inputs)
}
TypeKind::SpvStringLiteralForExtInst => {
return Err(LayoutError(Diag::bug([
"`layout_of(type_of(OpString<\"...\">))`".into()
])));
}
};
let scalar_with_size_and_align = |(size, align)| {
TypeLayout::Concrete(Rc::new(MemTypeLayout {
original_type: ty,
mem_layout: shapes::MaybeDynMemLayout {
fixed_base: shapes::MemLayout { align, legacy_align: align, size },
dyn_unit_stride: None,
},
components: Components::Scalar,
}))
};
let scalar = |width: u32| {
assert!(width.is_power_of_two());
let size = width / 8;
assert_eq!(size * 8, width);
scalar_with_size_and_align((size, size))
};
let align_to = |size: u32, align: u32| {
assert!(align.is_power_of_two() && align > 0);
Ok(size.checked_add(align - 1).ok_or_else(|| {
LayoutError(Diag::bug([
format!("`align_to({size}, {align})` overflowed `u32`").into()
]))
})? & !(align - 1))
};
// HACK(eddyb) named arguments for the `array` closure.
struct ArrayParams {
fixed_len: Option<u32>,
known_stride: Option<u32>,
min_legacy_align: u32,
legacy_align_multiplier: u32,
}
let array = |elem_type: Type,
ArrayParams {
fixed_len,
known_stride,
min_legacy_align,
legacy_align_multiplier,
}| {
let fixed_len = fixed_len
.map(|x| {
NonZeroU32::new(x).ok_or_else(|| {
LayoutError(Diag::err(["SPIR-V disallows arrays of `0` length".into()]))
})
})
.transpose()?;
match self.layout_of(elem_type)? {
TypeLayout::Handle(handle) => Ok(TypeLayout::HandleArray(handle, fixed_len)),
TypeLayout::HandleArray(..) => Err(LayoutError(Diag::err([
"handle array `".into(),
elem_type.into(),
"` cannot be further wrapped in an array".into(),
]))),
TypeLayout::Concrete(elem) => {
if elem.mem_layout.dyn_unit_stride.is_some() {
return Err(LayoutError(Diag::err([
"dynamically sized type `".into(),
elem_type.into(),
"` cannot be further wrapped in an array".into(),
])));
}
let stride = match known_stride {
Some(stride) => stride,
None => {
let shapes::MemLayout { align, legacy_align, size } =
elem.mem_layout.fixed_base;
let (stride, legacy_stride) =
(align_to(size, align)?, align_to(size, legacy_align)?);
// FIXME(eddyb) this whole ambiguity mechanism is strange and
// maybe unnecessary? (all the storage classes that have any
// kind of alignment requirements, require explicit offsets)
if !self.config.ignore_legacy_align && stride != legacy_stride {
return Err(LayoutError(Diag::bug([format!(
"ambiguous stride: \
{stride} (scalar) vs {legacy_stride} (legacy), \
due to alignment differences \
({align} scalar vs {legacy_align} legacy)",
)
.into()])));
}
stride
}
};
let stride = NonZeroU32::new(stride).ok_or_else(|| {
LayoutError(Diag::err(["SPIR-V disallows arrays of `0` stride".into()]))
})?;
Ok(TypeLayout::Concrete(Rc::new(MemTypeLayout {
original_type: ty,
mem_layout: shapes::MaybeDynMemLayout {
fixed_base: shapes::MemLayout {
align: elem.mem_layout.fixed_base.align,
legacy_align: elem
.mem_layout
.fixed_base
.legacy_align
.checked_mul(legacy_align_multiplier)
.unwrap()
.max(min_legacy_align),
size: fixed_len
.map(|len| {
stride.checked_mul(len).ok_or_else(|| {
LayoutError(Diag::bug([format!(
"`{stride} * {len}` overflowed `u32`"
)
.into()]))
})
})
.transpose()?
.map_or(0, |size| size.get()),
},
dyn_unit_stride: if fixed_len.is_none() { Some(stride) } else { None },
},
components: Components::Elements { stride, elem, fixed_len },
})))
}
}
};
let short_imm_at = |i| match spv_inst.imms[i] {
spv::Imm::Short(_, x) => x,
_ => unreachable!(),
};
// FIXME(eddyb) !!! what if... types had a min/max size and then...
// that would allow surrounding offsets to limit their size... but... ugh...
// ugh this doesn't make any sense. maybe if the front-end specifies
// offsets with "abstract types", it must configure `qptr::layout`?
let layout = if spv_inst.opcode == wk.OpTypeBool {
// FIXME(eddyb) make this properly abstract instead of only configurable.
scalar_with_size_and_align(self.config.abstract_bool_size_align)
} else if spv_inst.opcode == wk.OpTypePointer {
// FIXME(eddyb) make this properly abstract instead of only configurable.
// FIXME(eddyb) categorize `OpTypePointer` by storage class and split on
// logical vs physical here.
scalar_with_size_and_align(self.config.logical_ptr_size_align)
} else if [wk.OpTypeInt, wk.OpTypeFloat].contains(&spv_inst.opcode) {
scalar(short_imm_at(0))
} else if [wk.OpTypeVector, wk.OpTypeMatrix].contains(&spv_inst.opcode) {
let len = short_imm_at(0);
let (min_legacy_align, legacy_align_multiplier) = if spv_inst.opcode == wk.OpTypeVector
{
// NOTE(eddyb) this is specifically Vulkan "base alignment".
(1, if len <= 2 { 2 } else { 4 })
} else {
(self.config.min_aggregate_legacy_align, 1)
};
// NOTE(eddyb) `RowMajor` is disallowed on `OpTypeStruct` members below.
array(
match type_and_const_inputs[..] {
[TypeOrConst::Type(elem_type)] => elem_type,
_ => unreachable!(),
},
ArrayParams {
fixed_len: Some(len),
known_stride: None,
min_legacy_align,
legacy_align_multiplier,
},
)?
} else if [wk.OpTypeArray, wk.OpTypeRuntimeArray].contains(&spv_inst.opcode) {
let len = type_and_const_inputs
.get(1)
.map(|&len| {
let len = match len {
TypeOrConst::Const(len) => len,
TypeOrConst::Type(_) => unreachable!(),
};
self.const_as_u32(len).ok_or_else(|| {
LayoutError(Diag::bug(
["specialization constants not supported yet".into()],
))
})
})
.transpose()?;
let mut stride_decoration = None;
for attr in &cx[ty_def.attrs].attrs {
match attr {
Attr::SpvAnnotation(attr_spv_inst)
if attr_spv_inst.opcode == wk.OpDecorate
&& attr_spv_inst.imms[0]
== spv::Imm::Short(wk.Decoration, wk.ArrayStride) =>
{
stride_decoration = Some(match attr_spv_inst.imms[1] {
spv::Imm::Short(_, x) => x,
_ => unreachable!(),
});
break;
}
_ => {}
}
}
array(
match type_and_const_inputs[0] {
TypeOrConst::Type(elem_type) => elem_type,
TypeOrConst::Const(_) => unreachable!(),
},
ArrayParams {
fixed_len: len,
known_stride: stride_decoration,
min_legacy_align: self.config.min_aggregate_legacy_align,
legacy_align_multiplier: 1,
},
)?
} else if spv_inst.opcode == wk.OpTypeStruct {
let field_layouts: SmallVec<[_; 4]> = type_and_const_inputs
.iter()
.map(|&ty_or_ct| match ty_or_ct {
TypeOrConst::Type(field_type) => field_type,
TypeOrConst::Const(_) => unreachable!(),
})
.map(|field_type| match self.layout_of(field_type)? {
TypeLayout::Handle(_) | TypeLayout::HandleArray(..) => {
Err(LayoutError(Diag::bug([
"handles cannot be placed in a struct field".into()
])))
}
TypeLayout::Concrete(field_layout) => Ok(field_layout),
})
.collect::<Result<_, _>>()?;
let mut field_offsets: SmallVec<[_; 4]> = SmallVec::with_capacity(field_layouts.len());
for attr in &cx[ty_def.attrs].attrs {
match attr {
Attr::SpvAnnotation(attr_spv_inst)
if attr_spv_inst.opcode == wk.OpMemberDecorate
&& attr_spv_inst.imms[1]
== spv::Imm::Short(wk.Decoration, wk.RowMajor) =>
{
return Err(LayoutError(Diag::bug([
"`RowMajor` matrix types unsupported".into(),
])));
}
Attr::SpvAnnotation(attr_spv_inst)
if attr_spv_inst.opcode == wk.OpMemberDecorate
&& attr_spv_inst.imms[1]
== spv::Imm::Short(wk.Decoration, wk.Offset) =>
{
let (field_idx, field_offset) = match attr_spv_inst.imms[..] {
[spv::Imm::Short(_, idx), _, spv::Imm::Short(_, offset)] => {
(idx, offset)
}
_ => unreachable!(),
};
let field_idx = usize::try_from(field_idx).unwrap();
match field_idx.cmp(&field_offsets.len()) {
Ordering::Less => {
return Err(LayoutError(Diag::bug([
"a struct field cannot have more than one explicit offset"
.into(),
])));
}
Ordering::Greater => {
return Err(LayoutError(Diag::bug([
"structs with explicit offsets must provide them for all fields"
.into(),
])));
}
Ordering::Equal => {
field_offsets.push(field_offset);
}
}
}
_ => {}
}
}
let mut mem_layout = shapes::MaybeDynMemLayout {
fixed_base: shapes::MemLayout {
align: 1,
legacy_align: self.config.min_aggregate_legacy_align,
size: 0,
},
dyn_unit_stride: None,
};
if !field_offsets.is_empty() {
if field_offsets.len() != field_layouts.len() {
return Err(LayoutError(Diag::bug([
"structs with explicit offsets must provide them for all fields".into(),
])));
}
// HACK(eddyb) this treats the struct more like an union, but
// it shold nevertheless work (the other approach would be to
// search for the "last field (in offset order)", and/or iterate
// all fields in offset order, to validate the lack of overlap),
// and also "last field (in offset order)" approaches would still
// have to look at all the fields in order to compute alignment.
for (&field_offset, field_layout) in field_offsets.iter().zip(&field_layouts) {
let field = field_layout.mem_layout;
mem_layout.fixed_base.align =
mem_layout.fixed_base.align.max(field.fixed_base.align);
mem_layout.fixed_base.legacy_align =
mem_layout.fixed_base.legacy_align.max(field.fixed_base.legacy_align);
mem_layout.fixed_base.size = mem_layout.fixed_base.size.max(
field_offset.checked_add(field.fixed_base.size).ok_or_else(|| {
LayoutError(Diag::bug([format!(
"`{} + {}` overflowed `u32`",
field_offset, field.fixed_base.size
)
.into()]))
})?,
);
// FIXME(eddyb) validate sized-vs-unsized fields, too.
if let Some(field_dyn_unit_stride) = field.dyn_unit_stride {
if mem_layout.dyn_unit_stride.is_some() {
return Err(LayoutError(Diag::bug([
"only one field of a struct can have a dynamically sized type"
.into(),
])));
}
mem_layout.dyn_unit_stride = Some(field_dyn_unit_stride);
}
}
} else {
for field_layout in &field_layouts {
if mem_layout.dyn_unit_stride.is_some() {
return Err(LayoutError(Diag::bug([
"only the last field of a struct can have a dynamically sized type"
.into(),
])));
}
let field = field_layout.mem_layout;
let (offset, legacy_offset) = (
align_to(mem_layout.fixed_base.size, field.fixed_base.align)?,
align_to(mem_layout.fixed_base.size, field.fixed_base.legacy_align)?,
);
// FIXME(eddyb) this whole ambiguity mechanism is strange and
// maybe unnecessary? (all the storage classes that have any
// kind of alignment requirements, require explicit offsets)
if !self.config.ignore_legacy_align && offset != legacy_offset {
return Err(LayoutError(Diag::bug([format!(
"ambiguous offset: {offset} (scalar) vs {legacy_offset} (legacy), \
due to alignment differences ({} scalar vs {} legacy)",
field.fixed_base.align, field.fixed_base.legacy_align
)
.into()])));
}
field_offsets.push(offset);
mem_layout.fixed_base.align =
mem_layout.fixed_base.align.max(field.fixed_base.align);
mem_layout.fixed_base.legacy_align =
mem_layout.fixed_base.legacy_align.max(field.fixed_base.legacy_align);
mem_layout.fixed_base.size =
offset.checked_add(field.fixed_base.size).ok_or_else(|| {
LayoutError(Diag::bug([format!(
"`{} + {}` overflowed `u32`",
offset, field.fixed_base.size
)
.into()]))
})?;
assert!(mem_layout.dyn_unit_stride.is_none());
mem_layout.dyn_unit_stride = field.dyn_unit_stride;
}
}
// FIXME(eddyb) how should the fixed base be aligned in unsized structs?
if mem_layout.dyn_unit_stride.is_none() {
mem_layout.fixed_base.size =
align_to(mem_layout.fixed_base.size, mem_layout.fixed_base.align)?;
}
let concrete = Rc::new(MemTypeLayout {
original_type: ty,
mem_layout,
components: Components::Fields { offsets: field_offsets, layouts: field_layouts },
});
let mut is_interface_block = false;
for attr in &cx[ty_def.attrs].attrs {
match attr {
Attr::SpvAnnotation(attr_spv_inst)
if attr_spv_inst.opcode == wk.OpDecorate
&& attr_spv_inst.imms[0]
== spv::Imm::Short(wk.Decoration, wk.Block) =>
{
is_interface_block = true;
break;
}
_ => {}
}
}
// FIXME(eddyb) not all "interface blocks" imply buffers, so this may
// need to be ignored based on the SPIR-V storage class of a `GlobalVar`.
//
// FIXME(eddyb) but the lowering of operations on pointers depend on
// whether the pointer is to a buffer or a data type - without the
// way Rust-GPU uses `Generic`, it should at least be possible to
// determine from the pointer type itself, at the op lowering time,
// but with storage class inference this isn't knowable...
//
// OTOH, Rust-GPU doesn't really use `Block` outside of buffers, so
// it's plausible there could be `qptr` customization options which
// Rust-GPU uses to unambiguously communicate its (mis)use of SPIR-V
// (long-term it should probably have different Rust types per
// storage class, or even represent buffers as Rust pointers?)
if is_interface_block {
// HACK(eddyb) we need an `AddrSpace` but it's not known yet.
TypeLayout::Handle(shapes::Handle::Buffer(AddrSpace::Handles, concrete))
} else {
TypeLayout::Concrete(concrete)
}
} else if [
wk.OpTypeImage,
wk.OpTypeSampler,
wk.OpTypeSampledImage,
wk.OpTypeAccelerationStructureKHR,
]
.contains(&spv_inst.opcode)
{
TypeLayout::Handle(shapes::Handle::Opaque(ty))
} else {
return Err(LayoutError(Diag::bug([format!(
"unknown/unsupported SPIR-V type `{}`",
spv_inst.opcode.name()
)
.into()])));
};
self.cache.borrow_mut().insert(ty, layout.clone());
Ok(layout)
}
}