spirt/spv/spec.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
//! SPIR-V specification parsing/indexing.
use crate::FxIndexSet;
use arrayvec::ArrayVec;
use lazy_static::lazy_static;
use rustc_hash::FxHashMap;
use std::borrow::Cow;
use std::collections::BTreeMap;
use std::{fmt, iter};
use self::indexed::FlatIdx as _;
pub const HEADER_LEN: usize = 5;
pub struct Spec {
pub magic: u32,
/// Pre-cached IDs for "well-known" names.
pub well_known: WellKnown,
pub instructions: indexed::NamedIdxMap<Opcode, InstructionDef, indexed::KhrSegmented>,
pub operand_kinds: indexed::NamedIdxMap<OperandKind, OperandKindDef, indexed::Flat>,
// HACK(eddyb) ad-hoc interning, to reduce the cost of tracking operand names
// down to a single extra byte per operand (see `PackedOperandNameAndKind`).
operand_names: FxIndexSet<&'static str>,
// HACK(eddyb) the `OnceLock`s allow lazy parsing, avoiding overhead.
// FIXME(eddyb) fix type complexity once `LazyLock` stabilizes.
#[allow(clippy::type_complexity)]
ext_inst_sets: BTreeMap<
&'static str,
(std::sync::OnceLock<ExtInstSetDesc>, Box<dyn Fn() -> ExtInstSetDesc + Send + Sync>),
>,
}
/// Simplified information for pretty-printing "extended instruction" sets.
pub struct ExtInstSetDesc {
/// Shorter name to use during pretty-printing.
pub short_alias: Option<Cow<'static, str>>,
pub instructions: BTreeMap<u32, ExtInstSetInstructionDesc>,
}
/// Simplified [`InstructionDef`] for pretty-printing "extended instruction" sets.
pub struct ExtInstSetInstructionDesc {
pub name: Cow<'static, str>,
pub operand_names: Vec<Cow<'static, str>>,
/// Whether this instruction is non-semantic debuginfo and should therefore
/// be pretty-printed on a single line, as a comment.
//
// FIXME(eddyb) allow customizing the formatting, but this works for now.
pub is_debuginfo: bool,
}
macro_rules! def_well_known {
($($group:ident: $ty:ty = [$($entry:ident),+ $(,)?]),+ $(,)?) => {
// FIXME(eddyb) decide whether to split this type into one per-group.
#[allow(non_snake_case)]
pub struct WellKnown {
$($(pub $entry: $ty,)+)+
}
#[allow(non_camel_case_types)]
struct PerWellKnownGroup<$($group),+> {
$($group: $group),+
}
impl WellKnown {
fn lookup_with(lookup_fns: PerWellKnownGroup<$(impl Fn(&'static str) -> $ty),+>) -> Self {
Self {
$($($entry: (lookup_fns.$group)(stringify!($entry)),)+)+
}
}
}
};
}
// FIXME(eddyb) maybe sort some of these groups alphabetically.
def_well_known! {
opcode: Opcode = [
OpNop,
OpCapability,
OpExtension,
OpExtInstImport,
OpExtInst,
OpMemoryModel,
OpEntryPoint,
OpExecutionMode,
OpExecutionModeId,
OpString,
OpSource,
OpSourceContinued,
OpSourceExtension,
OpName,
OpMemberName,
OpModuleProcessed,
OpDecorate,
OpMemberDecorate,
OpDecorateId,
OpDecorateString,
OpMemberDecorateString,
// Deprecated in favor of `OpDecorate`/`OpMemberDecorate`.
OpDecorationGroup,
OpGroupDecorate,
OpGroupMemberDecorate,
OpLine,
OpNoLine,
OpTypeVoid,
OpTypeBool,
OpTypeInt,
OpTypeFloat,
OpTypeVector,
OpTypeMatrix,
OpTypeArray,
OpTypeRuntimeArray,
OpTypeStruct,
OpTypeForwardPointer,
OpTypePointer,
OpTypeFunction,
OpTypeImage,
OpTypeSampler,
OpTypeSampledImage,
OpTypeAccelerationStructureKHR,
OpConstantFalse,
OpConstantTrue,
OpConstant,
OpUndef,
OpVariable,
OpFunction,
OpFunctionParameter,
OpFunctionEnd,
OpLabel,
OpPhi,
OpSelectionMerge,
OpLoopMerge,
OpUnreachable,
OpReturn,
OpReturnValue,
OpBranch,
OpBranchConditional,
OpSwitch,
OpFunctionCall,
OpLoad,
OpStore,
OpArrayLength,
OpAccessChain,
OpInBoundsAccessChain,
OpPtrAccessChain,
OpInBoundsPtrAccessChain,
OpBitcast,
],
operand_kind: OperandKind = [
Capability,
AddressingModel,
MemoryModel,
SourceLanguage,
StorageClass,
FunctionControl,
Decoration,
LinkageType,
SelectionControl,
LoopControl,
LiteralInteger,
LiteralExtInstInteger,
LiteralString,
LiteralContextDependentNumber,
],
// FIXME(eddyb) find a way to namespace these to avoid conflicts.
addressing_model: u32 = [
Logical,
],
storage_class: u32 = [
Function,
UniformConstant,
Input,
Output,
IncomingRayPayloadKHR,
IncomingCallableDataKHR,
HitAttributeKHR,
RayPayloadKHR,
CallableDataKHR,
],
decoration: u32 = [
LinkageAttributes,
ArrayStride,
Block,
RowMajor,
Offset,
],
linkage_type: u32 = [
Import,
Export,
],
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Opcode(u16);
impl indexed::FlatIdx for Opcode {
fn to_usize(self) -> usize {
self.0.into()
}
}
impl Opcode {
/// Lookup the name & definition for `opcode` in the lazily-loaded [`Spec`],
/// returning `None` if it's not a known opcode.
pub fn try_from_u16_with_name_and_def(
opcode: u16,
) -> Option<(Self, &'static str, &'static InstructionDef)> {
let opcode = Self(opcode);
let (name, def) = Spec::get().instructions.get_named(opcode)?;
Some((opcode, name, def))
}
pub fn as_u16(self) -> u16 {
self.0
}
/// Lookup the name & definition for this opcode in the lazily-loaded [`Spec`].
#[inline]
pub fn name_and_def(self) -> (&'static str, &'static InstructionDef) {
Spec::get().instructions.get_named(self).unwrap()
}
/// Lookup the name for this opcode in the lazily-loaded [`Spec`].
#[inline]
pub fn name(self) -> &'static str {
self.name_and_def().0
}
/// Lookup the definition for this opcode in the lazily-loaded [`Spec`].
#[inline]
pub fn def(self) -> &'static InstructionDef {
self.name_and_def().1
}
}
#[derive(PartialEq, Eq)]
pub struct InstructionDef {
pub category: InstructionCategory,
// FIXME(eddyb) consider nesting "Result Type ID" in "Result ID".
pub has_result_type_id: bool,
pub has_result_id: bool,
pub req_operands: ArrayVec<PackedOperandNameAndKind, 14>,
pub opt_operands: ArrayVec<PackedOperandNameAndKind, 2>,
pub rest_operands: Option<RestOperandsUnit>,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum InstructionCategory {
Type,
Const,
ControlFlow,
Other,
}
/// Whether the trailing `*` "operand" (i.e. repeated arbitrarily many times),
/// consists of just one operand, or two per repeat (used by e.g. `OpPhi`).
#[derive(PartialEq, Eq)]
pub enum RestOperandsUnit {
One(OperandKind),
Two([OperandKind; 2]),
}
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum OperandMode {
Required,
Optional,
}
impl InstructionDef {
/// Return a (potentially infinite) iterator of [`OperandKind`]s, along with
/// the [`OperandMode`] indicating whether an operand is expected (`Required`),
/// or that an operand's absence signals the end of operands (`Optional`),
/// which is also the exit signal for the "rest operands" infinite iterators.
pub fn all_operands(&self) -> impl Iterator<Item = (OperandMode, OperandKind)> + '_ {
self.all_operands_with_names().map(|(mode, name_and_kind)| (mode, name_and_kind.kind()))
}
/// Like `all_operands`, but providing access to the operand names as well.
pub fn all_operands_with_names(
&self,
) -> impl Iterator<Item = (OperandMode, PackedOperandNameAndKind)> + '_ {
self.req_operands
.iter()
.copied()
.map(|name_and_kind| (OperandMode::Required, name_and_kind))
.chain(
self.opt_operands
.iter()
.copied()
.map(|name_and_kind| (OperandMode::Optional, name_and_kind)),
)
.chain(self.rest_operands.iter().flat_map(|rest_unit| {
// If the rest operands come in pairs, only the first operand in
// the pair is optional, the second one must be present when the
// first one is (i.e. only the pair as a whole is optional).
let (opt_a, req_b) = match *rest_unit {
RestOperandsUnit::One(kind) => (kind, None),
RestOperandsUnit::Two([a_kind, b_kind]) => (a_kind, Some(b_kind)),
};
iter::repeat(
iter::once((OperandMode::Optional, PackedOperandNameAndKind::unnamed(opt_a)))
.chain(req_b.map(|kind| {
(OperandMode::Required, PackedOperandNameAndKind::unnamed(kind))
})),
)
.flatten()
}))
}
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct OperandKind(u8);
impl indexed::FlatIdx for OperandKind {
fn to_usize(self) -> usize {
self.0.into()
}
}
impl fmt::Debug for OperandKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "OperandKind({} => {:?})", self.0, self.name())
}
}
impl OperandKind {
/// Lookup the name & definition for this operand kind in the lazily-loaded [`Spec`].
#[inline]
pub fn name_and_def(self) -> (&'static str, &'static OperandKindDef) {
Spec::get().operand_kinds.get_named(self).unwrap()
}
/// Lookup the name for this operand kind in the lazily-loaded [`Spec`].
#[inline]
pub fn name(self) -> &'static str {
self.name_and_def().0
}
/// Lookup the definition for this operand kind in the lazily-loaded [`Spec`].
#[inline]
pub fn def(self) -> &'static OperandKindDef {
self.name_and_def().1
}
}
// HACK(eddyb) only needed because there are more than 256 unique operand names,
// but less than 64 `OperandKind`s, so we can split 16 kind:name bits as 6:10.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct PackedOperandNameAndKind(u16);
impl fmt::Debug for PackedOperandNameAndKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.name_and_kind().fmt(f)
}
}
impl PackedOperandNameAndKind {
/// `operand_names[EMPTY_NAME_IDX]` must be reserved to contain `""`.
const EMPTY_NAME_IDX: usize = 0;
#[inline]
fn unnamed(kind: OperandKind) -> Self {
Self::pack(Self::EMPTY_NAME_IDX, kind)
}
#[inline]
fn pack(name_idx: usize, kind: OperandKind) -> Self {
let packed = Self(((name_idx as u16) << 6) | (kind.0 as u16));
assert_eq!(packed.unpack(), (name_idx, kind));
packed
}
#[inline]
fn unpack(self) -> (usize, OperandKind) {
((self.0 >> 6) as usize, OperandKind((self.0 & ((1 << 6) - 1)) as u8))
}
/// Unpack this `PackedOperandNameAndKind` into just its `OperandKind`.
#[inline]
pub fn kind(self) -> OperandKind {
self.unpack().1
}
/// Unpack this `PackedOperandNameAndKind` into a name and `OperandKind`.
#[inline]
pub fn name_and_kind(self) -> (&'static str, OperandKind) {
let (name_idx, kind) = self.unpack();
(Spec::get().operand_names.get_index(name_idx).unwrap(), kind)
}
}
pub enum OperandKindDef {
BitEnum {
empty_name: &'static str,
bits: indexed::NamedIdxMap<BitIdx, Enumerant, indexed::FlatWithHoles>,
},
ValueEnum {
variants: indexed::NamedIdxMap<u16, Enumerant, indexed::KhrSegmented>,
},
Id,
Literal {
size: LiteralSize,
},
}
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct BitIdx(pub u8);
impl BitIdx {
/// Returns `Some(BitIdx(i))` if and only if `x == (1 << i)`.
pub fn of_single_set_bit(x: u32) -> Option<Self> {
if x.is_power_of_two() { Some(Self(x.trailing_zeros() as u8)) } else { None }
}
/// Returns an iterator of [`BitIdx`]s, from which `x` can be reconstructed
/// by OR-ing together `1 << i` for every `BitIdx(i)`.
///
/// The iterator is ordered: lower bit indices appear before higher ones.
pub fn of_all_set_bits(mut x: u32) -> impl Iterator<Item = Self> {
let mut consumed_bits = 0;
iter::from_fn(move || {
if x == 0 {
None
} else {
let tz = x.trailing_zeros() as u8;
let idx = Self(consumed_bits + tz);
// Consume a sequence of bits `100...00`, where `tz` is just the
// count of zeros, so `tz + 1` is the whole sequence's length.
x >>= tz + 1;
consumed_bits += tz + 1;
Some(idx)
}
})
}
}
impl indexed::FlatIdx for BitIdx {
fn to_usize(self) -> usize {
self.0.into()
}
}
#[derive(PartialEq, Eq)]
pub struct Enumerant {
pub req_params: ArrayVec<PackedOperandNameAndKind, 3>,
pub rest_params: Option<OperandKind>,
}
impl Enumerant {
/// Return a (potentially infinite) iterator of [`OperandKind`]s, along with
/// the [`OperandMode`] indicating whether an operand is expected (`Required`),
/// or that an operand's absence signals the end of operands (`Optional`),
/// which is also the exit signal for the "rest operands" infinite iterators.
pub fn all_params(&self) -> impl Iterator<Item = (OperandMode, OperandKind)> + '_ {
self.all_params_with_names().map(|(mode, name_and_kind)| (mode, name_and_kind.kind()))
}
/// Like `all_params`, but providing access to the operand names as well.
pub fn all_params_with_names(
&self,
) -> impl Iterator<Item = (OperandMode, PackedOperandNameAndKind)> + '_ {
self.req_params.iter().copied().map(|kind| (OperandMode::Required, kind)).chain(
self.rest_params.into_iter().flat_map(|kind| {
iter::repeat((OperandMode::Optional, PackedOperandNameAndKind::unnamed(kind)))
}),
)
}
}
pub enum LiteralSize {
/// The literal is always one word (but may occupy only part of it).
Word,
/// The literal is a word-encoded byte array, that ends with a `0` byte.
NulTerminated,
/// The literal uses as many words as required by its type, which is known
/// contextually (`OpConstant`'s result type or `OpSwitch`'s selector type).
FromContextualType,
}
fn sanitize_operand_name<'a>(name: &Option<raw::CowStr<'a>>) -> &'a str {
name.as_ref()
.and_then(|name| match name {
&raw::CowStr::Borrowed(s) => {
s.strip_prefix('\'')?.strip_suffix('\'').filter(|s| {
// HACK(eddyb) it's pretty bad that SPIR-V uses spaces
// in operand names, but by constraining the rest of
// the character set (to be identifier-like), we get
// to remove spaces (to get `FooBar`), or even replace
// them with `_` (to get `Foo_Bar` or even `foo_bar`).
s.starts_with(|c: char| c.is_ascii_alphabetic())
&& s.chars().all(|c| c.is_ascii_alphanumeric() || c == ' ')
})
}
raw::CowStr::Owned(s) => {
assert!(s.contains("', +\n'"), "unexpected non-zero-copy {s:?}");
None
}
})
.unwrap_or("")
}
// HACK(eddyb) make sure parsing JSON doesn't start failing randomly.
#[test]
fn get_spec_and_all_ext_inst_sets() {
let spec = Spec::get();
for name in spec.ext_inst_sets.keys() {
spec.get_ext_inst_set_by_lowercase_name(name);
}
}
impl Spec {
/// Return a lazily-loaded [`Spec`] (only does significant work for the first call).
#[inline(always)]
#[must_use]
pub fn get() -> &'static Spec {
lazy_static! {
static ref SPEC: Spec = {
mod khr_spv_grammar_jsons {
include!(concat!(env!("OUT_DIR"), "/khr_spv_grammar_jsons.rs"));
}
let raw_core_grammar: raw::CoreGrammar<'static> =
serde_json::from_str(khr_spv_grammar_jsons::SPIRV_CORE_GRAMMAR).unwrap();
let mut spec = Spec::from_raw(raw_core_grammar);
// FIXME(eddyb) this should be moved somewhere better.
for (name, json) in khr_spv_grammar_jsons::EXTINST_NAMES_AND_GRAMMARS {
let lazy_init = move || {
let is_debuginfo_ext_inst_set = name.contains(".debuginfo.");
let extinst_grammar: raw::ExtInstGrammar<'static> =
serde_json::from_str(json).unwrap();
let instructions = extinst_grammar
.instructions
.iter()
.map(|inst| {
(
inst.opcode.into(),
ExtInstSetInstructionDesc {
name: inst.opname.into(),
operand_names: inst
.operands
.iter()
.map(|operand| {
sanitize_operand_name(&operand.name)
})
.take_while(|name| !name.is_empty())
.map(|name| name.into())
.collect(),
is_debuginfo: is_debuginfo_ext_inst_set
&& inst.opname.strip_prefix("Debug")
.is_some_and(|next| next.starts_with(|c: char| c.is_ascii_uppercase()))
},
)
})
.collect::<BTreeMap<_, _>>();
ExtInstSetDesc { short_alias: None, instructions }
};
spec.ext_inst_sets.insert(
name,
(
Default::default(),
Box::new(lazy_init),
),
);
}
spec
};
}
&SPEC
}
/// Return a lazily-parsed [`ExtInstSetDesc`], if a known one exists for this
/// `OpExtInstImport` name (required to be lowercase, due to Khronos' choice
/// of case insensitivity, but **not checked by this function**).
pub fn get_ext_inst_set_by_lowercase_name(
&self,
lowercase_ext_inst_set_name: &str,
) -> Option<&ExtInstSetDesc> {
self.ext_inst_sets
.get(lowercase_ext_inst_set_name)
.map(|(once_cell, init)| once_cell.get_or_init(init))
}
/// Implementation detail of [`Spec::get`], indexes the raw data to produce a [`Spec`].
fn from_raw(raw_core_grammar: raw::CoreGrammar<'static>) -> Self {
/// Helper for picking a name when the same index has multiple names.
fn preferred_name_between_dups<'a>(a: &'a str, b: &'a str) -> &'a str {
// Prefer standard / Khronos extensions over vendor extensions.
let is_khr_and_vnd = |khr: &str, vnd: &str| {
let base = khr.trim_end_matches("KHR");
vnd.starts_with(base) && vnd.len() > base.len()
};
if is_khr_and_vnd(a, b) {
a
} else if is_khr_and_vnd(b, a) {
b
} else {
// Worst case, use the first in alphabetical order.
a.min(b)
}
}
// HACK(eddyb) ad-hoc interning, to reduce the cost of tracking operand names
// down to a single extra byte per operand (see `PackedOperandNameAndKind`).
let mut operand_names = FxIndexSet::default();
assert_eq!(operand_names.insert_full("").0, PackedOperandNameAndKind::EMPTY_NAME_IDX);
let mut pack_operand_name_and_kind = |name: &Option<raw::CowStr<'static>>, kind| {
let (name_idx, _) = operand_names.insert_full(sanitize_operand_name(name));
PackedOperandNameAndKind::pack(name_idx, kind)
};
// Constructing the full `OperandKindDef` may require looking up other
// `OperandKind`s by name, so build the lookup table for that up-front.
let operand_kind_by_name: FxHashMap<_, _> = raw_core_grammar
.operand_kinds
.iter()
.filter(|o| !matches!(o.category, raw::OperandKindCategory::Composite))
.enumerate()
.map(|(i, o)| (o.kind, OperandKind(i.try_into().unwrap())))
.collect();
let operand_kinds: Vec<_> = raw_core_grammar
.operand_kinds
.iter()
.filter_map(|o| {
let mut enumerant_from_raw = |e: &raw::OperandKindEnumerant<'static>| {
let mut all_params = e
.parameters
.iter()
.map(|p| (&p.name, &p.quantifier, operand_kind_by_name[p.kind]));
let rest_params = match all_params.clone().next_back() {
Some((_, Some(raw::Quantifier::Rest), kind)) => {
all_params.next_back();
Some(kind)
}
_ => None,
};
let mut req_params = ArrayVec::new();
for (name, quantifier, kind) in all_params {
assert!(quantifier.is_none());
req_params
.try_push(pack_operand_name_and_kind(name, kind))
.map_err(|err| format!("{}/{name:?}: {err}", o.kind))
.unwrap();
}
Enumerant {
req_params,
rest_params,
}
};
let def = match o.category {
raw::OperandKindCategory::BitEnum => {
assert!(o.bases.is_none());
let enumerants = o.enumerants.as_ref().unwrap();
let mut empty_name = None;
let mut bits = vec![];
for e in enumerants {
let new_name = e.enumerant;
// `BitEnum` enumerants with `"value" : "0x0000"`
// are only really provided to give a canonical name
// to the state with no bits set (usually `"None"`).
if e.value == 0 {
assert!(e.parameters.is_empty());
empty_name = Some(match empty_name {
None => new_name,
Some(prev_name) => {
preferred_name_between_dups(prev_name, new_name)
}
});
continue;
}
let new_enumerant = enumerant_from_raw(e);
let bit_idx = BitIdx::of_single_set_bit(e.value).unwrap();
// Make room for our new value, if necessary.
let i = bit_idx.to_usize();
if i >= bits.len() {
bits.resize_with(i + 1, || None);
}
let slot = &mut bits[i];
*slot = Some(match slot.take() {
None => (new_name, new_enumerant),
Some((prev_name, prev_enumerant)) => {
// Only allow aliases that do not meaningfully differ.
assert!(
prev_enumerant == new_enumerant,
"{} bits {} and {} share a bit index but differ in definition",
o.kind,
prev_name,
new_name,
);
(
preferred_name_between_dups(prev_name, new_name),
new_enumerant,
)
}
});
}
// FIXME(eddyb) automate this in `indexed::NamedIdxMap`.
let bits = indexed::NamedIdxMap {
idx_by_name: enumerants
.iter()
.filter_map(|e| {
Some((e.enumerant, BitIdx::of_single_set_bit(e.value)?))
})
.collect(),
storage: bits,
};
OperandKindDef::BitEnum {
empty_name: empty_name.unwrap_or("None"),
bits,
}
}
raw::OperandKindCategory::ValueEnum => {
assert!(o.bases.is_none());
let enumerants = o.enumerants.as_ref().unwrap();
let variants = indexed::KhrSegmentedVec::from_in_order_iter(
enumerants.iter().map(|e| {
(
e.value.try_into().unwrap(),
(e.enumerant, enumerant_from_raw(e)),
)
}),
// `merge_duplicates` closure:
|(prev_name, prev_enumerant), (new_name, new_enumerant)| {
// Only allow aliases that do not meaningfully differ.
assert!(
prev_enumerant == new_enumerant,
"{} variants {} and {} share a value but differ in definition",
o.kind,
prev_name,
new_name,
);
(
preferred_name_between_dups(prev_name, new_name),
new_enumerant,
)
},
);
// FIXME(eddyb) automate this in `indexed::NamedIdxMap`.
let variants = indexed::NamedIdxMap {
idx_by_name: enumerants
.iter()
.map(|e| (e.enumerant, e.value.try_into().unwrap()))
.collect(),
storage: variants,
};
OperandKindDef::ValueEnum { variants }
}
raw::OperandKindCategory::Id => {
assert!(o.enumerants.is_none() && o.bases.is_none());
OperandKindDef::Id
}
raw::OperandKindCategory::Literal => {
assert!(o.enumerants.is_none() && o.bases.is_none());
let size = match o.kind {
"LiteralInteger"
| "LiteralExtInstInteger"
| "LiteralSpecConstantOpInteger"
| "LiteralFloat" => LiteralSize::Word,
"LiteralString" => LiteralSize::NulTerminated,
"LiteralContextDependentNumber" => LiteralSize::FromContextualType,
_ => unreachable!(),
};
OperandKindDef::Literal { size }
}
raw::OperandKindCategory::Composite => {
return None;
}
};
Some((o.kind, def))
})
.collect();
// FIXME(eddyb) automate this in `indexed::NamedIdxMap`.
assert_eq!(operand_kind_by_name.len(), operand_kinds.len());
let operand_kinds =
indexed::NamedIdxMap { idx_by_name: operand_kind_by_name, storage: operand_kinds };
let operand_kind_pairs_by_name: FxHashMap<_, _> = raw_core_grammar
.operand_kinds
.iter()
.filter(|o| matches!(o.category, raw::OperandKindCategory::Composite))
.map(|o| {
assert!(o.enumerants.is_none());
let mut bases: [_; 2] = o.bases.as_ref().unwrap()[..].try_into().unwrap();
// HACK(eddyb) work around https://github.com/KhronosGroup/SPIRV-Headers/issues/38.
if o.kind == "PairLiteralIntegerIdRef" {
assert_eq!(bases, ["LiteralInteger", "IdRef"]);
bases[0] = "LiteralContextDependentNumber";
}
(o.kind, [
operand_kinds.lookup(bases[0]).unwrap(),
operand_kinds.lookup(bases[1]).unwrap(),
])
})
.collect();
let id_result_type = operand_kinds.lookup("IdResultType").unwrap();
let id_result = operand_kinds.lookup("IdResult").unwrap();
let instructions = indexed::KhrSegmentedVec::from_in_order_iter(
raw_core_grammar.instructions.iter().map(|inst| {
// Helper for checking if `inst.opname` starts with `prefix`
// followed by an uppercase letter indicating the start of
// the first "word" for the intra-category instruction name.
let has_categorical_prefix = |prefix| {
inst.opname
.strip_prefix(prefix)
.is_some_and(|next| next.starts_with(|c: char| c.is_ascii_uppercase()))
};
let category_from_prefix = if has_categorical_prefix("OpType") {
Some(InstructionCategory::Type)
} else if matches!(inst.opname, "OpConstant" | "OpSpecConstant")
|| has_categorical_prefix("OpConstant")
|| has_categorical_prefix("OpSpecConstant")
{
Some(InstructionCategory::Const)
} else if has_categorical_prefix("OpIgnore")
|| has_categorical_prefix("OpTerminate")
|| inst.opname == "OpEmitMeshTasksEXT"
{
// HACK(eddyb) not category prefixes, but they help with
// working around `Reserved` extensions with control-flow
// instructions. False positives will be caught by the
// assert further down, if `category_from_class` differs.
Some(InstructionCategory::ControlFlow)
} else {
None
};
let category_from_class = match inst.class {
"Type-Declaration" => Some(InstructionCategory::Type),
"Constant-Creation" => Some(InstructionCategory::Const),
"Control-Flow" => Some(InstructionCategory::ControlFlow),
// HACK(eddyb) work around all pipe instructions being in
// the `Pipe` class, even when e.g. `Constant-Creation`
// would be more appropriate (for `OpConstantPipeStorage`).
"Pipe" => category_from_prefix.filter(|&category| {
assert_eq!(
(inst.opname, category),
("OpConstantPipeStorage", InstructionCategory::Const)
);
true
}),
// HACK(eddyb) work around extensions getting initially
// added to catch-all classes like `Reserved` or `@exclude`.
"Reserved" | "@exclude" => category_from_prefix,
_ => None,
};
match (category_from_prefix, category_from_class) {
// Control-flow instructions don't (all) have prefixes.
(None, Some(InstructionCategory::ControlFlow)) => {}
_ => assert!(
category_from_prefix == category_from_class,
"instruction name `{}` implies category `{:?}`, \
but class `{}` implies category `{:?}`",
inst.opname,
category_from_prefix,
inst.class,
category_from_class,
),
}
let mut def = InstructionDef {
// FIXME(eddyb) should `Other` be replaced with `Option`?
category: category_from_class.unwrap_or(InstructionCategory::Other),
has_result_type_id: false,
has_result_id: false,
req_operands: ArrayVec::new(),
opt_operands: ArrayVec::new(),
rest_operands: None,
};
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd)]
enum Seq {
IdResultType,
IdResult,
Required,
Optional,
Rest,
}
let mut seq = None;
for o in &inst.operands {
let single = operand_kinds.lookup(o.kind);
let next_seq = match o.quantifier {
_ if single == Some(id_result_type) => {
assert!(o.quantifier.is_none());
assert!(!def.has_result_type_id);
def.has_result_type_id = true;
Seq::IdResultType
}
_ if single == Some(id_result) => {
assert!(o.quantifier.is_none());
assert!(!def.has_result_id);
def.has_result_id = true;
Seq::IdResult
}
None => {
def.req_operands
.try_push(pack_operand_name_and_kind(&o.name, single.unwrap()))
.map_err(|err| format!("{}/{:?}: {err}", inst.opname, o.name))
.unwrap();
Seq::Required
}
Some(raw::Quantifier::Optional) => {
def.opt_operands
.try_push(pack_operand_name_and_kind(&o.name, single.unwrap()))
.map_err(|err| format!("{}/{:?}: {err}", inst.opname, o.name))
.unwrap();
Seq::Optional
}
Some(raw::Quantifier::Rest) => {
def.rest_operands = Some(match single {
Some(kind) => RestOperandsUnit::One(kind),
None => RestOperandsUnit::Two(operand_kind_pairs_by_name[o.kind]),
});
Seq::Rest
}
};
assert!(seq <= Some(next_seq), "{next_seq:?} -> {seq:?}");
seq = Some(next_seq);
}
// `IdResultType` without `IdResult` is impossible.
if def.has_result_type_id {
assert!(def.has_result_id);
}
(inst.opcode, (inst.opname, def))
}),
// `merge_duplicates` closure:
|(prev_name, prev_def), (new_name, new_def)| {
// Only allow aliases that do not meaningfully differ.
assert!(
prev_def == new_def,
"instructions {prev_name} and {new_name} share an opcode but differ in definition",
);
(preferred_name_between_dups(prev_name, new_name), new_def)
},
);
// FIXME(eddyb) automate this in `indexed::NamedIdxMap`.
let instructions = indexed::NamedIdxMap {
idx_by_name: raw_core_grammar
.instructions
.iter()
.map(|inst| (inst.opname, Opcode(inst.opcode)))
.collect(),
storage: instructions,
};
let addressing_models =
match &operand_kinds[operand_kinds.lookup("AddressingModel").unwrap()] {
OperandKindDef::ValueEnum { variants } => variants,
_ => unreachable!(),
};
let storage_classes = match &operand_kinds[operand_kinds.lookup("StorageClass").unwrap()] {
OperandKindDef::ValueEnum { variants } => variants,
_ => unreachable!(),
};
let decorations = match &operand_kinds[operand_kinds.lookup("Decoration").unwrap()] {
OperandKindDef::ValueEnum { variants } => variants,
_ => unreachable!(),
};
let linkage_types = match &operand_kinds[operand_kinds.lookup("LinkageType").unwrap()] {
OperandKindDef::ValueEnum { variants } => variants,
_ => unreachable!(),
};
// FIXME(eddyb) if this is computed earlier, `IdResultType` and `IdResult`
// wouldn't be looked up twice - but for now, this is mildly cleaner.
let well_known = WellKnown::lookup_with(PerWellKnownGroup {
opcode: |name| instructions.lookup(name).unwrap(),
operand_kind: |name| operand_kinds.lookup(name).unwrap(),
addressing_model: |name| addressing_models.lookup(name).unwrap().into(),
storage_class: |name| storage_classes.lookup(name).unwrap().into(),
decoration: |name| decorations.lookup(name).unwrap().into(),
linkage_type: |name| linkage_types.lookup(name).unwrap().into(),
});
Self {
magic: raw_core_grammar.magic_number,
instructions,
well_known,
operand_kinds,
operand_names,
ext_inst_sets: BTreeMap::new(),
}
}
}
/// Deserialization for the `.grammar.json` files, without any post-processing.
pub mod raw {
use serde::Deserialize;
use smallvec::SmallVec;
#[derive(Deserialize)]
#[serde(deny_unknown_fields)]
pub struct CoreGrammar<'a> {
#[serde(borrow)]
pub copyright: Vec<CowStr<'a>>,
#[serde(deserialize_with = "dew_u32_maybe_hex")]
pub magic_number: u32,
pub major_version: u8,
pub minor_version: u8,
pub revision: u8,
pub instruction_printing_class: Vec<InstructionPrintingClass<'a>>,
pub instructions: Vec<Instruction<'a>>,
pub operand_kinds: Vec<OperandKind<'a>>,
}
#[derive(Deserialize)]
#[serde(deny_unknown_fields)]
pub struct ExtInstGrammar<'a> {
#[serde(borrow)]
pub copyright: Option<Vec<CowStr<'a>>>,
pub version: Option<u8>,
pub revision: u8,
pub instructions: Vec<Instruction<'a>>,
#[serde(default)]
pub operand_kinds: Vec<OperandKind<'a>>,
}
#[derive(Deserialize)]
#[serde(deny_unknown_fields)]
pub struct InstructionPrintingClass<'a> {
pub tag: &'a str,
pub heading: Option<&'a str>,
}
#[derive(Deserialize)]
#[serde(deny_unknown_fields)]
pub struct Instruction<'a> {
pub opname: &'a str,
#[serde(default)]
pub class: &'a str,
pub opcode: u16,
#[serde(default)]
pub operands: Vec<Operand<'a>>,
#[serde(default)]
pub extensions: SmallVec<[&'a str; 1]>,
#[serde(default)]
pub capabilities: SmallVec<[&'a str; 1]>,
// HACK(eddyb) some `extinst.*.json` use this form.
pub capability: Option<&'a str>,
pub version: Option<&'a str>,
#[serde(rename = "lastVersion")]
pub last_version: Option<&'a str>,
}
#[derive(Deserialize)]
#[serde(deny_unknown_fields)]
pub struct Operand<'a> {
pub kind: &'a str,
pub quantifier: Option<Quantifier>,
#[serde(borrow)]
pub name: Option<CowStr<'a>>,
}
#[derive(Deserialize)]
pub enum Quantifier {
#[serde(rename = "?")]
Optional,
#[serde(rename = "*")]
Rest,
}
#[derive(Deserialize)]
#[serde(deny_unknown_fields)]
pub struct OperandKind<'a> {
pub category: OperandKindCategory,
pub kind: &'a str,
pub doc: Option<&'a str>,
pub enumerants: Option<Vec<OperandKindEnumerant<'a>>>,
pub bases: Option<Vec<&'a str>>,
}
#[derive(Deserialize)]
pub enum OperandKindCategory {
BitEnum,
ValueEnum,
Id,
Literal,
Composite,
}
#[derive(Deserialize)]
#[serde(deny_unknown_fields)]
pub struct OperandKindEnumerant<'a> {
pub enumerant: &'a str,
#[serde(deserialize_with = "dew_u32_maybe_hex")]
pub value: u32,
#[serde(default)]
pub parameters: Vec<Operand<'a>>,
#[serde(default)]
pub extensions: SmallVec<[&'a str; 1]>,
#[serde(default)]
pub capabilities: SmallVec<[&'a str; 1]>,
pub version: Option<&'a str>,
#[serde(rename = "lastVersion")]
pub last_version: Option<&'a str>,
}
// HACK(eddyb) `Cow<'a, str>` that works w/ zero-copy deserialization, even
// when nested (`serde` only special-cases `Cow` used directly as a field type).
#[derive(Deserialize, Debug)]
#[serde(untagged)]
pub enum CowStr<'a> {
Borrowed(&'a str),
Owned(String),
}
/// Helper to generate functions usable with `deserialize_with` (hence "dew"),
/// that deserialize to an intermediary type, which is then passed through the
/// supplied closure, which is allowed to error. This is similar to the serde
/// attribute `#[serde(try_from = "...")]`, but that only works for whole types.
macro_rules! dew_and_then {
($($name:ident: |$x:ident: $in_ty:ty| -> $out_ty:ty $body:block),* $(,)?) => {
$(fn $name<'de, D>(deserializer: D) -> Result<$out_ty, D::Error>
where
D: serde::Deserializer<'de>,
{
let x = Deserialize::deserialize(deserializer)?;
// HACK(eddyb) this is a `try {...}`-like use of a closure.
#[allow(clippy::redundant_closure_call)]
(|$x: $in_ty| -> Result<$out_ty, _> { $body })(x)
.map_err(serde::de::Error::custom)
})*
};
}
dew_and_then! {
dew_u32_maybe_hex: |x: DecOrHex<'_, u32>| -> u32 { x.try_into() },
}
#[derive(Deserialize)]
#[serde(untagged)]
pub enum DecOrHex<'a, T> {
Dec(T),
MaybeHex(&'a str),
}
impl TryInto<u32> for DecOrHex<'_, u32> {
type Error = String;
fn try_into(self) -> Result<u32, Self::Error> {
match self {
DecOrHex::Dec(x) => Ok(x),
DecOrHex::MaybeHex(s) => {
// HACK(eddyb) some decimal numbers are kept as strings.
if let Ok(x) = s.parse() {
return Ok(x);
}
s.strip_prefix("0x")
.ok_or_else(|| {
format!("DecOrHex string form doesn't start with 0x: {s:?}")
})?
.chars()
.try_fold(0u32, |r, c| {
// HACK(eddyb) this uses `checked_mul` because `checked_shl`
// doesn't handle information loss (bits being shifted off).
Ok(r.checked_mul(16).ok_or("DecOrHex hex overflow into u32")?
+ c.to_digit(16)
.ok_or("DecOrHex hex has non-hex-nibble character")?)
})
}
}
}
}
}
/// Utilities for indexing data in a variety of ways (names, compact indices, etc.).
// FIXME(eddyb) move this out of here?
pub mod indexed {
use rustc_hash::FxHashMap;
use smallvec::SmallVec;
pub trait StorageShape<I, T> {
type Storage;
fn get_by_idx(storage: &Self::Storage, idx: I) -> Option<&T>;
}
pub trait FlatIdx: Copy {
fn to_usize(self) -> usize;
}
impl FlatIdx for u16 {
fn to_usize(self) -> usize {
self.into()
}
}
/// Flat array ([`Vec`]) storage, likely used with compact indices.
pub enum Flat {}
impl<I: FlatIdx, T> StorageShape<I, T> for Flat {
type Storage = Vec<T>;
fn get_by_idx(storage: &Self::Storage, idx: I) -> Option<&T> {
storage.get(idx.to_usize())
}
}
/// Like [`Flat`], but the [`Vec`] elements are wrapped in [`Option`].
pub enum FlatWithHoles {}
impl<I: FlatIdx, T> StorageShape<I, T> for FlatWithHoles {
type Storage = Vec<Option<T>>;
fn get_by_idx(storage: &Self::Storage, idx: I) -> Option<&T> {
storage.get(idx.to_usize())?.as_ref()
}
}
/// Segmented sparse storage, taking advantage of Khronos' predictable
/// reservation policy for SPIR-V instruction opcodes and `ValueEnum`s:
/// * indices in `0..=4096` are reserved for the standard, and mostly
/// allocated without gaps (~84% density at the time of writing)
/// * indices in `4096..` are allocated in blocks of `64`; while sparser
/// than the standard range, the blockiness allows some optimizations
pub enum KhrSegmented {}
/// Khronos-oriented segmented sparse array (see [`KhrSegmented`]).
pub struct KhrSegmentedVec<T> {
/// Concatenation of values for indices lower than `4096`, with values
/// for indices in a `64`-sized/aligned block starting at/above `4096`.
///
/// Gaps are present (as `None`), but only if there are more values at
/// some point after the gap, in the `0..=4096` index range, or in the
/// same `64`-sized/aligned block (i.e. tailing gaps are elided).
flattened: Vec<Option<T>>,
/// Starting indices in `flattened` for every `64`-sized/aligned block.
///
/// For example, if an index `i >= 4096` is present, its value can be
/// found at `flattened[block_starts[(i - 4096) / 64] + (i % 64)]`.
block_starts: SmallVec<[u16; 8]>,
}
impl<T> KhrSegmentedVec<T> {
/// If `idx` is not in an out-of-range block, returns the pair of a
/// "segment range" and an "intra-segment index".
///
/// For example, if an index `i` is present, then `idx_to_segmented(i)`
/// will return `Some((seg_range, intra_seg_idx))`, and the value can be
/// found at `flattened[seg_range][intra_seg_idx]`.
fn idx_to_segmented(&self, idx: u16) -> Option<(std::ops::Range<usize>, usize)> {
let (block, intra_seg_idx) = if let Some(in_blocks_idx) = idx.checked_sub(4096) {
(Some(usize::from(in_blocks_idx / 64)), idx % 64)
} else {
(None, idx)
};
let next_block = block.map_or(0, |b| b + 1);
let seg_start =
block.map_or(Some(0), |b| self.block_starts.get(b).copied().map(usize::from))?;
let seg_end = self
.block_starts
.get(next_block)
.copied()
.map_or(self.flattened.len(), usize::from);
Some((seg_start..seg_end, usize::from(intra_seg_idx)))
}
/// Add a new value, with an index greater than all previous indices.
///
/// An exception is made for duplicates, which have to be handled by the
/// `merge_duplicates` closure, instead of being outright disallowed.
fn insert_in_order(&mut self, idx: u16, value: T, merge_duplicates: impl Fn(T, T) -> T) {
let last_idx_plus_one = self.block_starts.len().checked_sub(1).map_or(
self.flattened.len(),
|last_block_idx| {
4096 + 64 * last_block_idx
+ (self.flattened.len() - usize::from(self.block_starts[last_block_idx]))
},
);
if let Some(last_idx) = last_idx_plus_one.checked_sub(1) {
// HACK(eddyb) the condition being `<` instead of `<=` allows
// for special handling of duplicates (via `merge_duplicates`).
if usize::from(idx) < last_idx {
panic!(
"KhrSegmentedVec::insert_in_order: out of order indices ({idx} after {last_idx})",
);
}
}
// Reserve new blocks if needed (so `idx_to_segmented` can't fail).
if let Some(block) = idx.checked_sub(4096).map(|i| i / 64) {
let needed_blocks = usize::from(block).checked_add(1).unwrap();
if needed_blocks > self.block_starts.len() {
self.block_starts
.resize(needed_blocks, self.flattened.len().try_into().unwrap());
}
}
let (seg_range, intra_seg_idx) = self.idx_to_segmented(idx).unwrap();
// The check at the start ensures we're never trying to insert in
// an "already completed" segment.
assert_eq!(seg_range.end, self.flattened.len());
let slot_idx = seg_range.start + intra_seg_idx;
let needed_slots = slot_idx.checked_add(1).unwrap();
if needed_slots > self.flattened.len() {
self.flattened.resize_with(needed_slots, || None);
}
let slot = &mut self.flattened[slot_idx];
if let Some(prev) = slot.take() {
*slot = Some(merge_duplicates(prev, value));
} else {
*slot = Some(value);
}
}
/// Construct a [`KhrSegmentedVec`] out of an iterator with ordered indices.
///
/// An exception is made for duplicates, which have to be handled by the
/// `merge_duplicates` closure, instead of being outright disallowed.
pub fn from_in_order_iter(
it: impl IntoIterator<Item = (u16, T)>,
merge_duplicates: impl Fn(T, T) -> T,
) -> Self {
let iter = it.into_iter();
let mut this = Self {
flattened: Vec::with_capacity(
iter.size_hint().0.checked_next_power_of_two().unwrap_or(0),
),
block_starts: SmallVec::new(),
};
for (idx, value) in iter {
// FIXME(eddyb) the check at the start of `insert_in_order` may
// be less efficient than if we checked the ordering here instead.
this.insert_in_order(idx, value, &merge_duplicates);
}
this
}
}
impl<I: FlatIdx, T> StorageShape<I, T> for KhrSegmented {
type Storage = KhrSegmentedVec<T>;
fn get_by_idx(storage: &Self::Storage, idx: I) -> Option<&T> {
let (seg_range, intra_seg_idx) =
storage.idx_to_segmented(idx.to_usize().try_into().ok()?)?;
storage.flattened.get(seg_range)?.get(intra_seg_idx)?.as_ref()
}
}
pub struct NamedIdxMap<I, T, S: StorageShape<I, (&'static str, T)>> {
pub(super) idx_by_name: FxHashMap<&'static str, I>,
pub(super) storage: S::Storage,
}
impl<I, T, S: StorageShape<I, (&'static str, T)>> NamedIdxMap<I, T, S> {
/// Get an index from a name.
pub fn lookup(&self, name: &str) -> Option<I>
where
I: Copy,
{
self.idx_by_name.get(name).copied()
}
pub fn get_named(&self, idx: I) -> Option<(&'static str, &T)> {
let (name, value) = S::get_by_idx(&self.storage, idx)?;
Some((name, value))
}
pub fn get(&self, idx: I) -> Option<&T> {
let (_name, value) = self.get_named(idx)?;
Some(value)
}
}
impl<I, T, S: StorageShape<I, (&'static str, T)>> std::ops::Index<I> for NamedIdxMap<I, T, S> {
type Output = T;
fn index(&self, idx: I) -> &T {
self.get(idx).unwrap()
}
}
}